2.1.2函数的表示方法预学案
教学设计2:2.1.2 函数的表示方法

2.1.2 函数的表示方法(一)缺点:抽象、不直观图像法:优点:直观形象地表示出函数值的变化情况。
缺点:不准确以上是函数的三种表示方法请同学举出生活中或者以前的学习中所接触的函数的表示法 例如银行利率表、列车时刻表等等,一般的,“离散型”问题常用列表法 又如股票图等,用图象法则有效的反映了两个变量之间的关系.例1某洗衣店中,每洗一次衣服需要付费4元,若在这一家店洗衣10次,则其后可以免费洗一次,若某人在这店中洗了15次衣服. (1)根据题意填写下表:洗衣次数n 5 9 10 11 15 洗衣费用c(2)写出当n ≤15时函数的解析式. 解:(1)洗衣次数n 5 9 10 11 15 洗衣费用c2036404056(2)当洗衣次数n ≤10(n ∈N *)时,c =4n ; 当洗衣次数11≤n ≤15(n ∈N *)时,c =4(n —1)即 ⎩⎨⎧∈≤≤-∈≤≤=Nn n n N n n n c 且且1511),1(4101,4.在定义域的不同部分上,有不同的解析式,这样的函数叫做分段函数.分段函数是一个函数,每一段及其他的解析式只是这个函数整体的一部分.例2 如图,梯形OABC 各顶点的坐标分别为O(0,0),A(6,0),B(4,2),C(2,2).一条与y 轴平行的动直线l 从O 点开始作平行移动,到A 点为止.设直线l 与x 轴的交1500 1Oyx点为M ,OM =x ,记梯形被直线l 截得的在l 左侧的图形的面积为y .求函数y =f (x )的解析式、定义域、值域以及f [f (72)]的值.解:(1)当0≤x ≤2时,图形为等腰直角三角形,y =12⋅x ⋅x =12x 2;(2)当2<x ≤4时,图形为一个直角梯形,它又可以分割成一个等腰三角形(确定的)与一个矩形,y =12⋅2⋅2+(x -2)⋅2=2x -2;(3)当4<x ≤6时,图形为一个五边形,它可看作是原梯形去掉一个等腰直角三角形(位于直线右侧),y =12 (6+2)⋅2-12 (6-x )2=-12x 2+6x -10.于是y =f (x )={12x 2,0≤x ≤2,2x −2,2<x ≤4,−12x 2+6x −10,4<x ≤6.并且函数y =f (x )的定义域是[0,6]. 又当0≤x ≤2时,y ∈[0,2];当2<x ≤4时,y ∈(2,6];当4<x ≤6时,y ∈(6,8].所以函数的值域是[0,8].f [f (72)]=f (5)=152.点评:求函数表达式时,若不同情形下,表达式不同,就需要用分段函数来表达.另外,由实际问题确定的函数,还应注意函数的定义域往往会受实际问题的约束. (三)课堂小结(1)函数三种表示方法:解析法、列表法、图象法.(2) 在定义域的不同部分上,有不同的解析式,这样的函数叫做分段函数.分段函数是一个函数,每一段及其他的解析式只是这个函数整体的一部分.。
学案6:2.1.2指数函数及其性质

2.1.2指数函数及其性质学习目标1.理解指数函数的概念与意义,掌握指数函数的定义域、值域的求法.(重点、难点) 2.能画出具体指数函数的图象,并能根据指数函数的图象说明指数函数的性质.(重点)知识梳理教材整理1指数函数的定义阅读教材,完成下列问题.指数函数的定义一般地,函数(a>0,且a≠1)叫做指数函数,其中是自变量,函数的定义域是R.练一练1判断(正确的打“√”,错误的打“×”)(1)函数y=-2x是指数函数.()(2)函数y=2x+1是指数函数.()(3)函数y=(-2)x是指数函数.()教材整理2指数函数的图象和性质阅读教材,完成下列问题.R练一练2判断(正确的打“√”,错误的打“×”)(1)指数函数的图象一定在x轴的上方.()(2)当a>1时,对于任意x∈R,总有a x>1.()(3)函数f(x)=2-x在R上是增函数.()类型一:指数函数的概念例1 (1)下列一定是指数函数的是( ) A .y =a x B .y =x a (a >0且a ≠1) C .y =⎝⎛⎭⎫12xD .y =(a -2)a x(2)函数y =(a -2)2a x 是指数函数,则( ) A .a =1或a =3 B .a =1 C .a =3 D .a >0且a ≠1名师指导1.在指数函数定义的表达式中,要牢牢抓住三点: (1)底数是大于0且不等于1的常数; (2)指数函数的自变量必须位于指数的位置上; (3)a x 的系数必须为1;2.求指数函数的解析式常用待定系数法.跟踪训练1 (1)若函数f (x )是指数函数,且f (2)=9,则f (x )=________. (2)已知函数f (x )=(2a -1)x 是指数函数,则实数a 的取值范围是________. 类型二:指数函数的定义域和值域 例2 求下列函数的定义域和值域: (1)y =√1−3x ; (2)y =(23)√−|x|; (3)y =4x +2x +1+2. 名师指导1.函数y =a f (x )的定义域与y =f (x )的定义域相同.2.函数y=a f(x)的值域的求解方法如下:(1)换元,令t=f(x);(2)求t=f(x)的定义域x∈D;(3)求t=f(x)的值域t∈M;(4)利用y=a t的单调性求y=a t,t∈M的值域.3.求与指数函数有关的函数的值域时,要注意与求其它函数(如一次函数、二次函数)值域的方法相结合,要注意指数函数的值域为(0,+∞),切记准确运用指数函数的单调性.跟踪训练2 求下列函数的定义域和值域:(1)y=21x−3;(2)y=221()2x x.探究共研型类型三:指数函数的图象探究1指数函数y=a x(a>0且a≠1)的图象过哪一定点?函数f(x)=a x-1+2(a>0且a≠1)的图象又过哪一定点呢?探究2若函数y=a x+b(a>0,且a≠1)的图象不经过第一象限,则a,b满足什么条件?例3(1)在同一坐标系中画出函数y=a x,y=x+a的图象,可能正确的是()(2)函数y =a-|x |(0<a <1)的图象是( )名师指导指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系. (1)在y 轴右侧,图象从上到下相应的底数由大变小. (2)在y 轴左侧,图象从下到上相应的底数由大变小.(3)无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过x 取1时函数值的大小关系去理解,如下图所示的指数函数的底数的大小关系为0<d <c <1<b <a .跟踪训练3 定义一种运算:g ⊙h =⎩⎪⎨⎪⎧gg ≥hhg <h ,已知函数f (x )=2x ⊙1,那么函数y =f (x -1)的大致图象是( )课堂检测1.若函数f (x )是指数函数,且f (2)=2,则f (x )=( ) A .(2)x B .2x C.⎝⎛⎭⎫12xD.⎝⎛⎭⎫22x2.当x ∈[-2,2)时,y =3-x -1的值域是( ) A.⎝⎛⎦⎤-89,8 B.⎣⎡⎦⎤-89,8 C.⎝⎛⎭⎫19,9D.⎣⎡⎦⎤19,93.已知1>n >m>0,则指数函数①y =m x ,②y =n x 的图象为( )4.已知函数f (x )=a -x (a >0, 且a ≠1),且f (-2)>f (-3),则a 的取值范围是________. 5.设f (x )=3x ,g(x )=⎝⎛⎭⎫13x.(1)在同一坐标系中作出f (x ),g(x )的图象;(2)计算f (1)与g(-1),f (π)与g(-π),f (m )与g(-m )的值,从中你能得到什么结论?参考答案知识梳理教材整理1 指数函数的定义 y =a x ; x 练一练1【答案】 (1)× (2)× (3)×【解析】 (1)由指数函数的定义形式可知(1)(2)(3)均错误. 教材整理2 指数函数的图象和性质 (0,+∞) ;(0,1);增函数;减函数;y 轴 练一练2【答案】 (1)√ (2)× (3)×【解析】 (1)因为指数函数的值域是(0,+∞),所以指数函数的图象一定在x 轴的上方. (2)当x ≤0时,a x ≤1.(3)因为f (x )=2-x =⎝⎛⎭⎫12x ,所以函数f (x )=2-x在R 上是减函数. 类型一:指数函数的概念 例1 【答案】 (1)C (2)C【解析】 (1)A 中a 的范围没有限制,故不一定是指数函数;B 中y =x a (a >0且a ≠1)中变量是底数,故也不是指数函数;C 中y =⎝⎛⎭⎫12x 显然是指数函数;D 中只有a -2=1即a =3时为指数函数.(2)由指数函数定义知⎩⎪⎨⎪⎧(a -2)2=1a >0,且a ≠1,所以解得a =3.跟踪训练1 【答案】 (1)3x (2) ⎝⎛⎭⎫12,1∪(1,+∞) 【解析】 (1)由题意设f (x )=a x (a >0,且a ≠1), 则f (2)=a 2=9.又因为a >0,所以a =3. 所以f (x )=3x .(2)由题意可知{ 2a -1>0,2a -1≠1,解得a >12,且a ≠1.所以实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞). 类型二:指数函数的定义域和值域例2 解:(1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30,因为函数y =3x 在R 上是增函数,所以x ≤0,故函数y = √1−3x 的定义域为(-∞,0]. 因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1.所以√1−3x ∈[0,1),即函数y = √1−3x 的值域为[0,1). (2)要使函数式有意义,则-|x |≥0,解得x =0, 所以函数y = (23)√−|x|的定义域为{x |x =0}.因为x =0,所以y = (23)√−|x| =(23)0=1,即函数y= (23)√−|x|的值域为{y |y =1}.(3)因为对于任意的x ∈R , 函数y =4x +2x +1+2都有意义, 所以函数y =4x +2x +1+2的定义域为R . 因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2 =(2x +1)2+1>1+1=2,即函数y =4x +2x +1+2的值域为(2,+∞). 跟踪训练2 解:(1)函数的定义域为{x |x ≠3}. 令t =1x−3,则t ≠0,∴y =2t >0且2t ≠1, 故函数的值域为{y |y >0,且y ≠1}. (2)函数的定义域为R ,令t =2x -x 2, 则t =-(x -1)2+1≤1,∴y =(12)t ≥ (12)1=12,故函数的值域为[12,+∞).探究共研型类型三:指数函数的图象探究1 【答案】 指数函数y =a x (a >0且a ≠1)的图象过定点(0,1);在f (x )=a x -1+2中令x -1=0,即x =1,则f (x )=3,所以函数f (x )=a x -1+2(a >0且a ≠1)的图象过定点(1,3). 探究2 【答案】 如图,由图可知0<a <1,b ≤-1.例3【答案】 (1)D (2)A【解析】(1)∵a 为直线y =x +a 在y 轴上的截距,对应函数y =x +a 单调递增, 又∵当a >1时,函数y =a x 单调递增,当0<a <1时,函数y =a x 单调递减,A 中,从图象上看,y =a x 的a 满足a >1,而直线y =x +a 的截距a <1,不符合以上两条;B 中,从图象上看,y =a x 的a 满足0<a <1,而直线y =x +a 的截距a >1,不符合以上两条;C 中,从图象上看,y =a x 的a 满足a >1,而函数y =x +a 单调递减,不符合以上两条, ∴只有选项D 的图象符合以上两条,故选D. (2)y =a-|x |=⎝⎛⎭⎫1a |x |,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A.跟踪训练3 【答案】 B【解析】 f (x )=⎩⎪⎨⎪⎧ 2x x ≥01x <0,∴f (x -1)=⎩⎪⎨⎪⎧2x -1x ≥11x <1,∴其图象为B ,故选B.课堂检测 1.【答案】 A【解析】 由题意,设f (x )=a x (a >0且a ≠1),则由f (2)=a 2=2,得a =2,所以f (x )=(2)x . 2.【答案】 A【解析】 y =3-x -1,x ∈[-2,2)是减函数, ∴3-2-1<y ≤32-1,即-89<y ≤8.3.【答案】 C【解析】 由于0<m <n <1,所以y =m x 与y =n x 都是减函数,故排除A ,B ,作直线x =1与两个曲线相交,交点在下面的是函数y =m x 的图象,故选C. 4.【答案】 (0,1)【解析】 因为f (x )=a -x =⎝⎛⎭⎫1a x ,且f (-2)>f (-3),所以函数f (x )在定义域上单调递增, 所以1a>1,解得0<a <1.5. 解:(1)函数f (x ),g(x )的图象如图所示:(2)f (1)=31=3,g (-1)=⎝⎛⎭⎫13-1=3,f (π)=3π,g(-π)=⎝⎛⎭⎫13-π=3π, f (m )=3m ,g(-m )=⎝⎛⎭⎫13-m=3m.。
高一数学人教B版必修1:2.1.2 函数的表示方法(二) 学案

2.1.2 函数的表示方法(二)自主学习学习目标了解分段函数的概念,会画分段函数的图象,并能解决相关问题.自学导引 分段函数(1)分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的______________的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的________;各段函数的定义域的交集是空集.(3)作分段函数图象时,应________________________.对点讲练知识点一 分段函数的求值问题例1 已知函数f (x )=⎩⎪⎨⎪⎧x +2 (x ≤-1),x 2(-1<x <2),2x (x ≥2).(1)求f [f (3)]的值;(2)若f (a )=3,求a 的值.规律方法 对于f (a ),究竟用分段函数中的哪一个对应关系,与a 所在范围有关,因此要对a 进行讨论.由此我们可以看到:(1)分段函数的函数值要分段去求;(2)分类讨论不是随意的,它是根据解题过程中的需要而产生的.变式迁移1 设f (x )=⎩⎨⎧12x -1 (x ≥0),1x(x <0),若f (a )>a ,则实数a 的取值范围是________.知识点二 分段函数的图象及应用例2 已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示该函数; (2)画出该函数的图象;(3)写出该函数的值域.规律方法 对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.由于分段函数在定义域的不同区间内解析式不一样,因此画图时要特别注意区间端点处对应点的实虚之分.变式迁移2 已知函数f (x )=⎩⎨⎧-2(x -12)2+1,x ∈[0,12)-2x +2,x ∈[12,1],在平面直角坐标系中作出y =f (x )的图象,并写出值域.知识点三 分段函数的简单应用例3 某市的空调公共汽车的票价制定的规则是: (1)乘坐5 km 以内,票价2元;(2)5 km 以上(含5 km),每增加5 km ,票价增加1元(不足5 km 的按5 km 计算).已知两个相邻的公共汽车站之间相距约 1 km ,如果在某条路线上沿途(包括起点站和终点站)设21个汽车站,请根据题意写出这条路线的票价与里程之间的函数解析式,并作出函数的图象.规律方法 该类问题属于函数建模问题,解答此类问题的关键在于先将实际问题数学模型化,然后结合题设选择合适的函数类型去拟合,解答过程中要密切关注实际问题中的隐含条件,对于自变量x 的不同取值区间,有着不同的对应法则,画图象时,注意每段定义域端点的虚实.变式迁移3 电讯资费调整后,市话费标准为:通话时间不超过3分钟收费0.2元.超过3分钟,以后每增加1分钟收费0.2元,不足1分钟以1分钟计费,求通话收费x 元与通话时间t (分钟)的函数解析式,并画出t ∈(0,7]的图象.1.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.2.含有绝对值的函数解析式要化为分段函数处理.3.画分段函数的图象要逐段画出,求分段函数的值要按各段的区间范围代入自变量求值.课时作业一、选择题1.设函数f (x )=⎩⎪⎨⎪⎧1-x 2, x ≤1,x 2+x -2, x >1,则f [1f (2)]的值为( )A.1516 B .-2716 C.89D .18 2.已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6)f (x +2) (x <6)(x ∈N ),那么f (3)等于( )A .2B .3C .4D .53.已知f (x )=⎩⎪⎨⎪⎧ x 2(x ≥0)x (x <0),g (x )=⎩⎪⎨⎪⎧x (x ≥0)-x 2 (x <0),则当x <0时,f [g (x )]为( ) A .-x B .-x 2 C .x D .x 24.函数f (x )=⎩⎪⎨⎪⎧2x 2(0≤x ≤1)2 (1<x <2)x +1 (x ≥2)的值域是( )A .RB .(0,+∞)C .(0,2)∪(2,+∞)D .[0,2]∪[3,+∞)二、填空题5.已知f (x )=⎩⎪⎨⎪⎧0 (x <0)π (x =0)x +1 (x >0),则f (f (f (-1)))的值是__________.6.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,x <0,则不等式xf (x )+x ≤2的解集是__________.三、解答题7.若[x ]表示不超过x 的最大整数,画出y =[x ] (-3≤x ≤3)的图象.8. 已知函数y =f (x )的图象是由图中的两条射线和抛物线的一部分组成,求函数的解析式.9.已知函数f (x )=⎩⎪⎨⎪⎧1, x ∈[0,1],x -3, x ∉[0,1],求使等式f [f (x )]=1成立的实数x 构成的集合.2.1.2 函数的表示方法(二) 答案自学导引(1)对应法则 (2)并集 (3)分别作出每一段的图象 对点讲练例1 解 (1)∵-1<3<2,∴f (3)=(3)2=3. 而3≥2,∴f [f (3)]=f (3)=2×3=6.(2)当a ≤-1时,f (a )=a +2,又f (a )=3, ∴a =1(舍去);当-1<a <2时,f (a )=a 2,又f (a )=3, ∴a =±3,其中负值舍去,∴a =3; 当a ≥2时,f (a )=2a ,又f (a )=3,∴a =32(舍去).综上所述,a = 3.变式迁移1 a <-1解析 当a ≥0时,f (a )=12a -1,解12a -1>a ,得a <-2与a ≥0矛盾,当a <0时,f (a )=1a ,解1a>a ,得a <-1.∴a <-1. 例2 解 (1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x .∴f (x )=⎩⎪⎨⎪⎧1 (0≤x ≤2)1-x (-2<x <0).(2)函数f (x )的图象如图所示,(3)由(2)知,f (x )在(-2,2]上的值域为[1,3). 变式迁移2 解 如图所示,函数y =f (x )的图象是由f 1(x )=-2(x -12)2+1,x ∈[0,12)的图象(抛物线的一段)及f 2(x )=-2x +2,x ∈[12,1]的图象(一条线段)组成的,其值域为[0,1].例3 解 设票价为y 元,里程为x km , 由题意可知0<x ≤20.所以y 关于x 的函数为 y =⎩⎪⎨⎪⎧2 (0<x <5)3 (5≤x <10)4 (10≤x <15)5 (15≤x ≤20)其图象如图所示.变式迁移3 解 由题意可知,变量t ∈(0,+∞),故x 与t 的函数关系的表达式为 x =⎩⎪⎨⎪⎧0.2 t ∈(0,3]0.2(n -1) t ∈(n ,n +1](n ∈N ,n ≥3), 其图象如图所示.课时作业1.A [f (2)=22+2-2=4,1f (2)=14, f (14)=1-(14)2=1516.故选A.] 2.A [由题意知f (3)=f (3+2) =f (5)=f (5+2)=f (7)=7-5=2.]3.B [当x <0时,g (x )=-x 2<0,∴f [g (x )]=-x 2.] 4.D [画图象可得.] 5.π+1解析 f (-1)=0,f (0)=π,f (π)=π+1 ∴f (f (f (-1)))=f (f (0))=f (π)=π+1. 6.{x |x ≤1}解析 当x ≥0时,f (x )=1,代入xf (x )+x ≤2,解得x ≤1,∴0≤x ≤1;当x <0时,f (x )=0,代入xf (x )+x ≤2,解得x ≤2,∴x <0.综上可知x ≤1.7.解 作出y =[x ]的图象如下图所示.8.解 根据图象,设左侧射线对应的函数解析式为y =kx +b (x <1). ∵点(1,1)、(0,2)在射线上, ∴⎩⎪⎨⎪⎧ k +b =1,b =2, 解得⎩⎪⎨⎪⎧k =-1,b =2. ∴左侧射线对应的函数解析式为 y =-x +2 (x <1).同理,x >3时,函数的解析式为y =x -2 (x >3). 又抛物线对应的二次函数的解析式为 y =a (x -2)2+2 (1≤x ≤3,a <0),∵点(1,1)在抛物线上,∴a +2=1,a =-1, ∴当1≤x ≤3时,函数的解析式为 y =-x 2+4x -2 (1≤x ≤3). 综上所述,函数的解析式为y =⎩⎪⎨⎪⎧-x +2 (x <1),-x 2+4x -2 (1≤x ≤3),x -2 (x >3).9.解 当x ∈[0,1]时,恒有f [f (x )]=f (1)=1 当x ∉[0,1]时,f [f (x )]=f (x -3)若0≤x -3≤1,即3≤x ≤4时,f (x -3)=1 若x -3∉[0,1],f (x -3)=(x -3)-3 令其值为1,即(x -3)-3=1,∴x =7. 综合知:x 的值构成的集合为 {x |0≤x ≤1或3≤x ≤4或x =7}.。
2.1.2指数函数的定义及图像(学案024)

12.1.2指数函数及其性质第三课时 指数型函数的图像及性质的应用(习题课)【学习目标】1.理解指数函数的单调性与底数a 的关系,能运用指数函数的单调性解决一些数学问题.2.学会用指数函数的性质求复合函数的定义域【重难点】重点:指数函数的图像及性质应用难点; 求相关复合函数的定义域知识点一:指数函数的单调性与底数a 的关系及指数函数的定点问题. 例1、函数()10,1xy a a a =+>≠的图像恒过定点练习1、函数()201920190,1x y aa a -=+>≠的图像恒过定点例2、如图是指数函数()()()()1;2;3;4x x x xy a y b y c y d ====的图像,则,,,a b c d 与1的大小关系是方法:当x=1得函数值的大小,即底数大小进行比较.练习2、若指数函数()1;xy a =+在)(,-∞+∞上是减函数,那么a 的取值范围是知识点二:求指数型函数(复合函数)的定义域例3、求下列函数的定义域()()4111;223x y y -⎛== ⎪⎝⎭练习3、(1)函数21112x y -⎛⎫= ⎪⎝⎭的定义域是(2)函数()10.5xf x =的定义域是【课堂检测】 1、若()()21xf x a =-是增函数,那么a 的取值范围是 。
22、函数()10,1x y a a a -=>≠的图像恒过定点 。
3.函数()2140,1x y a a a -=->≠的图像恒过定点 。
4.函数()f x =的定义域是 。
5..函数()f x =的定义域 。
【拓展训练】【课堂小结】1. 指数函数的单调性与底数a 的关系【课后作业】1.课本P58练习2习题A 组52.作业与检测P72 4,5,6,7,8,9,10,13 【课后反思】。
《2.1.2函数的表示方法》教案

《函数的表示方法》教案教学目标:1.知识与技能(1)明确函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数; (3)通过具体实例,了解简单的分段函数及应用. 2.过程与方法通过引导学生回答问题,培养学生的自主学习能力;通过画图像,培养学生的动手操作能力;3.情感态度与价值观通过一些实际生活应用题,让学生感受到学习函数表示的必要性,并体会数学源于生活用于生活的价值;通过函数的解析式与图像的结合,渗透数形结合思想方法。教学重点:函数的三种表示方法,分段函数的概念.教学难点:根据题目的已知条件,写出函数的解析式并画出图像教学过程:(一)、复习引入:1.函数的定义,函数的三要素(函数相同的条件). 集合A−−−→−f对应关系集合B当对应关系符合下面的条件之一时,则称f:A →B 为从集合A 到集合B 的一个函数 (1)1−−−→−f 对应关系1(集合A 和B 一一对应)(2)2或者更多−−−→−f对应关系1(集合A 多个对B 一个)误区:1−−−→−f对应关系2或者更多 ×构成函数的三要素: 定义域、对应关系和值域函数相同:当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关2.函数图象的基本方法画法(列表、描点、作图.) 本节将进一步学习函数的表示法和函数图象的作法(二)、讲解新课: 函数的三种表示方法:老师:同学们,回忆一下在初中时,我们学习过什么函数? 一次函数:)(0k b kx y ≠+= 二次函数:2y ax bx c =++(0)a ≠ 反比例函数:)(0k xky ≠= 教师引导学生归纳函数解析法的特点。(1)解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式。说明:①解析式法的优点是:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质;②中学里研究的主要是用解析式表示的函数。以下是我国1992年-1998年的国内生产总值(单位:亿元)。而我们仅仅是通过一个图表就知道生产总值与年份之间的关系,像这种函数的表示法,我们称为列表法。(2)列表法:列出表格来表示两个变量的函数关系式。例如:数学用表中的平方表、平方根表、三角函数表,以及银行里常用的“利息表”。说明:列表法的优点是:不必通过计算就知道当自变量取某些值时函数的对应值。 老师:另外,在初中我们还学习了一次函数,二次函数,反比例函数的图像。老师:像这种用图像来表示函数的方法叫做图像法。(3)图象法:用函数图象表示两个变量之间的关系。例如:气象台应用自动记录器,描绘温度随时间变化的曲线就是用图象法表示函数关系的。(见课本P53页图2-2 我国人口出生变化曲线)说明:图象法的优点是能直观形象地表示出函数的变化情况。 (三)、例题讲解例1、国内投寄信函(外埠),邮资按下列规则计算:1、信函质量不超过100g 时,每20g 付邮资80分,即信函质量不超过20g 付邮资80分,信函质量超过20g,但不超过40g 付邮资160分,依次类推;2、信函质量大于100g 且不超过200g 时,付邮资(A+200)分(A 为质量等于100g 的信函的邮资),信函质量超过200g,但不超过300g 付邮资(A+400)分,依此类推.设一封x g(0<x ≤200)的信函应付邮资为y(单位:分),试写出以x 为自变量的函数y 的解析式,并画出这个函数的图像解:这个函数的定义域集合是0200x <≤,函数的解析式为80,(0,20],160,(20,40],240,(40,60],320,(60,80],400,(80,100]600,(100,200].x x x y x x x ∈⎧⎪∈⎪⎪∈=⎨∈⎪⎪∈⎪∈⎩它的图象是6条线段(不包括左端点),都平行于x 轴,如图所示.新概念教学:在上例中,函数对于自变量x 的不同取值范围,对应法则也不同,这样的函数通常称为分段函数。注意:分段函数是一个函数,而不是几个函数. 例2、作出分段函数21++-=x x y 的图像 解:根据“零点分段法”去掉绝对值符号,即:21++-=x x y =⎪⎩⎪⎨⎧++-123)12(x x 1122>≤<--≤x x x 作出图像如右图作函数2243,(03)y x x x =--≤<的图象. 解:∵ 03x ≤<∴ 这个函数的图象是抛物线2243y x x =-- 介于03x ≤<之间的一段弧(如图).(四)、课堂练习:2、一个面积为100cm2的等腰梯形,上底长为xcm,下底长为上底长的3倍,则把它的高表示成x 的函数为()2x-1-2 x 111 f x =,f f 12 x >11+x ⎧≤⎡⎤⎪⎛⎫⎨ ⎪⎢⎥⎝⎭⎣⎦⎪⎩、设则等于14925A) B) C) - D)213541A) y=50x x>0 B) y=100x x>050100C) y= x>0 D) y= x>0x x。
苏教版数学高一必修1学案 2.1.2函数的表示方法

2.1.2函数的表示方法1.在实际情境中,会根据不同的要求选择恰当的方法表示函数.2.理解同一函数可以用不同的方法表示.1.函数的表示方法(1)列表法:用列表来表示两个变量之间函数关系的方法.(2)解析法:用等式来表示两个变量之间函数关系的方法,这个等式通常叫做函数的解析表达式,简称解析式.(3)图象法:用图象来表示两个变量之间函数关系的方法.1.列表法表示函数的优点在于不需要计算就可以直接看出与自变量的值相对应的函数值.这种方法常应用到实际生产和生活中.2.图象法表示函数的优点是通过图象可以直接观察出函数的变化趋势.气象台应用自动记录仪器描绘温度随时间变化的曲线,工厂的生产图象及股市走向图等,就是用图象法表示函数关系的.3.用解析法表示函数关系的优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量所对应的函数值.【做一做1-1】客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了0.5 h,然后以80km/h的速度匀速行驶1 h到达丙地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s与时间t之间关系的图象中,正确的是__________.答案:③【做一做1-2】某种杯子每只0.5元,买x只,所需钱数为y元,分别用列表法、图象法、解析法将y表示成x(x∈{1,2,3,4})的函数.解:(1)列表法:(2)图象法(如下图).(3)解析法:y=0.5x,x∈{1,2,3,4}.2.分段函数在定义域内不同部分上,有不同的解析表达式.像这样的函数通常叫做分段函数.分段函数是一个函数而不是几个函数.生活中有很多可以用分段函数描述实际问题的模型,如出租车的计费、个人所得税纳税额等.分段函数的图象由几个不同部分组成,作分段函数图象时,应根据不同定义域上的不同解析式分别作出.分段函数的定义域应为各段上自变量取值的并集,如函数y =⎩⎪⎨⎪⎧1x ,0<x <1,x ,x ≥1的定义域为{x |x >0}.分段函数定义域是各段自变量取值集合的并集,值域是各段函数值集合的并集,在作图时,要特别注意每段端点的虚实.【做一做2】在实际问题中,常常使用表格,有些表格描述了两个变量的函数关系,比如,国内跨省市之间邮寄信函,每封信函的质量和对应邮资如下表:解:图象如图. 解析式为:0.80,020,1.60,2040,2.40,4060,3.20,6080,4.00,80100.m m M m m m <≤⎧⎪<≤⎪⎪=<≤⎨⎪<≤⎪<≤⎪⎩1.如何求函数解析式?剖析:对于基本初等函数,通过待定系数法求之,即利用方程思想.对于实际应用问题,通常是研究自变量、函数与其他量之间的等量关系,从而将函数用自变量和其他量之间的关系表示出来,但不要忘记确定自变量的取值范围.如已知等腰三角形的周长为12,则底边长x 与腰长y 之间的函数关系是y =6-12x ,其中x ∈(0,6).2.如何理解分段函数?剖析:(1)分段函数的表达式是分段表示的,即函数与自变量的关系不是只满足一个式子,而是在不同范围内有不同的对应法则,这样的函数关系是分段函数.(2)分段函数的定义域应为各段上自变量取值的并集,这一点与函数y =x -1+1+x 的定义域的求法不相同.(3)作分段函数的图象时,特别注意端点处点的虚实,如函数y =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0的图象为(4)分段函数的表示法是解析法的一种形式.函数y =⎩⎨⎧22-6x ,0<x <11,-44,x ≥11不能写成y =22-6x,0<x <11或y =-44,x ≥11.分段函数的表达式因其特点可以分成两个或两个以上的不同表达式,所以其图象也是由几部分组成的,可以是由光滑的曲线段组成,也可以是孤立的点或几段线段组成;求分段函数的函数值的关键是“分段归类”,即自变量的取值属于哪一区间,就用哪一区间上的解析式.题型一 求函数解析式【例1】(1)已知函数f (x +1)=x 2-3x +2,求f (x ); (2)已知f (x +4)=x +8x ,求f (x 2);(3)已知函数y =f (x )满足2f (x )+1()f x=2x ,x ∈R 且x ≠0,求f (x ); (4)已知一次函数f (x )满足f [f (x )]=4x -1,求f (x ).分析:求解析式的方法较多,如配凑法、换元法、方程法、待定系数法等,关键在于弄清对于“x ”而言,“f ”是怎样的对应法则,至于选择什么符号表示自变量没有关系.要特别注意正确确定中间变量的取值范围,如(2)中设x +4=t ≥4,否则就不能正确确定f (x )的定义域.解:(1)方法一(换元法):令t =x +1,则x =t -1,代入得f (t )=(t -1)2-3(t -1)+2, ∴f (t )=t 2-5t +6,即f (x )=x 2-5x +6. 方法二(配凑法):∵f (x +1)=x 2-3x +2=(x +1)2-5x +1=(x +1)2-5(x +1)+6, ∴f (x )=x 2-5x +6.(2)方法一(配凑法):∵f (x +4)=x +8x =(x +4)2-16,∴f (x )=x 2-16(x ≥4). ∴f (x 2)=x 4-16(x ≤-2,或x ≥2). 方法二(换元法):设x +4=t ≥4, 则x =t -4,x =(t -4)2, ∴f (t )=(t -4)2+8(t -4)=t 2-16. ∴f (x )=x 2-16(x ≥4).∴f (x 2)=x 4-16(x ≤-2,或x ≥2). (3)(方程法)∵x ∈R ,且x ≠0, 由2f (x )+1()f x=2x ,① 将x 换成1x ,则1x换成x ,得12()f x+f (x )=2x .②①×2-②,得3f (x )=4x -2x ,即f (x )=4x 3-23x.(4)(待定系数法)∵f (x )是一次函数, ∴设f (x )=ax +b (a ≠0),则f [f (x )]=f (ax +b )=a (ax +b )+b =a 2x +ab +b =4x -1.∴⎩⎨⎧a 2=4,ab +b =-1⇒⎩⎪⎨⎪⎧a =2,b =-13或⎩⎨⎧a =-2,b =1.∴f (x )=2x -13或f (x )=-2x +1.反思:对于已知f [g (x )]的表达式,求f (x )的表达式的问题,一般方法是换元法,即设g (x )=t ,解出用t 表示x 的表达式,代入求得f (x )的解析式.在用换元法解这类题时,特别要注意正确确定中间变量t 的取值范围.若题目中已知函数f (x )的函数类型,一般采用待定系数法,如第(4)小题,由于已知函数f (x )是一次函数,故可设f (x )=ax +b (a ≠0).题型二 分段函数的图象与应用【例2】试作出函数y =|x -1|和y =|x -1|+|x +2|的图象.分析:y =|x -1|=⎩⎨⎧x -1,x ≥1,1-x ,x <1,y =|x -1|+|x +2|=⎩⎪⎨⎪⎧-2x -1,x ≤-2,3,-2<x <1,2x +1,x ≥1.解:y =|x -1|的图象如图(1). y =|x -1|+|x +2|的图象如图(2).反思:画带绝对值符号的简单函数的图象的基本方法是先求函数的定义域,然后化简函数解析式,就是去绝对值符号.(1)带一个绝对值符号的函数,根据绝对值的意义去绝对值符号.(2)带两个或两个以上绝对值符号的问题,常用“零点分段法”去绝对值符号,从而把函数写成分段函数的形式,然后作图.如本题(2),令x -1=0,得x =1;令x +2=0,得x =-2.-2和1把数轴分成三部分(如下图所示).【例3】设函数f (x )=⎩⎨⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是__________.解析:因f (1)=12-4×1+6=3,所以原不等式可化为f (x )>3.作出原函数的图象,如下图所示.再作出直线y =3,其交点坐标分别为(-3,3),(1,3)和(3,3),从图象观察即得. 答案:(-3,1)∪(3,+∞)反思:作为填空题,可利用数形结合的方法求解不等式,此方法直观、简洁、准确.题型三 实际应用问题【例4】通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果表明,用f (x )表示学生掌握和接受概念的能力,f (x )的值越大,表示接受的能力越强,x 表示提出和讲授概念的的讲授时间(单位:分钟),可有以下的公式:f (x )=⎩⎪⎨⎪⎧-0.1x 2+2.6x +43,0<x ≤10,59,10<x ≤16,-3x +107,16<x ≤30.(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间? (2)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强一些?(3)一道数学难题,需要55的接受能力以及13分钟的讲授时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这道难题?解:(1)开讲10分钟后,学生的接受能力值为59,达到最强,并维持6分钟. (2)f (5)=-0.1×52+2.6×5+43=53.5; f (20)=-3×20+107=47,所以开讲后5分钟学生的接受能力比开讲后20分钟强一些.(3)当0<x ≤10时,f (x )=-0.1x 2+2.6x +43=-0.1(x -13)2+43+16.9,f (x )ma x =f (10)=59.令55≤f (x )≤59,解得6≤x ≤10.所以6≤x ≤10时,f (x )∈[55,59],即开讲后10分钟里,学生只有后4分钟接受能力在55以上,然后有6分钟接受能力维持在59;当16<x ≤30时,f (x )=-3x +107.令f (x )≥55,解得x ≤523,即在这段时间里,学生只有43分钟接受能力维持在55以上.综上所述,开讲后学生共有4+6+43=343分钟接受能力在55以上,故老师不能在学生一直达到所需接受能力的状态下讲授完这道难题.反思:实际问题往往都有一个陌生的情境,它需要我们仔细阅读题意.如果题中给的数量比较多,可以逐个理解和研究,然后把实际问题转化为数学问题,建立函数关系进行求解.1设函数f (x )=⎩⎨⎧1-x 2,x ≤1,x 2+x -2,x >1,则1(2)f f ⎡⎤⎢⎥⎣⎦的值为__________. 解析:因为f (2)=22+2-2=4,所以1f (2)=14,1(2)f f ⎡⎤⎢⎥⎣⎦=1()4f =1-21()4=1516. 答案:15162某城市出租车按如下方法收费:起步价6元,可行3 km(含3 km),3 km 后到10 km(含10 km)每走1 km 加价0.5元,10 km 后每走1 km 加价0.8元,某人坐出租车走了12 km ,他应交费______元.解析:把收费y 元看成所走路程x km 的函数, 当0<x ≤3时,应交6元;当3<x ≤10时,应交6+(x -3)×0.5=4.5+0.5x (元);当x >10时,应交4.5+0.5×10+(x -10)×0.8=1.5+0.8x (元). ∴当x =12时,y =1.5+0.8×12=11.1(元). 答案:11.13某客运公司确定客票价格的方法是:如果行程不超过100千米,票价是每千米0.5元,如果超过100千米,超过部分按每千米0.4元定价,则客运票价y (元)与行程数x (千米)之间的函数关系式是__________.解析:根据行程是否大于100千米来求出解析式, 由题意,得当0<x ≤100时,y =0.5x ,当x >100时,y =100×0.5+(x -100)×0.4=10+0.4x .答案:y =⎩⎨⎧0.5x ,0<x ≤100,10+0.4x ,x >100已知函数h (x )=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x 的反比例函数,1()163h ==16,h (1)=8,求h (x )及其定义域.分析:本题中已知函数的模型,用待定系数法求解析式. 解:设f (x )=k 1x (k 1≠0),g (x )=k 2x (k 2≠0),则h (x )=k 1x +k 2x.由题意得⎩⎪⎨⎪⎧k 13+3k 2=16,k 1+k 2=8.解得123,5k k ⎧⎨⎩=,=.所以h (x )=3x +5x,定义域是(-∞,0)∪(0,+∞).5已知函数f (x )=⎩⎨⎧x 2,x >0,1,x =0,-1x,x <0.(1)画出函数的图象; (2)求f (1),f (-1)的值.分析:分别作出f (x )在x >0,x =0,x <0各段上的图象,合在一起得函数的图象. 解:(1)如图所示.(2)f (1)=12=1,f (-1)=-1-1=1.。
学案1:2.1.2 函数的表示方法

2.1.2 函数的表示方法学习目标1.了解函数的一些基本表示方法(图象法、列表法、解析法),在实际情境中,会根据不同的需要选择恰当的方法表示函数,树立数形结合的思想.2.能根据函数所具有的某些性质或它所满足的一些关系,求出它的解析式.重点:求解析式的一些基本方法,函数图象的画法和分段函数等.难点:利用换元法或配凑法求函数的解析式.预习导引问题1:函数有哪几种表示方法?问题2:函数的三种表示法各有什么优缺点?问题3:如何画出函数的图象?画函数图象的一般步骤为:、、.在画图象时应注意以下几点:(1)画函数图象时首先关注函数的,即在定义域内作图;(2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象;(3)标出某些关键点,例如图象的、、与坐标轴的交点等.要分清这些关键点是实心点还是空心点.知识链接函数概念早在18世纪初就被提出,但是在很长一段时间内,由于人们接触到的函数都是以解析式的形式出现,以至于人们认为函数一定能用解析式表示,甚至认为函数就是解析式.欧拉(Euler L,1707-1783)就曾定义函数为“包括变量和一些常数的任何表达式”.在函数概念的发展过程中,德国数学家狄利克雷(Dirichlet P G L ,1805-1859)功不可没.19世纪,狄利克雷定义了一个“奇怪的函数”,即y =f (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数.这个函数后来被称为Dirichlet 函数.预习自测问题1:已知f (x )是一次函数,且满足f (x +1)=2x +7,求f (x )的解析式.问题2:下表是某天一昼夜温度变化情况:请问:上面是用什么方法表示时刻与温度这两个变量之间的函数关系的?你能用图象法表示吗?.合作探究例1 (1)等腰三角形的周长为20,底边长y 是一腰长x 的函数,则( ). A .y =10-x (0<x ≤10) B .y =10-x (0<x <10) C .y =20-2x (5≤x ≤10) D .y =20-2x (5<x <10)(2)已知函数f (x )与g (x )的对应关系分别如下表:则g[f(3)]=________.【方法指导】(1)利用周长找到x,y的函数关系式,但要注意定义域;(2)根据给定的对应关系求出f(3),然后将其代入g(x),再由x与g(x)的对应求出结果.【小结】求函数解析式时,应注明其定义域.例2 画出下列函数的图象:(1)y=1+x(x∈Z);(2)y=x2-2x(x∈[0,3));【方法指导】画图时,要根据列表、描点、连线的步骤进行.(1)函数的定义域是整数集,因此函数的图象是无数个点;(2)只需画出二次函数在区间[0,3)上的图象即可.【小结】对于函数图象要注意以下几点:(1)函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等.(2)画函数的图象时要注意函数的定义域.(3)用描点法画函数的图象,在作图时要先找出关键“点”,再连线.(4)常见函数图象的画法:①对于一次函数的图象,描出与坐标轴的交点,连线即可;②对于二次函数的图象,描出与坐标轴的交点、顶点,连线即得;例3 (1)已知f(x)是二次函数,其图象的顶点是(1,3),且过原点,求f(x).(2)已知f(x+1)=x+2x,求f(x).【方法指导】(1)给出了函数模型,因此可用待定系数法,设f(x)=a(x-1)2+3(a为待定的系数),然后利用已知条件求出待定的系数即可.(2)f(x+1)=x+2x,即对“x+1”执行“f”得到“x+2x”,因此应在“x+2x”中得到“x +1”的整体,明确“f”对“x+1”是如何作用的,故可用“换元法”或“配凑法”.【小结】求函数解析式的常用方法:(1)待定系数法:若已知函数的类型,可用待定系数法求解,即由函数类型设出函数解析式,再根据条件列方程(或方程组),通过解方程(组)求出待定系数,进而求出函数解析式.(2)换元法:已知函数f[g(x)]的解析式求f(x)的解析式可用换元法,即令g(x)=t,反解出x,然后代入f[g(x)]中求出f(t),从而求出f(x).〖拓展问题〗(1)已知g(x-1)=2x+6,求g(3).(2)一次函数的图象过点(0,-1),(1,1),求其解析式.归纳总结通过本单元的学习,你能归纳出哪些知识要点与方法技巧?课堂反馈检测1.某电子公司7年来,生产DVD 机总产量C (万台,即前t 年年产量的总和)与时间t (年)的函数关系如图,下列四种说法:①前3年中,产量增长的速度越来越快; ②前3年中,产量增长的速度越来越慢; ③第3年后,这种产品停止生产; ④第3年后,年产量保持为100万台. 其中说法正确的是( ). A .①与③ B .②与③ C .②与④ D .①与④2.某引水渠大堤的横断面是上底为a =3 m 的梯形,已知梯形的高x 随地势在1 m 到5 m 之间变化,下底b 与高x 满足关系b =a +4x ,为了估计修建大堤所需土方量,需把横断面的面积表示为堤高的函数,试写出这个函数的解析式,并求出堤高分别为1.5 m 、2 m 和3 m 时大堤横断面的面积.3.已知f (x )是反比例函数,且f (-3)=-1,则f (x )的解析式为( ). A .f (x )=-3x B .f (x )=3xC .f (x )=3xD .f (x )=-3x 4.已知函数y =f (x )用列表法表示如下:则f [f (2)]等于( ).A .1B .2C .3D .45.已知函数f (x +1)=x 2-3x +2,求函数f (x )的解析式.参考答案预习导引问题1:主要有三种:解析法、图象法和列表法.①解析法:把两个变量的函数关系用一个等式来表示的方法.这个等式叫做函数的解析表达式,简称解析式.②图象法:用图象表示两个变量之间的对应关系的方法.③列表法:列出表格来表示两个变量之间的函数关系的方法.问题2:问题3:列表、描点、连线(1) 定义域(3) 顶点、端点预习反馈问题1:【解析】设f(x)=ax+b,则f(x+1)=a(x+1)+b=2x+7,即ax+a+b=2x+7,∴a=2,b=5,故f(x)=2x+5.问题2:【解析】运用了列表法表示,图象法如下:合作探究例1【解析】(1)∵2x +y =20,∴y =20-2x . 又y >0,∴20-2x >0,x <10.由于三角形边的性质得,2x >20-2x ,所以x >5, 因此函数的定义域为{x |5<x <10},故选D. (2)g [f (3)]=g (3)=7. 【答案】(1)D (2)7例2【解析】(1)函数的图象由无数个点组成,这些点都在直线y =1+x 上,如图(1)所示.(2)因为0≤x <3,所以函数的图象是抛物线y =x 2-2x 在0≤x <3之间的一部分,如图(2)所示.例3【解析】(1)由于图象的顶点是(1,3),故设f (x )=a (x -1)2+3,因为图象过原点,所以a +3=0,解得a =-3,所以f (x )=-3(x -1)2+3.(2)(法一)x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1). 即f (x )=x 2-1(x ≥1).(法二)令t =x +1,则x =(t -1)2,t ≥1,代入原式, 有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. ∴f (x )=x 2-1(x ≥1).〖拓展问题〗【解析】(1)(法一)令x -1=t ,则x =t +1, ∴g (t )=g (x -1)=2(t +1)+6=2t +8, ∴g (x )=2x +8,∴g (3)=2×3+8=14.(法二)令x -1=3,则x =4,∴g (3)=2×4+6=14. (2)设一次函数的解析式f (x )=kx +b (k ≠0),由题意知⎩⎪⎨⎪⎧-1=0·k +b ,1=1·k +b ,∴⎩⎪⎨⎪⎧k =2,b =-1.∴解析式为f (x )=2x -1.归纳总结本节课学习了求函数解析式的题型及方法. (1)已知函数类型时,常用待定系数法;(2)已知f (x )求f [g (x )]或已知f [g (x )]求f (x ),可用换元法或配凑法; (3)已知函数图象,求函数解析式; (4)应用题求函数解析式常用待定系数法等.课堂反馈检测1.【解析】通过对图象的观察,0到3年这一阶段,曲线的变化是由快到慢,由急到缓,对应产量的情况则是增长的速度越来越慢.第3年后,是一条平行于x 轴的直线,意味着总的产量没有变化,所以可以说这种产品停止了生产.故选B.【答案】B2.【解析】设y =f (x )表示大堤横断面的面积,根据题意和梯形的面积公式,得: y =f (x )=(a +b )x 2=x (3+3+4x )2=x (2x +3)=2x 2+3x (x ∈[1,5]).据此可求得对应于堤高分别为1.5 m 、2 m 和3 m 时大堤横断面的面积为:f (1.5)=9 m 2,f (2)=14 m 2,f (3)=27 m 2.3.【解析】设f (x )=kx (k ≠0),由f (-3)=-1,得k =3,∴f (x )=3x .【答案】B4.【解析】f (2)=4,∴f [f (2)]=f (4)=1. 【答案】A5.【解析】(法一)(换元法)令x +1=t ,则x =t -1,代入已知可得:f (t )=(t -1)2-3(t -1)+2=t 2-5t +6,所以f (x )=x 2-5x +6.(法二)(配凑法)∵f (x +1)=x 2-3x +2=(x +1)2-5(x +1)+6,∴f (x )=x 2-5x +6(x ∈R ).。
人教版高中必修1(B版)2.1.2函数的表示方法教学设计 (2)

人教版高中必修1(B版)2.1.2函数的表示方法教学设计一、教学目标1.知道函数的基本定义;2.能够利用自变量和因变量的关系来表示函数;3.能够描述二元函数的定义域和值域;4.能够解决简单函数问题。
二、教学重点和难点教学重点:1.函数的基本定义;2.函数的表示方法;3.二元函数的定义域和值域。
教学难点:1.函数的概念及其性质;2.函数的不同表示方法的转化。
三、教学过程设计3.1 导入新知识引导学生回忆什么是一元二次方程,以及它的图像长什么样子。
引导学生思考为什么该方程可以描述某个物体的运动轨迹。
引出函数的概念,引导学生明确函数是一种描述自变量和因变量之间关系的方法。
3.2 函数的基本定义介绍函数的基本概念:一个变量的值与另一个变量的值之间存在唯一的对应关系,这个对应关系可以用一个函数来表示。
通过实际例子,引导学生理解函数的定义。
3.3 函数的表示方法介绍函数的三种表示方法:函数图像、符号表示法和表格表示法。
通过实例演示将三种方法之间的相互转化。
3.4 二元函数的定义域和值域引入二元函数的概念,介绍其定义域和值域。
通过实例演示将二元函数的定义域和值域计算出来,并且学会将它们用符号表示法表示出来。
3.5 课堂练习在课堂上,提供一些函数的问题,让学生分别考虑如何用三种不同表示方法来描述函数。
例题:一个人在跑步,与时间的关系可以近似认为是线性函数。
已知他在5秒时跑了10米,在15秒时跑了30米,求在30秒时他会跑多少米?3.6 实践操作让学生在班内测量身高和步长,计算出身高与步长之间的关系,引导学生将其用函数的三种表示方法表示出来。
3.7 课堂小结通过本节课的教学,学生理解了函数的概念及其三种表示方法,能够判断和描述二元函数的定义域和值域,同时学会了处理简单函数问题。
四、教学反思在教学中,需要理清函数的基本概念、性质和表示方法的不同相互转化。
此外,需要注意让学生通过实际案例来理解函数的定义和概念,使学生在学习过程中更容易接受和理解新的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2 函数的表示方法 预学案
教学目标:1、能熟练掌握函数的三种不同表示;
2、了解函数不同表示法的优缺点;
3、了解分段函数及其表示.
教学重点:函数的三种表示方法,分段函数的概念.
教学难点:1、根据不同需要选择恰当的方法表示函数;
2、求出函数解析式;
3、分段函数的表示及图像.
1、 表示函数的三种常用的方法分别是:
2、 列表法就是用 来表示两个变量之间函数关系的方法.
3、 图象法就是用 来表示两个变量之间函数关系的方法.
4、 解析法就是用 来表示两个变量之间函数关系的方法.
5、 分段函数的图像是怎样的?
6、 分段函数是一个函数,还是几个函数?
7、 函数|3|)(+=x x f 的图象与例2中的图象有什么关系?
8、 已知函数⎩⎨
⎧>+-≤+=),1(3),1(1)(x x x x x f 则=⎥⎦⎤⎢⎣⎡)25(f f ( ). A 、21 B 、29 C 、25 D 、2
3 9、已知⎪⎩
⎪⎨⎧<=>+=),0(0),0(),0(1)(x x x x x f π ,则[]{}=-)1(f f f _________.。