《函数及其表示》教学设计

合集下载

人教版高中必修11.2函数及其表示课程设计

人教版高中必修11.2函数及其表示课程设计

人教版高中必修11.2函数及其表示课程设计一、引言高中数学是基础学科之一,其重要性不言而喻。

在高中数学教学中,函数及其表示是一个重要的知识点。

本篇课程设计将以人教版高中必修11.2函数及其表示课程内容为基础,结合学生的实际情况,设计一节有趣、富有挑战性的课程。

二、教学目标1.掌握函数及其表示的概念,在实践中运用所学知识;2.培养学生的逻辑思维能力和创新精神;3.增强学生学习数学的兴趣,提高学生的自信心。

三、教学内容1.函数及其表示的概念;2.函数的基本性质;3.函数的图形及其变化;4.复合函数的概念;5.复合函数的性质。

四、教学方法1.讲授法:通过PPT展示、讲解,让学生明确课程目标、掌握基础知识。

2.实验法:分组进行实验操作,提高学生的动手实践能力。

3.试题法:通过解析课堂试题,引导学生加深对所学知识的理解和掌握。

五、教学过程5.1 导入环节首先,我们可以通过一个简单的问题来引导学生了解函数的概念:多年前,一位名叫费马的人,在墨西哥的一墓地内,看到一块祖墓上的铭文,他马上想到:这一支铭文描述的错题曲线,是不是一个完美的与你无关呢?接下来,请学生思考一下:费马到底在说什么?这个问题如何才能算是一道数学题?这个问题与函数有什么关系?5.2 提出问题在导入环节的启发下,提出以下问题:1.为什么费马的想法与函数有关?2.函数的定义是什么?怎样才能够被称为函数?3.函数的性质有哪些?如何证明这些性质?4.函数的图形如何绘制?怎样才能明确地表现函数的变化?5.复合函数是什么?如何分析复合函数?5.3 实践操作为了更好地加深学生对函数及其表示的理解,我们可以设计以下操作题:1.给出一组点{(1,2),(2,4),(3,6),(4,8)},请问这是一个函数吗?为什么?2.函数f(x) = 2x + 3,g(x) = x^2,请问f(g(x))的值域是多少?3.函数f(x) = x + 5,g(x) = 3x,请问f(g(x)) = x + ??4.给出一个函数的表达式和一个函数的图像,请判断这两个函数是否相同?5.4 总结体会通过课堂上的操作练习以及教师的讲解,学生对函数及其表示有了更深入、更直观的理解。

函数及其表示教案

函数及其表示教案

函数及其表示教学目的:(1)明确函数的三种表示方法;(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)通过具体实例,了解简单的分段函数,并能简单应用;(4)纠正认为“y=f(x)”就是函数的解析式的片面错误认识.教学重点:函数的三种表示方法,分段函数的概念.教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.教学过程:一、引入课题如何判定两个函数是否相同呢?判定两个函数是否相同,一要看其定义域是否相同,二要看其对应关系是否相同,当两者完全一致时,这两个函数就是相同的函数,当两者有一不同或两者完全不同时,这两个函数就不是相同的函数.二、新课教学函数的表示方法常用的有哪几种,各有什么优点?函数的表示方法常用的有三种,分别是解析法、列表法、图象法.解析法是用解析式表示两个变量的函数关系,它的优点是关系清楚,容易求函数值,便于研究函数的性质.列表法是用表格表示两个变量的函数关系,它的优点是不必计算就可知道自变量取某些值时的函数值.图象法是用图象表示两个变量的函数关系,它的优点是表示函数的变化情况形象直观.例1.某种笔记本的单价是5元,买x (x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x) .分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.解:(略)注意:○1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;○2解析法:必须注明函数的定义域;○3图象法:是否连线;○4列表法:选取的自变量要有代表性,应能反映定义域的特征.巩固练习:课本P27练习第1题例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级及班级平均分表:第一次第二次第三次第四次第五次第六次王伟98 87 91 92 88 95 张城90 76 88 75 86 80 赵磊68 65 73 72 75 82班平均88.2 78.3 85.4 80.3 75.7 82.6 分请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?解:(略)注意:○1本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点;○2 本例能否用解析法?为什么? 巩固练习:课本P 27练习第2题例1的图象是一些孤立的点,例2的图象是几条线段.在初中,我们学过的函数图象通常是一条光滑的(不打折)曲线(或直线).例1、例2告诉我们函数的图象有时也可以由一些弧立的点或几段线段组成,以后我们还将看到函数的图象还可以由几段光滑的曲线组成,从例2看到,有些函数在它的定义域中,对于自变量x 的不同取值范围,对应关系不同,这种函数通常称为分段函数.注意:分段函数是一个函数,而不是几个函数.例3是生活中的实际问题,对实际问题的解决,要求我们认真分析题意,将其抽象,转化成数学问题,通过解答数学问题,使实际问题得以解决,因此,解决应用问题的关键是将实际问题分析,抽象,转化成数学问题,即将实际问题数学化.例3某市郊空调公共汽车的票价按下列规则制定: (1) 乘坐汽车5公里以内,票价2元;(2) 5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.分析:本例是一个实际问题,有具体的实际意义.根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.解:设票价为y 元,里程为x 公里,同根据题意,如果某空调汽车运行路线中设20个汽车站(包括起点站和终点站),那么汽车行驶的里程约为19公里,所以自变量x 的取值范围是{x ∈N *| x ≤19}.由空调汽车票价制定的规定,可得到以下函数解析式:⎪⎪⎩⎪⎪⎨⎧=5432y 1915151010550≤<≤<≤<≤<x x x x (*N x ∈)根据这个函数解析式,可画出函数图象,如下图所示:注意:○1 本例具有实际背景,所以解题时应考虑其实际意义;○2 本题可否用列表法表示函数,如果可以,应怎样列表?实践与拓展:请你设计一张乘车价目表,让售票员和乘客非常容易地知道任意两站之间的票价.(可以实地考查一下某公交车线路)说明:象上面两例中的函数,称为分段函数. 注意:分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.下面我们一起对例4进行分析,请大家再仔细看一遍题.[例4]经市场调查,某商品在近100天内,其销售量和价格均是时间t 的函数,且销售量近似地满足关系g(t )=-13 t +1093 (t ∈N *,0<t ≤100),在前40天内价格为f (t )=14 t +22(t ∈N *,0≤t ≤40),在后60天内价格为f (t )=-12 t +52(t ∈N *,40<t ≤100),求这种商品的日销售额的最大值(近似到1元).分析:弄清“日销量”“价格”“日销额”这三个概念以建立它们之间的函数关系式. 解:前40天内日销售额为:S =(14 t +22)(-13 t +1093 )=-112 t 2+74 t +77913 ∴S =-112 (t -10.5)2+3784948后60天内日销售额为: S =(-12 t +52)(-13 t +1093 )=16 t 2-2136 t +56683 ∴S =16 (t -106.5)2-2524∴得函数关系式S =⎩⎨⎧-112 (t -10.5)2+3784948(0<t ≤40且t ∈N +)16 (t -106.5)2-2524(40<t ≤100且t ∈N +)由上式可知:对于0<t ≤40且t ∈N *,有当t =10或11时,S max ≈809对于40<t ≤100且t ∈N *,有当t =41时,S max =714,综上所述得:当t =10或11时,S max ≈809 答:第10天或11天日售额最大值为809元[例5]某中学高一年级学生李鹏,对某蔬菜基地的收益作了调查,该蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示,试解答下列问题.(1)写出图一表示的市场售价间接函数关系P =f (t ).写出图二表示的种植成本与时间的函数关系式Q =g (t );(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102kg ,时间单位:天)解:(1)由图一可得市场售价间接函数关系为,f (t )=⎩⎨⎧300-t (0≤t ≤200)2t -300(200<t ≤300)由图二可得种植成本间接函数关系式为g (t )=1200 (t -150)2+100 0≤t ≤300(2)设t 时刻的纯收益为h (t ),则由题意得h (t )=f (t )-g(t ) 即h (t )=⎩⎨⎧-1200 t 2+12 t +1752(0≤t ≤200)-1200 t 2+27 t -10252(200<t ≤300)当0≤t ≤200时,得h (t )=-1200 (t -50)2+100∴当t =50时,h (t )取得在t ∈[0,200]上的最大值100当200<t ≤300时,得h (t )=-1200(t -350)2+100∴当t =300时,h (t )取得在t ∈(200,300]上的最大值87.5综上所述由100>87.5可知,h (t )在t ∈[0,300]上可以取得最大值是100,此时t =50,即从二月一日开始的第50天时,上市的西红柿收益最大.评述:(1)以上两例都是考查用数学中函数知识思想、方法去解决实际问题的能力,注意其中关键词的理解,正确找出函数关系式.求最值时配方法是一种常用方法.(2)应用题是高考热点问题,且应用题的具体内容可以多种多样,千变万化,而抽象其数量关系,并建立函数关系式是具有普遍意义的方法.(3)数学应用题因其具有没有固定的背景与题型,难以摸拟分类的特点,也就更接近于我们的生产和实际生活.所以应用题是考查学生创新意识和创新能力的难得的有效题型,同时也不失为提高学生分析问题和解决问题能力的好题型.所以,我们广大师生应加强这一方面的训练,清除心理负面影响,以积极的姿态,迎接数学应用题的挑战,以适应高考的改革要求.[例6]季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.(1)试建立价格P 与周次t 之间的函数关系式.(2)若此服装每件进价Q 与周次t 之间的关系为Q =-0.125(t -8)2+12,t ∈[0,16],t ∈N *试问该服装第几周每件销售利润L 最大?解: (1)P = ⎪⎩⎪⎨⎧∈∈-∈∈∈∈+*]16,10[ 240*]10,5[20*[0,5)210N N N t t t t t t t t 且且且 (2)因每件销售利润=售价-进价,即L =P -Q故有:当t ∈[0,5)且t ∈N *时,L =10+2t +0.125(t -8)2-12=18 t 2+6即,当t =5时,L max =9.125当t ∈[5,10)时t ∈N *时,L =0.125t 2-2t +16即t =5时,L max =9.125 当t ∈[10,16]时,L =0.125t 2-4t +36即,t =10时,L max =8.5 由以上得,该服装第5周每件销售利润L 最大. 三、归纳小结,强化思想理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法.。

函数及其表示教学设计

函数及其表示教学设计

《函数及其表示》教学设计教学目标1. 理解函数的概念;2.理解函数符号y = f (x)的含义.3. 回顾旧知,通过分析探究实例,深化函数的概念;体会函数符号的含义. 在自我探索、合作交流中理解函数的概念;尝试自学辅导法.教学重、难点1.学生不容易认识到函数概念的整体性,而将函数单一理解成函数中的对应关系,甚至认为函数就是函数值。

函数概念及符号y=f(x)2.学生在学习用集合与对应的语言刻画函数之前,比较习惯的使用解析式表示函数,但这是对函数很不全面认识。

课时安排:1课时教学过程:一、创设情境,引入新课(采取情景导入法)内容:函数的概念、表示方法函数是高中数学的重要内容。

在学生学习用集合与对应的语言刻画函数之前,学生已经会把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围。

解析:1.一般地,设非空A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作=,x∈Ay f(x)其中,x,叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{(x)f∣x A∈}叫做函数的值域。

2.初中已经接触过函数的三种方法表示:解析法、列表法和图像法。

高中阶段是让学生在了解三种表示法各自优点的基础上,重点在于是学生面对实际情景时,会根据不同的需要选择恰当的方法表示函数。

二、教学基本流程概述本节内容→本节学习要点→学习过程、实例分析→练习、小结1、问题与例题(1)对教科书中的实例1,你能得出炮弹飞行1s,5s,10s,20s时距地面多高吗?其中,t的变化范围是多少?设计意图:体会用解析式刻画变量之间的对应关系,关注t和h范围。

(2)对教科书中的实例2,你能从图中可以看出哪一年臭氧空洞面积最大?哪些年的臭氧空洞面积大约为1500万平方千米?其中t的取值范围是什么?设计意图:体会用图像刻画变量之间的对应关系,关注t和s的范围。

高中数学必修一《函数及其表示》优秀教学设计

高中数学必修一《函数及其表示》优秀教学设计

教学课题函数及其表示----导学案
教学目标考点分析1.了解函数、映射的概念.
2.理解函数的三种表示法:解析法、图象法和列表法.
3.了解简单的分段函数,并能简单应用.
教学重点1.了解函数、映射的概念.
2.理解函数的三种表示法:解析法、图象法和列表法.
教学难点函数的概念、三要素、分段函数等问题是重点,也是难点.教学方法讲练结合法、启发式教学法
教学过程:
一、函数与映射的概念
名称函数映射
两集合
A、B
设A、B是两个设A、B是两个
对应关系f:A →B 如果按照某种确定的对应
关系f,使对于集合A中
的一个数x,
在集合B中有
的数f(x)和它对应
如果按某一个确定的对应
关系f,使对于集合A中
的一个元素
x,在集合B中有
的元素y与之对应
称为
从集合A到集合B的一
个函数
称对应为
从集合A到集合B的一个
映射
记法y=f(x),x∈A对应f:A→B是一个映射
二、函数的有关概念
1.函数的定义域、值域
在函数y=f(x),x∈A中,x叫做自变量,叫做函数的定义域;与x的值相对应的y值叫做函数值,
叫做函数的值域.显然,值域是集合B的子集.
2.函数的三要素:、和.
三、函数的表示方法
表示函数的常用方法有:、和.
四、分段函数
若函数在其定义域的不同子集上,因不同而
分别用几个不同的式子来表示,这种函数称为分段函数.
分段函数的定义域等于各段函数的定义域的,其值域等于各段函数的值域的,分段函数虽由几个部分组成,但它表示的是一个函数.
1。

《函数的概念及其表示》教案完美版

《函数的概念及其表示》教案完美版

函数的概念及其表示》教案完美版函数的概念及其表示》教案第一课时:1.2.1 函数的概念(一)教学要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。

在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素;能够正确使用“区间”的符号表示某些集合。

教学重点、难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。

教学过程:一、复习准备:1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x 和y,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时 y 是 x 的函数,x 是自变量,y 是因变量。

表示方法有解析法、列表法、图象法。

二、讲授新课:1.教学函数模型思想及函数概念:①给出三个实例:A.一枚炮弹发射,经 26 秒后落地击中目标,射高为 845 米,且炮弹距地面高度 h(米)与时间 t(秒)的变化规律是h = 130t - 5t²。

B.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。

(见书 P16 页图)C.国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。

“八五”计划以来我们城镇居民的恩格尔系数如下表。

(见书 P17 页表)②讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系?三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每一个 x,按照某种对应关系 f,在数集 B 中都与唯一确定的 y 和它对应,记作:f: A → B。

③定义:设 A、B 是非空数集,如果按照某种确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x) 和它对应,那么称f: A → B 为从集合 A 到集合 B 的一个函数(n),记作:y = f(x),x∈A。

高中数学_函数及其表示教学设计学情分析教材分析课后反思

高中数学_函数及其表示教学设计学情分析教材分析课后反思

《函数及其表示》教学设计1. 教学目标1、知识与技能:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.2、过程与方法:(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示函数的定义域;3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.2. 教学重点/难点重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;3. 教学用具多媒体4. 标签函数及其表示教学过程(一)创设情景,揭示课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.3、分析、归纳以上三个实例,它们有什么共同点;4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.(二)研探新知1、函数的有关概念(1)函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.(2)构成函数的三要素是什么?定义域、对应关系和值域(3)区间的概念①区间的分类:开区间、闭区间、半开半闭区间;②无穷区间;③区间的数轴表示.(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么? 通过三个已知的函数:y=ax+b (a≠0)y=ax2+bx+c (a≠0)y= (k≠0) 比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.师:归纳总结(三)质疑答辩,排难解惑,发展思维。

《函数及其表示》一等奖说课稿3篇

《函数及其表示》一等奖说课稿3篇

1、《函数及其表示》一等奖说课稿尊敬的各位专家、老师:大家好!今天我的说课题目是人教A版必修1第一章第二节《函数及其表示》。

对于这节课,我将以“教什么,怎么教,为什么这么教”为思路,从教材分析、目标分析、教学法分析、教学过程分析和评价五个方面来谈谈我对教材的理解和教学设计,敬请各位专家、评委批评指正。

一、教材分析(一)地位与作用函数是中学数学中最重要的基本概念之一,函数的学习大致可分为三个阶段。

第一阶段在以为教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等,本章学习的函数的概念、基本性质与后续将要学习的基本初等函数(i)和(ii)是函数学习的第二阶段,是对函数概念的'再认识阶段;第三阶段在选修系列导数及其应用的学习,使函数学习的进一步深化和提高。

因此函数及其表述这一节在高中数学中,起着承上启下的作用,函数的思想贯穿高中数学的始终,学好这章不仅在知识方面,更重要的是在函数思想、方法方面,将会让学生在今后的学习、工作和生活中受益无穷。

本小结介绍了函数概念,及其表示方法。

我将本小节分为两课时,第一课时完成函数概念的教学,第二课时完成函数图象的教学。

这里我主要谈谈函数概念的教学。

函数概念部分分用三个实际例子设计教学情境,让学生探寻变量和变量对应关系,结合初中学习的函数理论,在集合论的基础上,促使学生建构出函数概念,体验结合旧知识,探索新知识、研究新问题的快乐。

(二)学情分析(1)在初中,学生已经学习过函数的概念,并且知道韩式是变量间的相互依赖关系(2)学生思维活跃,积极性高,已经步入对数学问题的合作探究能力(3)学生层次参差不齐,个体差异明显二、目标分析根据《函数的概念》在教材中的地位与作用,结合学情分析,本节教学应实现如下教学目标:(一)教学目标(1)知识与技能进一步体会函数是描述变量之间的依赖关系的重要数学模型。

能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用了解构成函数的要素,理解函数定义域和值域的概念,并会求一些简单函数的定义域。

高中数学教案《函数的概念及其表示》

高中数学教案《函数的概念及其表示》

教学计划:《函数的概念及其表示》一、教学目标1.知识与技能:o学生能够理解并掌握函数的基本概念,包括自变量、因变量、函数定义域和值域。

o学生能够识别函数关系,并用不同的方式(如解析式、表格、图像)表示函数。

o学生能够区分函数与非函数关系,理解函数关系的唯一对应性。

2.过程与方法:o通过实例分析,引导学生从具体到抽象地理解函数概念。

o运用对比、归纳等方法,帮助学生掌握函数的不同表示方法。

o通过小组合作探究,培养学生的合作学习能力和问题解决能力。

3.情感态度与价值观:o激发学生对数学学习的兴趣,培养探究数学规律的精神。

o引导学生认识到函数在现实生活中的应用价值,增强数学应用的意识。

o通过解决问题,培养学生的耐心、细致和严谨的科学态度。

二、教学重点和难点●重点:函数的基本概念及其三种表示方法(解析式、表格、图像)。

●难点:理解函数关系的唯一对应性,区分函数与非函数关系;灵活运用不同方式表示函数。

三、教学过程1. 导入新课(5分钟)●生活实例引入:通过日常生活中的实例(如气温随时间变化、汽车速度与行驶时间的关系等),引导学生思考这些关系中是否存在一个变量随另一个变量变化而变化的规律。

●提出问题:这些关系中的两个变量之间是如何相互影响的?能否用数学语言来描述这种关系?●明确目标:引出函数的概念,并说明本节课将要学习的内容。

2. 概念讲解(15分钟)●函数定义:详细讲解函数的基本概念,包括自变量、因变量、函数关系以及定义域和值域的概念。

●实例分析:结合生活实例,分析哪些关系可以构成函数,哪些不能,强调函数关系的唯一对应性。

●表示方法:介绍函数的三种表示方法(解析式、表格、图像),并举例说明每种方法的应用场景。

3. 案例分析(10分钟)●典型例题:选取几道具有代表性的例题,通过分析题目中的变量关系,引导学生判断是否为函数关系,并尝试用不同方式表示该函数。

●师生互动:在例题讲解过程中,适时提问引导学生思考,鼓励学生尝试自己解答或提出疑问。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数及其表示》教案设计函数是中学数学的核心内容,从常量数学到变量数学的转变。

函数知识的学习对学生思维能力的发展具有重要意义。

从中学数学知识的组织结构看,函数是代数的“纽带”,代数式、方程、不等式、数列、排列组合、极限和微积分等都与函数知识有直接的联系。

函数这一部分内容一直是高中数学的重点内容和难点内容,有的高中学生直到高三复习时还是不能理解函数的概念,学好函数的概念是学好函数其它知识的前提,函数学不好,后续知识的学习也会受到影响.故而对于刚入学的高一学生是否能学好函数对其能否学好后面的知识起着至关重要的作用.那么函数的概念课如何上?下面我就《函数及其表示》教案设计与各位交流一下:由于本节课是讲函数的概念,我们采用核心概念教案法进行教案设计和教案活动,首先我们了解一些概念,中学数学核心概念是指中学数学概念中主要的中心的部分.而教案设计是应用系统方法,分析研究教案的问题和需求,确定解决它们的教案策略、教案方法和教案步骤,并对教案结果作出评价的一种计划过程与操作程序.核心概念教案设计框架:()内容和内容解读;()目标和目标解读;()教案问题诊断分析;()教案支持条件分析;()教案过程设计;()目标检测设计。

一、教案内容与内容解读内容:本节课是新课标《数学》(人教版)第一章《集合与函数概念》第二节函数及函数表示第一课时。

本节课主要内容是函数概念,是利用对应..的观点运用集合语言来揭示两个非空数集之间的一种特殊的对应关系(即一对一、多对一的对应关系),概念的内涵是:研究某一变化过程中两个变量间的依赖关系.外延是:和某一运动变化有关的两个变量之间的问题.<内涵外延定义> 在逻辑学的学术范围内,概念的逻辑结构分为“内涵”与“外延”。

内涵是指一个概念所概括的思维对象本质特有的属性的总和。

外延是指一个概念所概括的思维对象的数量或范围。

内容解读:函数是高中数学的一个核心概念,它是贯穿整个数学课程的一个基本脉络. 在本节课之前,学生已经学习了集合的有关知识,并且在初中,已经学习了函数概念.本节课就是在这个基础上进行的,是对函数概念的高度抽象、概括和深化,函数知识是学好数学后继知识的基础和工具.同时,函数概念的教案是对学生抽象概括、分析总结等基本数学思维能力培养的重要题材,对培养学生数学表达能力、分析问题和解决问题能力有重要作用.教材在编写顺序上,先学习函数后学习映射,揭示出映射与函数的内在联系,即:映射是函数概念的推广,函数是一种特殊的映射.符合学生由特殊到一般的认知规律.在函数教案前,对教师也有一定的要求,作为教师,我们应该知道函数概念形成的过程.第一个阶段,函数概念是由具体的现实或科学问题中简单抽象出来的,从最初人们注意到一个变量对另一个变量的依赖关系,到年约翰·贝努利对函数概念进行了明确定义“由任一变量和常数的任一形式所构成的量”,强调了函数要用公式来表示,再到世纪中叶欧拉给出的定义“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数”,再次发展到年柯西“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫作函数”,其间经历了多次表述上的演变,年维布伦用“集合”和“对应”的概念给出了现代函数定义,“若对集合的任意元素,总有集合确定的元素与之对应,则称在集合上定义一个函数,记为(),元素称为自变元,元素称为因变元”,从初中到高中y f x的教材中可以看到一些函数概念发展的历史痕迹,只是表现了两个有代表性的形式,但作为高中数学教师,应该深刻理解这一发展历程,我们知道概念的形成过程决定着它的教案过程,所以,我们必须理解这一过程,并能从中得出这一概念的教案设计。

学生在初中阶段已学过把函数看成变量之间的依赖关系,在此基础上,本节课通过具体实例,抽象概括出用集合与对应的语言来刻画函数概念.老师们想一想从函数概念的最初的提出到总结为集合与对应的语言描述要经过多年的历史演变,而我们要把这种演变在一节课的时间内完成真的是任重而道远啊!想想我们也是挺了不起的喽!通过本节课的学习,培养学生对数学语言的学习和转换的能力,渗透静与动的辩证唯物主义观点.在初中,学生已经学习过函数概念.初中建立的函数概念是:一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么,我们就说是的函数.其中称为自变量.这个定义从运动变化的观点出发,把函数看成是变量之间的依赖关系.从历史上看,初中给出的定义来源于物理公式,最初的函数概念几乎等同于解读式.后来,人们逐渐意识到定义域与值域的重要性,而要说清楚变量以及两个变量间变化的依赖关系,往往先要弄清各个变量的物理意义,这就使研究受到了一定的限制.如果只根据变量观点,那么有些函数就很难进行深入研究.符号函数1,0()0,01,0xf x xx-<⎧⎪==⎨⎪>⎩,对这个函数,如果用变量观点来解释,会显得十分勉强.但用集合、对应的观点来解释,就十分自然.进入高中,学生需要建立的函数概念是:设、是非空的数集,如果按照某个确定的对应关系,使对于集合中的任意一个数,在集合中都有唯一确定的数和它对应,那么就称:→为从集合到集合的一个函数,记作=(),∈.其中,叫做自变量,的取值范围叫做函数的定义域;与的值相对应的值叫做函数值,函数值的集合()∈叫做函数的值域.这个概念与初中概念相比更具有一般性.实际上,高中的函数概念与初中的函数概念本质上是一致的.不同点在于,表述方式不同──高中明确了集合、对应的方法.初中虽然没有明确定义域、值域这些集合,但这是客观存在的,也已经渗透了集合与对应的观点.与初中相比,高中引入了抽象的符号().()指集合中与对应的那个数.当确定时,()也唯一确定.另外,初中并没有明确函数值域这个概念.函数概念的核心是“对应”,理解函数概念要注意:①两个数集间有一种确定的对应关系,即对于数集中每一个,数集中都有唯一确定的和它对应.②涉及两个数集,,而且这两个数集都非空;这里的关键词是“每一个”“唯一确定”.也就是,对于集合中的数,不能有的在集合中有数与之对应,而有的没有数与之对应,每一个都要有.而且,在集合中只能有一个与其对应,不能有两个或者两个以上与其对应.③函数概念中涉及的集合,,对应关系是一个整体,是集合与集合之间的一种对应关系,应该从整体的角度来认识函数.函数是中学数学中最重要的数学概念之一,是中学数学的核心概念之一,是贯穿高中数学由始至终的一条虹线,是联系其它内容和其它学科的最好纽带.其中蕴含着“函数与方程”,“数形结合”,“转换与化归”等数学思想,其核心是:两个非空数集之间“一对一、多对一”的对应关系.在学生学习用集合与对应的语言刻画函数之前,学生已经把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围.因此,课本采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数概念.这样不仅为学生理解函数概念打下了感性基础,而且注重培养学生的抽象概括能力,启发学生运用函数模型表述、思考、解决现实世界中蕴含的规律,逐渐养成善于提出问题的习惯,学会数学用数学语言表达和交流,发展数学应用意识.二、教案目标和目标解读()从实际生活和学生已有知识出发,通过丰富实例,建立函数概念的背景,让学生感受、体验对应关系在刻画函数概念中的作用,使学生体会函数的实质.()能用集合与对应的语言来刻画函数,了解构成函数的三个要素.()会判断两个函数是否为同一函数.()通过从实例中抽象概括函数概念的活动,培养学生的抽象概括能力;通过对函数概念的教案,让学生体验到由具体到抽象,从特殊到一般,感性到理性的认知过程;使学生在初中数学学习的基础上,对数学的高度抽象性、概括性和广泛的应用性有进一步认识。

由于函数概念中的“对应”本质是后继学习映射、函数图像与性质、指对幂函数等知识的基础,而学生初中对函数的学习是在“变量”观点下的定义,所以本节课的教案重点是函数概念的理解,在研究已有函数实例(学生举出的例子)的过程中,感受在两个数集,之间所存在的对应关系,进而用集合、对应的语言刻画这一关系,获得函数概念.然后再进一步理解它.学生在初中函数学习中,只停留在对一些具体函数的感知,所以本节课的教案难点是对函数符号()的理解.学生的理解障碍有两个:一是符号y f x的高度抽象性,二是函数()中x的任意性,所以要充分铺垫,循序渐y f x进.三、教案问题诊断分析刚升入高中的学生对函数的概念还是停留在初中函数概念的基础上,尽管在实际教案中采取了适当渗透、螺旋上升的方法,分段而又循环地安排函数知识,但学生的函数概念水平仍然较低。

即使是学生学习了高中函数的概念,但是先入为主,并不能将初中函数概念理解过渡到高中函数概念的理解上。

造成困难的原因主要有两个方面:第一是函数概念本身的原因,刚才我们提到了函数的发展过程,函数概念从产生到完善,经历了漫长而曲折的过程。

这不但因为函数概念系统复杂、涉及因素众多,更重要的是伴随着函数概念的不断发展,数学思维方式也发生了重要转折:思维从静止走向了运动、从离散走向了连续、从运算转向了关系,实现了数与形的有机结合,在符号语言与图、表语言之间可以灵活转换。

在函数的研究中,思维超越了形式逻辑的界限,进入了辩证逻辑思维。

与常量数学相比,函数概念的抽象性更强、形式化程度更高。

认知心理学认为,个体的心理发展过程是人类社会认识发展过程的简约反映。

因此,学生掌握函数概念的过程要简约地重演数学科学发展中对函数的认识过程,普遍出现认识上的困难是比较自然的。

第二,函数概念表示的多样性,一方面表现在定义域、值域表示的多样性,可以用集合、区间、不等式等不同形式表示;另一方面表现在它可以用图像、表格、解读式等方法表示,从每一种表示中都可以独立地抽象出函数概念来。

与其他数学概念相比,由于函数概念需要同时考虑几种表示,。

相关文档
最新文档