小学数学题型归纳整理

合集下载

小学数学30种典型题型详解

小学数学30种典型题型详解

小学数学30种典型问题001归一问题002归总问题003和差问题004和倍问题005差倍问题006倍比问题007相遇问题008追及问题009植树问题010年龄问题011行船问题012列车问题013时钟问题014 盈亏问题015工程问题016正反比例问题017按比例分配问题018百分数问题019“牛吃草”问题020鸡兔同笼问题021方阵问题022商品利润问题023存款利率问题024溶液浓度问题025构图布数问题026幻方问题027抽屉原则问题028公约公倍问题029最值问题030列方程问题1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量 1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式 105÷(100÷5÷4×7)=3(次)答:需要运3次。

小学数学重点知识及题型

小学数学重点知识及题型

小学数学重点知识第一部分:数的意义1、自然数:自然数的个数是无限的,最小的自然数是零。

2、分数:分数的意义强调“平均分”。

分数有双重意义,既能表示数量,又能表示分率。

3、小数:有限小数和无限小数.判断分数能否化成有限小数的方法:一个最简分数,分母里只含有2或5质因数的就能化成有限小数。

4、百分数:百分数它只能表示分率,而不能表示数量,因此,在百分数的后面不能带上计算单位。

成数:“几成”就是“十分之几或百分之几”。

如六成=60%,三成五=35%折扣:“几折”就是现价是原价的百分之几十(或十分之几)。

5、多位数的读作、写作、改写、省略:一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

6、比较大小(1)比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

(2)比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……(3)比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。

分数的分母和分子都不相同的,先通分,再比较两个数的大小。

7、整数和小数的数位表:整数部分小数点. 小数部分…亿级万级个级位数…千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位十分位百分位千分位万分位…计数单位千亿百亿十亿亿千万百万十万万千百十个十分之一百分之一千分之一万分之一8、除法、分数、小数、比的基本性质。

基本性质应用除法被除数和除数同乘或同除以同一个数(0除外),商不变。

计算小数除法和一些简便计算分数分子和分母都同乘或除以同一个数(0除外),分数的大小不变。

分数的约分和通分小数小数的末尾添上0或去掉0,小数的大小不变。

小学五年级数学10种经典题型汇总.docx

小学五年级数学10种经典题型汇总.docx

一、和差问题已知两数的和与差,求这两个数.【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以 2,便是小的 .例:已知两数和是10,差是 2,求这两个数 .按口诀,则大数=(10+2) /2=6 ,小数 =( 10-2)/2=4.二、鸡兔同笼问题【口诀】:假设全是鸡,假设全是兔 . 多了几只脚,少了几只足?除以脚的差,便是鸡兔数 .例:鸡免同笼,有头 36 ,有脚 120,求鸡兔数 . 求兔时,假设全是鸡,则免子数 =( 120-36X2 )/ (4-2 )=24求鸡时,假设全是兔,则鸡数=( 4X36-120) / (4-2) =12三、浓度问题(1)加水稀释【口诀】:加水先求糖,糖完求糖水 .糖水减糖水,便是加糖量 .例:有 20 千克浓度为 15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为: 20X15%=3(千克)糖完求糖水,含 3 千克糖在 10%浓度下应有多少糖水, 3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10 (千克)(2)加糖浓化【口诀】:加糖先求水,水完求糖水 .糖水减糖水,求出便解题 .例:有 20 千克浓度为 15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为: 20X( 1-15%) =17(千克)水完求糖水,含17 千克水在20%浓度下应有多少糖水, 17/(1-20%) =21.25 (千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25 (千克 )四、路程问题(1)相遇问题【口诀】:相遇那一刻,路程全走过.除以速度和,就把时间得.例:甲乙两人从相距120 千米的两地相向而行,甲的速度为40 千米 / 小时,乙的速度为20千米 / 小时,多少时间相遇?相遇那一刻,路程全走过.即甲乙走过的路程和恰好是两地的距离 120 千米 . 除以速度和,就把时间得 . 即甲乙两人的总速度为两人的速度之和40+20=60(千米/ 小时),所以相遇的时间就为120/60=2 (小时)(2)追及问题【口诀】:慢鸟要先飞,快的随后追.先走的路程,除以速度差,时间就求对.例:姐弟二人从家里去镇上,姐姐步行速度为 3 千米 / 小时,先走 2 小时后,弟弟骑自行车出发速度 6 千米 / 小时,几时追上?先走的路程,为3X2=6(千米)速度的差,为6-3=3(千米/ 小时) .所以追上的时间为:6/3=2 (小时) .五、工程问题【口诀】:工程总量设为1, 1 除以时间就是工作效率.单独做时工作效率是自己的,一齐做时工作效率是众人的效率和. 1 减去已经做的便是没有做的,没有做的除以工作效率就是结果.例:一项工程,甲单独做 4 天完成,乙单独做 6 天完成 . 甲乙同时做 2 天后,由乙单独做,几天完成?[1-( 1/6+1/4 ) X2]/ ( 1/6 ) =1(天)六、盈亏问题一盈一亏,盈亏加在一起.除以分配的【口诀】:全盈全亏,大的减去小的;差,结果就是分配的东西或者是人.例 1:小朋友分桃子,每人 10 个少 9 个;每人 8 个多 7 个. 求有多少小朋友多少桃子?一盈一亏,则公式为:(9+7)/ (10-8 )=8(人),相应桃子为8X10-9=71 (个)例2:士兵背子弹 . 每人 45 发则多 680 发;每人 50 发则多 200 发,多少士兵多少子弹?全盈问题 . 大的减去小的,则公式为:( 680-200 ) / ( 50-45 ) =96(人)则子弹为 96X50+200=5000(发) . 例3:学生发书 . 每人 10 本则差 90 本;每人8 本则差 8 本,多少学生多少书?全亏问题 .大的减去小的 .则公式为:( 90-8) / ( 10-8) =41(人),相应书为 41X10-90=320 (本)七、牛吃草问题【口诀】:每牛每天的吃草量假设是份数1, A 头 B 天的吃草量算出是几?M头 N 天的吃草量又是几?大的减去小的,除以二者对应的天数的差值,结果就是草的生长速率 .原有的草量依此反推.公式就是A头B天的吃草量减去B天乘以草的生长速率 .将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;有的草量除以剩余的牛数就将需要的天数求知.例:整个牧场上草长得一样密,一样快 .27 头牛 6 天可以把草吃完; 23 头牛 9 天也可以把草吃完 . 问 21 头多少天把草吃完 . 每牛每天的吃草量假设是 1,则 27 头牛 6 天的吃草量是27X6=162,23 头牛 9 天的吃草量是 23X9=207;大的减去小的, 207-162=45 ;二者对应的天数的差值,是 9-6=3 (天)结果就是草的生长速率 . 所以草的生长速率是 45/3=15 (牛 / 天);原有的草量依此反推 . 公式就是 A 头 B 天的吃草量减去 B天乘以草的生长速率 . 所以原有的草量=27X6-6X15=72 (牛 / 天) . 将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就15 头牛吃新生的草;剩下的是草的比率;这就是说将要求的21 头牛分为两部分,一部分21-15=6 去吃原有的草,所以所求的天数为:原有的草量/ 分配剩下的牛=72/6=12 (天)八、年龄问题【口诀】:岁差不会变,同时相加减 . 岁数一改变,倍数也改变 . 抓住这三点,一切都简单 .例 1:小军今年8 岁,爸爸今年34 岁,几年后,爸爸的年龄的小军的 3 倍?岁差不会变,今年的岁数差点34-8=26 ,到几年后仍然不会变. 已知差及倍数,转化为差比问题.26/ ( 3-1 )=13,几年后爸爸的年龄是13X3=39 岁,小军的年龄是13X1=13 岁,所以应该是 5 年后 . 例 2:姐姐今年13 岁,弟弟今年9 岁,当姐弟俩岁数的和是40 岁时,两人各应该是多少岁?岁差不会变,今年的岁数差13-9=4 几年后也不会改变. 几年后岁数和是40,岁数差是4,转化为和差问题 .则几年后,姐姐的岁数:(40+4)/2=22 ,弟弟的岁数:(40-4)/2=18 ,所以答案是9 年后 .九、和比问题已知整体求部分.【口诀】:家要众人合,分家有原则.分母比数和,分子自己的.和乘以比例,就是该得的 .例:甲乙丙三数和为27,甲 ; 乙 : 丙=2:3:4,求甲乙丙三数.分母比数和,即分母为:2+3+4=9;分子自己的,则甲乙丙三数占和的比例分别为2/9 , 3/9 , 4/9.和乘以比例,所以甲数为27X2/9=6 ,乙数为: 27X3/9=9 ,丙数为: 27X4/9=12.十、差比问题.分子实际差,分母倍数差.商是一倍的,【口诀】:我的比你多,倍数是因果乘以各自的倍数,两数便可求得.例:甲数比乙数大12,甲 : 乙 =7: 4,求两数 . 先求一倍的量,12/ ( 7-4 ) =4,所以甲数为: 4X7=28,乙数为: 4X4=16.。

小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳汇总30种题型1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? 3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式 3.2×791÷2.8=904(套)答:现在可以做904套。

3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。

小学五年级数学10种经典题型汇总

小学五年级数学10种经典题型汇总

一、和差问题已知两数的和与差,求这两个数.【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的.例:已知两数和是10,差是2,求这两个数.按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4.二、鸡兔同笼问题【口诀】:假设全是鸡,假设全是兔. 多了几只脚,少了几只足?除以脚的差,便是鸡兔数.例:鸡免同笼,有头36 ,有脚120,求鸡兔数.求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=12三、浓度问题(1)加水稀释【口诀】:加水先求糖,糖完求糖水.糖水减糖水,便是加糖量.例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】:加糖先求水,水完求糖水. 糖水减糖水,求出便解题.例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)四、路程问题(1)相遇问题【口诀】:相遇那一刻,路程全走过. 除以速度和,就把时间得.例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?相遇那一刻,路程全走过.即甲乙走过的路程和恰好是两地的距离120千米.除以速度和,就把时间得.即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)(2)追及问题【口诀】:慢鸟要先飞,快的随后追. 先走的路程,除以速度差,时间就求对.例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?先走的路程,为3X2=6(千米)速度的差,为6-3=3(千米/小时).所以追上的时间为:6/3=2(小时).五、工程问题【口诀】:工程总量设为1,1除以时间就是工作效率. 单独做时工作效率是自己的,一齐做时工作效率是众人的效率和. 1减去已经做的便是没有做的,没有做的除以工作效率就是结果.例:一项工程,甲单独做4天完成,乙单独做6天完成.甲乙同时做2天后,由乙单独做,几天完成?[1-(1/6+1/4)X2]/(1/6)=1(天)六、盈亏问题【口诀】:全盈全亏,大的减去小的;一盈一亏,盈亏加在一起. 除以分配的差,结果就是分配的东西或者是人.例1:小朋友分桃子,每人10个少9个;每人8个多7个.求有多少小朋友多少桃子?一盈一亏,则公式为:(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个)例2:士兵背子弹.每人45发则多680发;每人50发则多200发,多少士兵多少子弹?全盈问题.大的减去小的,则公式为:(680-200)/(50-45)=96(人)则子弹为96X50+200=5000(发).例3:学生发书.每人10本则差90本;每人8 本则差8本,多少学生多少书?全亏问题.大的减去小的.则公式为:(90-8)/(10-8)=41(人),相应书为41X10-90=320(本)七、牛吃草问题【口诀】:每牛每天的吃草量假设是份数1,A头B天的吃草量算出是几?M 头N天的吃草量又是几?大的减去小的,除以二者对应的天数的差值,结果就是草的生长速率. 原有的草量依此反推. 公式就是A头B天的吃草量减去B天乘以草的生长速率. 将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;有的草量除以剩余的牛数就将需要的天数求知.例:整个牧场上草长得一样密,一样快.27头牛6天可以把草吃完;23头牛9天也可以把草吃完.问21头多少天把草吃完.每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)结果就是草的生长速率.所以草的生长速率是45/3=15(牛/天);原有的草量依此反推.公式就是A头B天的吃草量减去B天乘以草的生长速率.所以原有的草量=27X6-6X15=72(牛/天).将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;剩下的21-15=6去吃原有的草,所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)八、年龄问题【口诀】:岁差不会变,同时相加减. 岁数一改变,倍数也改变. 抓住这三点,一切都简单.例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变.已知差及倍数,转化为差比问题.26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后.例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?岁差不会变,今年的岁数差13-9=4几年后也不会改变.几年后岁数和是40,岁数差是4,转化为和差问题.则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后.九、和比问题已知整体求部分.【口诀】:家要众人合,分家有原则. 分母比数和,分子自己的. 和乘以比例,就是该得的.例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数.分母比数和,即分母为:2+3+4=9;分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9.和乘以比例,所以甲数为27X2/9=6,乙数为:27X3/9=9,丙数为:27X4/9=12.十、差比问题【口诀】:我的比你多,倍数是因果. 分子实际差,分母倍数差. 商是一倍的,乘以各自的倍数,两数便可求得.例:甲数比乙数大12,甲:乙=7:4,求两数.先求一倍的量,12/(7-4)=4,所以甲数为:4X7=28,乙数为:4X4=16.。

小学数学典型应用题归纳汇总30种题型

小学数学典型应用题归纳汇总30种题型

小学数学典型应用题归纳汇总30种题型小学数学典型应用题归纳汇总30种题型1.归一问题归一问题是指在解题时,先求出一份的数量(即单一量),然后以单一量为标准,求出所要求的数量。

解决这类问题需要使用以下数量关系公式:总量÷份数=1份数量,1份数量×所占份数=所求几份的数量,另一总量÷(总量÷份数)=所求份数。

解题思路和方式是先求出单一量,然后以单一量为标准,求出所要求的数量。

例如,如果买5支铅笔需要元钱,那么买一样的铅笔16支需要多少钱?首先,我们需要求出单支铅笔的价格,即 ÷5=(元)。

然后,我们可以使用公式 1份数量×所占份数=所求几份的数量,计算出买16支铅笔需要多少钱,即 ×16=(元)。

最后列成综合算式÷5×16=×16=(元),得出需要元。

2.归总问题归总问题是指在解题时,常常先找出“总数量”,然后再按照其他条件算出所求的问题。

所谓“总数量”可以是货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

解决这类问题需要使用以下数量关系公式:1份数量×份数=总量,总量÷1份数量=份数,总量÷另一份数=另一每份数量。

解题思路和方式是先求出总数量,再按照题意得出所求的数量。

例如,如果服装厂原来做一套衣服用布米,改良裁剪方式后,每套衣服用布米。

原来做791套衣服的布,此刻可以做多少套?首先,我们需要求出这批布总共有多少米,即 ×791=(米)。

然后,我们可以使用公式总量÷1份数量=份数,计算出此刻可以做多少套衣服,即 ÷=904(套)。

最后列成综合算式×791÷=904(套),得出此刻可以做904套。

3.和差问题和差问题是指已知两个数量的和与差,求这两个数量各是多少。

解决这类问题需要使用以下数量关系公式:大数=(和+差)÷2,小数=(和-差)÷2.解题思路和方式是对于简单的题目可以直接套用公式,对于复杂的题目需要变通后再使用公式。

小学六年级最易考的数学题型汇总

小学六年级最易考的数学题型汇总

小学六年级最易考的数学题型汇总小学六年级最易考的数学题型汇总和差问题已知两数的和与差,求这两个数。

例:已知两数和是10,差是2,求这两个数。

【口诀】和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。

按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4差比问题例:甲数比乙数大12且甲:乙=7:4,求两数。

【口诀】我的比你多,倍数是因果。

分子实际差,分母倍数差。

商是一倍的,乘以各自的倍数,两数便可求得。

先求一倍的量,12/(7-4)=4,所以甲数为:4某7=28,乙数为:4某4=16。

年龄问题例1:小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄是小军的3倍?【口诀】岁差不会变,同时相加减。

岁数一改变,倍数也改变。

抓住这三点,一切都简单。

分析:岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。

已知差及倍数,转化为差比问题。

26/(3-1)=13,几年后爸爸的年龄是13某3=39岁,小军的年龄是13某1=13岁,所以应该是5年后。

例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?分析:岁差不会变,今年的岁数差13-9=4几年后也不会改变。

几年后岁数和是40,岁数差是4,转化为和差问题。

则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。

和比问题已知整体,求部分。

例:甲乙丙三数和为27,甲:乙:丙=2:3:4,求甲乙丙三数。

【口诀】家要众人合,分家有原则。

分母比数和,分子自己的。

和乘以比例,就是该得的。

分母比数和,即分母为:2+3+4=9;分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。

和乘以比例,则甲为27某2/9=6,乙为27某3/9=9,丙为27某4/9=12 鸡兔同笼问题例:鸡免同笼,有头36,有脚120,求鸡兔数。

【口诀】假设全是鸡,假设全是兔。

多了几只脚,少了几只足?除以脚的差,便是鸡兔数。

小学数学典型应用题归纳汇总30种题型

小学数学典型应用题归纳汇总30种题型

小学数学典型应用题归纳汇总30种题型1 归一问题【含义】在解题时,先求出一份是多少(即单一量)然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量*份数=1份数量1份数量x所占份数=所求几份的数量另一总量*(总量*份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1 )买1支铅笔多少钱?0.6 * 5 = 0.12 (元)(2 )买16支铅笔需要多少钱?0.12 x 16 =1.92 (兀)列成综合算式0.6 * 5 x 16=0.12 x 16 =1.92 (兀)答:需要1.92元。

2归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量” 是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量x份数=总量总量* 1份数量=份数总量*另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1 )这批布总共有多少米? 3.2 X 791 = 2531.2(米)(2)现在可以做多少套?2531.2 + 2.8 = 904(套)列成综合算式 3.2 X 791 + 2.8 = 904 (套)答:现在可以做904套。

3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)+ 2小数=(和一差)* 2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98 + 6) - 2 = 52 (人)乙班人数=(98 - 6) - 2 = 46 (人)答:甲班有52人,乙班有46 人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学题型归纳整理一、植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数二、置换问题:题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。

其结果往往与条件不符合,再加以适当的调整,从而求出结果。

例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。

这个集邮爱好者买这两种邮票各多少张?分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=2000(分),比原来的总值多2000-1880=120(分)。

而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。

列式:(2000-1880)÷(20-10)=120÷10 =12(张)→10分一张的张数100-12=88(张)→20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。

三、盈亏问题(盈不足问题):题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。

解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。

其计算方法是:1)当一次有余数,另一次不足时:每份数=(余数+不足数)÷两次每份数的差2)当两次都有余数时:总份数=(较大余数-较小数)÷两次每份数的差3)当两次都不足时:总份数=(较大不足数-较小不足数)÷两次每份数的差例1、解放军某部的一个班,参加植树造林活动。

如果每人栽5棵树苗,还剩下14棵树苗;如果每人栽7棵,就差4棵树苗。

求这个班有多少人?一共有多少棵树苗分析:由条件可知,这道题属第一种情况。

列式:(14+4)÷(7-5)=18÷2 =9(人)5×9+14 =45+14 =59(棵)或:7×9-4 =63-4 =59(棵)答:这个班有9人,一共有树苗59棵。

例2、学校把一些彩色铅笔分给美术组的同学,如果每人分给五枝,则剩下45枝,如果每人分给7枝,则剩下3枝。

求美术组有多少同学?彩色铅笔共有几枝?(45-3)÷(7-5)=21(人)21×5+45=150(枝)答:略。

四、年龄问题:年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。

常用的计算公式是:成倍时小的年龄=大小年龄之差÷(倍数-1)几年前的年龄=小的现年-成倍数时小的年龄几年后的年龄=成倍时小的年龄-小的现在年龄例父亲今年54岁,儿子今年12岁。

几年后父亲的年龄是儿子年龄的4倍?(54-12)÷(4-1)=42÷3 =14(岁)→儿子几年后的年龄14-12=2(年)→2年后答:2年后父亲的年龄是儿子的4倍。

例2、父亲今年的年龄是54岁,儿子今年有12岁。

几年前父亲的年龄是儿子年龄的7倍?(54-12)÷(7-1)=42÷6=7(岁)→儿子几年前的年龄12-7=5(年)→5年前答:5年前父亲的年龄是儿子的7倍。

例3、王刚父母今年的年龄和是148岁,父亲年龄的3倍与母亲年龄的差比年龄和多4岁。

王刚父母亲今年的年龄各是多少岁?(148×2+4)÷(3+1)=300÷4 =75(岁)→父亲的年龄148-75=73(岁)→母亲的年龄答:王刚的父亲今年75岁,母亲今年73岁。

或:(148+2)÷2 =150÷2 =75(岁)75-2=73(岁)五、鸡兔同笼问题:已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫"龟鹤问题"、"置换问题"。

一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。

常用的基本公式有:(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数例:鸡兔同笼共有24只。

有64条腿。

求笼中的鸡和兔各有多少只?(64-2×24)÷(4-2)=(64-48)÷(4-2)=16 ÷2 =8(只)→兔的只数24-8=16(只)→鸡的只数答:笼中的兔有8只,鸡有16只。

六、牛吃草问题(船漏水问题):若干头牛在一片有限范围内的草地上吃草。

牛一边吃草,草地上一边长草。

当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?例1、一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。

如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推......其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。

原因是因为其一,用的时间少;其二,对应的长出来的草也少。

这个差就是这片草地5天长出来的草。

每天长出来的草可供5头牛吃一天。

如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。

(15×10-25×5)÷(10-5)=(150-125)÷(10-5)=25÷5 =5(头)→可供5头牛吃一天。

150-10×5 =150-50 =100(头)→草地上原有的草可供100头牛吃一天100÷(10-5)=100÷5 =20(天)答:若供10头牛吃,可以吃20天。

例2、一口井匀速往上涌水,用4部抽水机100分钟可以抽干;若用6部同样的抽水机则50分钟可以抽干。

现在用7部同样的抽水机,多少分钟可以抽干这口井里的水?(100×4-50×6)÷(100-50)=(400-300)÷(100-50)=100÷50 =2400-100×2 =400-200=200200÷(7-2)=200÷5 =40(分)答:用7部同样的抽水机,40分钟可以抽干这口井里的水。

七、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间八、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间十、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2怎么复习小学数学知识点小学数学复习是对所学过知识进行再学习的过程,由于复习面广量大,时间紧,内容多,为使复习更贴近实际,从而用较少时间达到较好的复习效果,为此提出以下几点复习建议:一、制定切实可行的复习计划,并认真执行计划。

为使复习具有针对性,目的性和可行性,找准重点、难点,大纲(课程标准)是复习依据,教材是复习的蓝本。

复习时要弄清学习中的难点、疑点及各知识点易出错的原因,这样做到复习有针对性,可收到事半功倍的效果。

二、分类整理、梳理,强化复习的系统性。

复习的重要特点就是在系统原理的指导下,对所学知识进行系统的整理,使之形成一个较完整的知识体体系,这样有利于知识的系统化和对其内在联系的把握,便于融合贯通。

做到梳理--训练--拓展,有序发展,真正提高复习的效果。

三、辨析比较,区分弄清易混概念。

对于易混淆的概念,首先抓住意义方面的比较,再者是对易混概念的分析,这样能全面把握概念的本质,避免不同概念的干扰,另外对易混的方法也应进行比较,以明确解题方法。

四、一题多解,多题一解,提高解题的灵活性。

有些题目,可以从不同的角度去分析,得到不同的解题方法。

一题多解可以培养分析问题的能力。

灵活解题的能力。

不同的解题思路,列式不同,结果相同,收到殊途同归的效果。

同时也给其他同学以启迪,开阔解题思路。

有些应用题,虽题目形式不同,但它们的解题方法是一样的,故在复习时,要从不同的角度去思考,要对各类习题进行归类,这样才能使所所学知识融会贯通,提高解题灵活性。

五、有的放矢,挖掘创新。

机械的重复,什么都讲,什么都练是复习大忌,复习一定要有目的,有重点,要对所学知识归纳,概括。

习题要具有开放性,创新性,使思维得到充分发展,要正确评估自己,自觉补缺查漏,面对复杂多变的题目,严密审题,弄清知识结构关系和知识规律,发掘隐含条件,多思多找,得出自己的经验。

相关文档
最新文档