1.2 函数及其表示 教学设计 教案
1.2函数及其表示教案

函数及其表示考点同步解读1.本节课通过学习函数的解析式,进一步掌握数学中的思想方法。
2.通过理解分段函数的概念,了解函数表达的的多样性,加深对函数概念的理解。
3.能描绘出分段函数的大致图像并正确求出分段函数在某点的函数值。
核心素养聚焦1.许多函数均可用几种不同的方式表示,因而学习函数的表示也是领悟数学思想方法(如数形结合、化归等)、学会根据问题需要选择表示方法的重要过程。
2.函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念,提高学生数学抽象的素养。
一.教学目标1.知识与技能(1)明确函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数;(3)通过具体实例,了解简单的分段函数及应用.2.过程与方法:学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.3.情态与价值让学生感受到学习函数表示的必要性,渗透数形结合思想方法。
二.教学重难点1、教学重点:函数的三种表示方法,分段函数的概念.2、教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.三.教学准备1.学法:学生通过观察、思考、比较和概括,从而更好地完成本节课的教学目标.2.教学用具:圆规、三角板、投影仪.四.教学过程(一)创设情景,揭示课题.我们在前两节课中,已经学习了函数的定义,会求函数的值域,那么函数有哪些表示的方法呢?这一节课我们研究这一问题.(二)研探新知1.函数有哪些表示方法呢?(回顾上节课所举的三个事例得出答案。
)(表示函数的方法常用的有:解析法、列表法、图象法三种)2.明确三种方法各自的特点?(解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域.列表法的特点为:不通过计算就知道自变量取某些值时函数的对应值、图像法的特点是:能直观形象地表示出函数的变化情况)(三)质疑答辩,排难解惑,发展思维.例3.某种笔记本的单价是5元,买}{(1,2,3,4,5)x x ∈个笔记本需要y 元,试用三种表示法表示函数()y f x =.分析:注意本例的设问,此处“()y f x =”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.解:(略)注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;②解析法:必须注明函数的定义域;③图象法:是否连线;④列表法:选取的自变量要有代表性,应能反映定义域的特征.例4.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?解:(略)注意:①本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点:②本例能否用解析法?为什么?例5.画出函数||的图象y x解:(略)例6.某市郊空调公共汽车的票价按下列规则制定:(1)乘坐汽车5公里以内,票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.分析:本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.解:(略)注意:①本例具有实际背景,所以解题时应考虑其实际意义;②象例5、例6中的函数,称为分段函数.③分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(四)知识拓展设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
教学设计2:2.1.2 函数的表示方法

2.1.2 函数的表示方法(一)缺点:抽象、不直观图像法:优点:直观形象地表示出函数值的变化情况。
缺点:不准确以上是函数的三种表示方法请同学举出生活中或者以前的学习中所接触的函数的表示法 例如银行利率表、列车时刻表等等,一般的,“离散型”问题常用列表法 又如股票图等,用图象法则有效的反映了两个变量之间的关系.例1某洗衣店中,每洗一次衣服需要付费4元,若在这一家店洗衣10次,则其后可以免费洗一次,若某人在这店中洗了15次衣服. (1)根据题意填写下表:洗衣次数n 5 9 10 11 15 洗衣费用c(2)写出当n ≤15时函数的解析式. 解:(1)洗衣次数n 5 9 10 11 15 洗衣费用c2036404056(2)当洗衣次数n ≤10(n ∈N *)时,c =4n ; 当洗衣次数11≤n ≤15(n ∈N *)时,c =4(n —1)即 ⎩⎨⎧∈≤≤-∈≤≤=Nn n n N n n n c 且且1511),1(4101,4.在定义域的不同部分上,有不同的解析式,这样的函数叫做分段函数.分段函数是一个函数,每一段及其他的解析式只是这个函数整体的一部分.例2 如图,梯形OABC 各顶点的坐标分别为O(0,0),A(6,0),B(4,2),C(2,2).一条与y 轴平行的动直线l 从O 点开始作平行移动,到A 点为止.设直线l 与x 轴的交1500 1Oyx点为M ,OM =x ,记梯形被直线l 截得的在l 左侧的图形的面积为y .求函数y =f (x )的解析式、定义域、值域以及f [f (72)]的值.解:(1)当0≤x ≤2时,图形为等腰直角三角形,y =12⋅x ⋅x =12x 2;(2)当2<x ≤4时,图形为一个直角梯形,它又可以分割成一个等腰三角形(确定的)与一个矩形,y =12⋅2⋅2+(x -2)⋅2=2x -2;(3)当4<x ≤6时,图形为一个五边形,它可看作是原梯形去掉一个等腰直角三角形(位于直线右侧),y =12 (6+2)⋅2-12 (6-x )2=-12x 2+6x -10.于是y =f (x )={12x 2,0≤x ≤2,2x −2,2<x ≤4,−12x 2+6x −10,4<x ≤6.并且函数y =f (x )的定义域是[0,6]. 又当0≤x ≤2时,y ∈[0,2];当2<x ≤4时,y ∈(2,6];当4<x ≤6时,y ∈(6,8].所以函数的值域是[0,8].f [f (72)]=f (5)=152.点评:求函数表达式时,若不同情形下,表达式不同,就需要用分段函数来表达.另外,由实际问题确定的函数,还应注意函数的定义域往往会受实际问题的约束. (三)课堂小结(1)函数三种表示方法:解析法、列表法、图象法.(2) 在定义域的不同部分上,有不同的解析式,这样的函数叫做分段函数.分段函数是一个函数,每一段及其他的解析式只是这个函数整体的一部分.。
函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。
[2]通过观察、画图等具体动手,体会分段函数的概念。
[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。
[2]通过细致作图,培养学生的动手能力和识图能力。
2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。
[2]分段函数的概念。
2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。
3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。
4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程6.1 引入新课【师】同学们好。
初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。
这节课我们来继续进一步学习和函数有关的内容。
【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。
【板演/PPT】PPT演示三个实例。
【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。
相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。
新课标人教版高中数学必修一 1.2函数及其表示 教学设计

1.2 函数及其表示[教学目标]1.在初中学习函数的基础上,进一步体会函数是描述变量之间的依赖关系的重要数学模型.2.能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用,了解映射的概念,并了解构成函数的要素.3.会求一些简单函数的定义域和值域.4.会用区间表示函数的定义域和值域.5.理解表示函数的图象法、列表法和解析法,会根据不同的需要选择恰当的方法表示函数.6.通过具体实例了解简单的分段函数,并能简单应用.[教学要求]函数是高中数学的重要内容,函数现象大量存在于学生周围,初中学生已经学习过函数,那时把函数看成变量之间的依赖关系.我们教材要求能够从具体的实例中抽象概括出用集合与对应的语言定义的函数.因此教学过程中要把握住用丰富的实例分析归纳出函数的本质属性,要在这一过程中注重培养学生的抽象概括能力,启发学生运用函数模型表述、思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.与传统的处理方式不同,本节将映射作为函数的一种推广,这样做是为了较好与初中衔接,让学生更好地理解函数的概念,体现思维从特殊到一般的过程.本节的主要内容是函数的表示.在初中学生习惯于用解析式表示函数,本节注意在这一基础之上,注重函数的不同表示方法:解析法、图象法、列表法.通过这些丰富多彩的表示方法,丰富学生对函数的认识,特别是帮助学生理解抽象的函数概念.可以借助信息技术环境使函数在数与形两方面的结合得到更为充分的表现.学生通过函数的学习能够更好地体会数形结合这种重要的数学思想方法.在教学过程中,要充分发挥图象直观的作用,又要注意代数刻画以求思考和表述的精确性.[教学重点]在初中把函数看成变量之间的依赖关系的基础上,学会用集合与对应的语言刻画函数概念,认识到函数是描述客观世界中变量间依赖关系的重要数学模型.[教学难点]1.对函数概念整体性的认识; 2.对函数符号内涵的理解. [教学时数] 4课时 [教学过程]第一课时1.2.1函数的概念(1) 新课导入一、回顾初中学习的函数概念我们在初中曾学习过函数,它的定义是:“设在一个变化过程中,有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说y 是x 的函数,x 叫做自变量.”请你举出这样的例子.二、三个实例1.呈现课本第15页——16页的三个实例.2.讨论:分析、归纳以上三个实例,变量之间的关系有什么共同点? 3.在讨论的基础上,得出三个实例中变量之间关系的共性: (1)都涉及两个数集;(2)对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都有唯一确定的y 和它对应,记作:B A f :新课进展 一、函数定义 1.函数(课本第16页)设B A ,是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数(function ),记作:A x x f y ∈=),(.其中x 叫做自变量,x 的取值范围A 叫作函数的定义域(domain );与x 的值对应的y 值叫作函数值,函数值的集合{}A x x f ∈)(叫作函数的值域(range ).值域是集合B 的子集. 2.对函数概念的理解(1)定义域、值域和对应关系是决定函数的三要素,这是一个整体.一般来说值域由定义域和对应关系所确定,因为对于定义域中的数x ,按照确定的对应关系f ,在集合B 中都有唯一确定的数)(x f 和x 对应.(2)记住)(x f y =的内涵.例如对于2)(x x f =,对应关系f 就是“取平方”,而对于x x f =)(,对应关系f 就是“开平方”,f 就是函数符号,对于具体的函数它有具体的涵义.函数符号还可以记作(),y g x =()y u x =等.3.用函数定义理解初中学习过的函数 问:我们已经学过了那些函数? 答:一次函数、二次函数和反比例函数. 请填写下表:4.请具体写出一个一次函数、二次函数和反比例函数,并作出图象. 二、求函数的定义域和函数值 例1 已知函数213)(+++=x x x f , (1)求函数的定义域;(2)求)3(-f ,)32(f 的值;(3)当0>a 时,求)1(),(-a f a f 的值. 解:课本第17页——18页.注意:)(x f y =与)(a f y =的区别.例2 求函数y =和131y x =-的定义域.解:函数y =的定义域应满足310,x -≥解得1.3x ≥ 所以定义域为1.3x x ⎧⎫≥⎨⎬⎩⎭函数131y x =-的定义域应满足310,x -≠解得1.3x ≠ 所以定义域为1,.3x x x ⎧⎫≠∈⎨⎬⎩⎭R 课堂练习课本第19页练习1,2三、本课总结1.用集合与对应的语言定义的函数.2.如何求简单函数定义域和函数值.求定义域时通常要注意以下几点:(1)开偶次方根需非负;(2)分母不等于零;(3)具体函数的定义域要求.四、布置作业课本第24页习题1.2A 组第1题(1)(2)(3)(4). 课本第44页复习参考题A 组第6题.第二课时1.2.1函数的概念(2) 复习导入通过提问复习上节课主要学习内容. 问:什么是函数?答:设B A ,是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数(function ),记作:A x x f y ∈=),(.其中x 叫做自变量,x 的取值范围A 叫作函数的定义域(domain );与x 的值对应的y 值叫作函数值,函数值的集合{}A x x f ∈)(叫作函数的值域(range ).函数的定义域通常由问题的实际背景确定,如上节课所述的实例.对于给出解析式的函数,而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合.对用解析式表示的函数,可由给定的自变量值代入解析式计算函数值. 新课进展 一、求函数的值域 课堂例题例1 求下列函数的值域: (1)x y 3=;(2)xy 8=;(3)54+-=x y ;(4)762+-=x x y . 分析:在直角坐标系中画出函数的图象,发现(1)、(3)两个一次函数的函数值可以取到一切实数;(2)这个反比例函数的函数值不能等于0;(4)这个二次函数有最小值.解:(1)值域为实数集R ; (2)值域为{}R y y y ∈≠,0; (3)值域为实数集R ;(4)函数762+-=x x y 的最小值是-2,所以值域为{}2-≥y y .二、区间的概念研究函数时常会用到区间的概念.设b a ,是两个实数,而且b a <.我们规定:(1)满足不等式b x a ≤≤的实数x 的集合叫做闭区间,表示为],[b a ; (2)满足不等式b x a <<的实数x 的集合叫做开区间,表示为),(b a ;(3)满足不等式b x a <≤或b x a ≤<的实数x 的集合叫做半开半闭区间,分别表示为),[b a ,],(b a .这里的实数b a ,都叫做相应区间的端点.实数集R 可用区间表示为),(+∞-∞,我们把满足a x ≥,a x >,b x ≤,b x <的实数x 的集合分别表示为),[+∞a ,),(+∞a ,],(b -∞,),(b -∞.“∞” 读作“无穷大”,“-∞” 读作“负无穷大”,“+∞” 读作“正无穷大”. 区间可在数轴上表示(课本第17页).上面例1的函数值域用区间表示分别为:(1)),(+∞-∞,(2)),0()0,(+∞-∞ ,(1)),(+∞-∞,(4)),2[+∞-. 三、函数的相等 课堂例题例2 下列函数中哪个与函数x y =相等?(1)2)(x y =;(2)33x y =;(3)2x y =;(4)xx y 2=.分析:两个函数是同一个函数,应该满足它们的定义域,值域和对应法则都相同.由于值域是由定义域和对应关系所确定的,所以,如果两个函数的定义域相同,并且对应关系完全一致,这两个函数就相等.解: (1))0()(2≥==x x x y ,这个函数与函数x y =(R x ∈)虽然对应关系相同,但是定义域不相同.所以,这个函数与函数x y =(R x ∈)不相等.(2)33x y =(R x ∈),这个函数与函数x y =(R x ∈)不仅对应关系相同,而且定义域也相同.所以,这个函数与函数x y =(R x ∈)相等.(3)2x y ==⎩⎨⎧<-≥=.0,,0,x x x x x 这个函数与函数x y =(R x ∈)的定义域都是实数集R ,但当0<x 时,对应关系与函数x y =(R x ∈)不相同.所以,这个函数与函数x y =(R x ∈)不相等.(4)xx y 2=的定义域是{}0≠x x ,与函数x y =(R x ∈)不相同.所以,这个函数与函数x y =(R x ∈)不相等.我们可以用列出表格的方式进行判断:两个函数是同一个函数,应该满足它们的定义域,值域和对应法则都相同.由上表可以看出,只有y x =和y =从本例我们还可以看出,相同的对应关系,其表达形式可以不同. 课堂练习1.课本第19页练习3. 2.请你再举出函数相等的例子. 四、本课小结1.函数的值域由定义域和对应关系确定.2.如果两个函数的定义域、对应关系都相同,则它们是同一个函数. 五、课堂讨论请你比较本节所学的函数定义与初中的函数定义,谈谈你对函数的认识.教师准备的答案要点:(1)这两种定义的实质是一致的;(2)叙述的出发点不同:初中的定义从运动变化的观点出发,上节课给出的定义是从集合、对应的观点出发;(3)用变量观点描述函数比较生动直观,而用集合对应观点描述函数比较抽象,但更具有一般性.例如函数:⎩⎨⎧=.,0,,1)(是无理数时当是有理数时当x x x f用变量观点解释会显得十分勉强,也说不出x 的物理意义,但是用集合与对应的观点来解释,就十分自然.六、布置作业课本第24页习题1.2A 组第4、5、6题,第25页B 组第1、2题. 课本第44页复习参考题A 组第7题.第三课时1.2.2 函数的表示法(1) 复习导入问:我们在初中接触过函数的哪一些表示法?(可回顾上节第一课时的三个引入例题) 答:解析法、图象法和列表法.教师讲解:解析法,就是用数学表达式表示两个变量之间的对应关系;图象法,就是用图象表示两个变量之间的对应关系;列表法,就是列出表格来表示两个变量之间的对应关系.解析法有两个优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.这是中学阶段所研究的主要的函数表示形式.图象法的优点是直观形象地表示自变量的变化,相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质.图象法在生产和生活中有许多应用,如企业生产图、股市走势图等.列表法的优点是不需要计算就可以直接看出与自变量的值相对应的函数值.列表法在实际生产和生活中也有广泛的应用,如银行利率表、列车时刻表等.新课进展一、函数的三种表示法1.我们结合具体的例子来思考如何表示函数? 课堂例题例1 (课本第19页例3)某种笔记本的单价是5元,买x ({}5,4,3,2,1∈x )个笔记本需要y 元.试用函数的三种表示法表示函数)(x f y =.解:函数的定义域是数集{}5,4,3,2,1. 用解析法可将函数)(x f y =表示为x y 5=,{}5,4,3,2,1∈x .用列表法可将函数)(x f y =表示为用图象法可将函数)(x f y =表示为:(见课本第20页图)例2 某儿童服装商店一年内销售额(万元)与一年内12个月份的关系用一条折线连接起来如图1—2—1. 请用列表法表示图中的函数关系.解: 在图象上找出月份与销售额的对应点,用列表法表示为2.思考:1.所有的函数都能用解析式表示吗?2.三种表示法的特点各是什么,请用例子说明.课堂练习请你举出3个函数,分别用三种方法表示. 课堂例题图2-2-1例3 (课本第20页例4)配有图片. 课堂练习课本第23页练习1、2题. 3.本课小结表示函数常用的有三种方法,它们有各自的优点和不足. 4.布置作业1.课本第24页习题1.2A 组7、8、9题.B 组第3题.2.已知定义在R 上的函数(),y f x =其部分值的对应关系如下表:则符合上面的关系的一个函数解析式是 .第四课时1.2.2 函数的表示法(2) 复习导入回顾上节课学习的内容.一、函数的三种表示法:解析法、图象法和列表法.讲解上节课作业题(课本第25页习题1.2B 组第3题),引出分段函数概念. 二、分段函数用解析法表示函数时,常常遇到这样的情形,一个函数在整个定义域上不能建立统一的函数解析式,自变量在不同的取值范围内,对应着不同的函数解析式,这样的一类函数我们把它称为“分段函数”(segment-function ).新课进展 课堂例题例1 画出函数x y =的图象.解:由绝对值的概念,我们有⎩⎨⎧<-≥=.0,,0,x x x x y 所以,函数的图象如图所示(课本第21页图1.2-4).本例题的主要目的有两个:一是让学生进一步体会数形结合在理解函数中的重要作用,二是为介绍分段函数作准备.例2 (课本第21页例6)某市“招手即停”公共汽车的票价按下列规则指定: (1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里的按5公里计算). 如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.解:见课本第21页.本例题的主要目的有以下几点:(1)让学生尝试用数学表达式去表达实际问题; (2)学习分段函数及其表示;(3)注意在数学模型中全面反映问题的实际意义.本例根据当地的实际情形可作适当改编.课堂练习画出函数1y x =+的图象.解: 1,1,11,1.x x y x x x --<-⎧=+=⎨+≥-⎩由于这个函数的自变量x 取1x <-与1x ≥-的解析式不同,所以要分段讨论.其图象如下图.三、映射函数是“两个数集间的一种确定的对应关系”.当我们将数集扩展到任意的集合时,就可以得到映射的概念.例如,欧洲的国家构成集合A ,欧洲各国的首都构成集合B ,对应关系f :国家a 对应它的首都b .这样,对于集合A 中的任意一个国家,按照对应关系f ,在集合B 中都有唯一确定的首都与之对应.我们将对应B A f →:称为映射.一般地,我们有:映射定义:设A ,B 是两个非空集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有惟一确定的元素y 与之对应,那么就称对应B A f →:为从集合A 到集合B 的一个映射(mapping),记作 :f A B →.其中x 叫做原象(inverse image),与x 对应的y 叫做象(image).思考:2010年世界杯在南非举行.南非有三个首都(除首都外,另外两个是行政首都和司法首都).如果非洲的国家构成集合A ,非洲各国的首都构成集合B ,对应关系f :国家a 对应它的首都b .判断这样的对应是否能够构成从集合A 到集合B 的一个映射?练习 判断下列对应是不是从A 到B 的映射?-1023求绝对值-1BA1-22-331开平方-1BA1-22-33419求平方-1BA1-22-33419一种对应rq p -1BA-22-331图甲图乙图丙图丁图甲不是映射,因为集合A中的一个元素对应了集合B中的两个元素;图乙是映射,符合映射的定义;图丙是映射,虽然,集合B中有的元素没有A中的元素与之对应,但仍符合映射的定义;图丁不是映射,因为集合A中的每一个元素都要对应集合B中的元素,但是A中的元--没有对应B中的元素.素1,2例3 (课本第22页例7)四、本课小结1.分段函数:自变量在不同的取值范围内,对应着不同的函数解析式2.映射:函数概念的推广.五、布置作业:1.课本第23页练习第3、4题.2.课本第25页习题1.2B组第4题.。
1.2函数及其表示(教案设计)

[课题]:第一章集合与函数概念 1.2 函数及其表示主备人:高一数学备课组陈伟坚编写时间:2013年9月10日使用班级(21)(22)计划上课时间:2013-2014学年第一学期第3 周星期一至三、五(中秋放假)[课标、大纲、考纲内容]:【教材与学情分析】函数的表示是本节的主要内容之一,学生在学习用集合与对应的语言刻画函数之前,比较习惯的是用解析式表示函数,但这是对函数很不全面的认识,教材从引进函数概念开始就比较注重函数的不同表示方法。
函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念,结合信息技术的使用,使学生通过函数的学习更好地体会数形结合的思想方法。
[教学目标]:知识目标:能力目标:情感态度与价值观目标:1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,了解映射的概念。
2.在实际情境中,理解表示函数的方法(如图象法、列表法、解析法)3.通过具体实例,了解简单的分段函数,并能简单应用。
4.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
1.会求一些简单函数的定义域和值域;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
3.学会运用函数图象理解和研究函数的性质1.使学生懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。
2.经历求函数定义域及值域的过程,培养学生良好的数学学习品质。
[教学重难点]:1、重点:使学生在已有认识的基础上,学会用集合与对应的语言刻画函数概念,认识到函数是描述客观世界中变量间依赖关系的重要数学模型。
2、难点:对函数概念的整体性认识,对函数符号的理解。
[课的类型、教具、教法、教时]:课的类型教具主要教法教时新授课多媒体课件合作探究交流 4第1课时 1.2.1函数的概念(一)【学习目标】1、通过丰富的实例,使学生进一步体会函数是描述变量之间的依赖关系的重要数学模型2、学习用集合语言刻画函数3、理解构成函数的要素,会求一些简单函数的定义域并能够正确使用“区间”的符号表示某些函数的定义域。
高中数学人教A版必修1第一章《1.2 函数及其表示(通用)》优质课公开课教案教师资格证面试试讲教案

高中数学人教A版必修1第一章《1.2 函数及其表示(通用)》优质课公开课教案教师资格证面试试讲教案
1教学目标
(1)明确函数的三种表示方法;函数的三种不同表示的相互间转化。
(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;
(3)通过具体实例,了解简单的分段函数,并能简单应用;
(4)了解映射的定义,会判断映射。
2学情分析
初中已经学习了函数的三种表示,学生正处于以感性思维为主的年龄阶段,而且思维逐步地
从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。
3重点难点
重点:函数的三种表示方法,分段函数的概念.
难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.
4教学过程
4.1第一学时
教学活动
1【导入】自主学习
问题:①初中学过函数的哪些表示方法?
解析法:用数学表达式表示两个变量之间的对应关系
图象法:用图象表示两个变量之间的对应关系
列表法:列出表格表示两个变量之间的对应关系。
高中数学人教A版必修1教案-1.2_函数及其表示_教学设计_教案_3

教学准备1. 教学目标1﹑知识与技能:(1)掌握函数的概念,学会用函数的定义描述各类函数;(2)了解构成函数的要素,会求一些简单函数的定义域和值域;(3)掌握区间的概念,学会正确使用“区间”的符号表示函数的定义域与值域。
2、过程与方法:(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)掌握求一些简单函数的定义域和值域的方法。
3、情态与价值:通过“恩格尔系数”了解我国的经济发展状况,增加民族自豪感,使学生感受到学习函数的必要性和重要性,激发学习的积极性。
2. 教学重点/难点理解函数的模型化思想,用集合与对应的语言来刻画函数.3. 教学用具课件4. 标签教学过程1、课堂导入复习初中所学函数的概念,强调函数的模型化思想;初中函数的概念:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就说 y是x的函数。
学过的函数:2、课堂讲授⑴阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:思考:(课本P15)给出三个实例:A.一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是 .B.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。
C.国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。
“八五”计划以来我们城镇居民的恩格尔系数如下表。
讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着怎样的对应关系?三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为:对于数集A中的每一个 ,按照某种对应关系 ,在数集B中都与唯一确定的和它对应,记作:⑵函数的定义:设A、B是两个非空的数集,如果按照某种确定的对应关系 ,使对于集合A中的任意一个数 ,在集合B中都有唯一确定的数和它对应,那么称为从集合A到集合B的一个函数(function),记作:2.对函数概念的理解:①集合A、B必须是非空的数集。
高中数学 1.2 函数及其表示 2 函数的表示法“三四五”高效课堂教学设计 新人教A版必修1(20

广东省肇庆市高要市高中数学1.2 函数及其表示2 函数的表示法“三四五”高效课堂教学设计新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省肇庆市高要市高中数学1.2 函数及其表示2 函数的表示法“三四五”高效课堂教学设计新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省肇庆市高要市高中数学1.2 函数及其表示2 函数的表示法“三四五”高效课堂教学设计新人教A版必修1的全部内容。
1.2。
2 函数的表示法授课题目1.2。
2 函数的表示法拟课时第课时明确目标在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
通过具体实例,了解简单的分段函数,并能简单应用.重点难点分段函数的图象的画法与求值课型□讲授□习题□复习□讨论□其它教学内容设计师生活动设计一、先学后讲(一)知识要点函数的三种表示方法是(二)经典例题1.函数的三种表示方法例 1 某商场销售的一种茶杯的单价是7元,如果你买x(x∈{1,2,3,4,5})个这样的茶杯需要y元,试用三种表示法表示函数()y f x。
【思路分析】应从函数的三种表示法入手,“()”y f x有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表,注意本题的定义域是有限集,且仅有5个元素。
【解析】【点评】本例介绍了一个可以用三种表示方法来表示的函数。
通过这个例子可以看到:(1)三种表示方法有各自的优点.(2)函数的图象可以是一些离散的点,这与一次函数、二次函数的图象是连续的曲线有很大的差别, y=7x(x ∈R)是连续的直线,但y=7x(x∈{1,2,3,4,5})却是5个离散的点,由此又可看到,函数概念中,对应关系、定义域、值域是一个整体.要注意的是:(1)函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;(2)解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;(3)图象法:根据实际情境来决定是否连线;(4)列表法:选取的自变量要有代表性,应能反映定义域的特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学准备
1. 教学目标
1、知识与技能:
函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依
赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.
2、过程与方法:
(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示函数的定义域;
3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.
2. 教学重点/难点
重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;
难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
3. 教学用具
多媒体
4. 标签
函数及其表示
教学过程
(一)创设情景,揭示课题
1、复习初中所学函数的概念,强调函数的模型化思想;
2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.
3、分析、归纳以上三个实例,它们有什么共同点;
4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
(二)研探新知
1、函数的有关概念
(1)函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A到集合B的一个函数(function).
记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).
注意:
①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
(2)构成函数的三要素是什么?
定义域、对应关系和值域
(3)区间的概念
①区间的分类:开区间、闭区间、半开半闭区间;
②无穷区间;
③区间的数轴表示.
(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?
通过三个已知的函数:y=ax+b (a≠0)
y=ax2+bx+c (a≠0)
y= (k≠0) 比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.
师:归纳总结
(三)质疑答辩,排难解惑,发展思维。
1、如何求函数的定义域
例1:已知函数f (x) = +
(1)求函数的定义域;
(2)求f(-3),f ()的值;
(3)当a>0时,求f(a),f(a-1)的值.
分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.
例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.
分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40.
所以s= = (40-x)x (0<x<40)
引导学生小结几类函数的定义域:
(1)如果f(x)是整式,那么函数的定义域是实数集R .
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.
(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)
(5)满足实际问题有意义.
巩固练习:课本P19第1
2、如何判断两个函数是否为同一函数
例3、下列函数中哪个与函数y=x相等?
分析:
1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
解:
课本P18例2
(四)归纳小结
①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.
(五)设置问题,留下悬念
1、课本P24习题1.2(A组)第1—7题(B组)第1题
2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.
课堂小结
课后习题
板书。