福建农林大学科教管理中心简介-科教基地管理中心

合集下载

福建农林大学管理学院(旅游学院)

福建农林大学管理学院(旅游学院)

福建农林大学 管理学院(旅游学院)福建农林大学管理学院(旅游学院)拥有涉农企业经营与管理二级学科博士点;工商管理一级学科硕士点,现设有企业管理、会计学、旅游管理、技术经济及管理等4个二级学科硕士点;工商管理硕士(MBA)和会计硕士专业学位(MPAcc)2个专业硕士点。

拥有工商管理省级重点学科,现设有工商管理、会计学、人力资源管理、旅游管理、文化产业管理等5个全日制本科专业,已形成较完整的工商管理专业人才培养层次体系。

学院师资力量雄厚,师资队伍呈现出高学历、高素质、年轻化的特征。

专任教师中博士生导师5人,教授10人,副教授30人,高级职称比例占56.33%; 具有博士研究生学历的教师38位,占专任教师的53.52%。

其中,“福建省百千万人才工程”人选2位, “福建省高校新世纪优秀人才支持计划” 人选4位,“福建省高校杰出青年科研人才培育计划” 人选5位;企业高管讲座教授20余位。

学院积极开展国际交流与合作办学,与美国德州农工大学、美国奥本大学、美国东华盛顿州立大学、 加拿大圣文森山大学、南非德班理工大学、新西兰怀卡托大学等10余所境内外大学建立了合作关系。

学院教学科研成果显著。

近年来,承担各类纵向课题100余项,其中国家级课题15项,教育部课题3项;获得国家旅游局优秀旅游学术成果奖、省级社科优秀成果奖等10多项省部级科研成果奖;出版专著、教材近30部;发表SSCI、SCI、EI、CSSCI、CSCD收录论文100余篇。

承担各级教改项目40余项,获省级教学成果一等奖1项;2篇案例入选中国专业学位教学案例中心,10篇案例入选中国管理案例共享中心(其中2篇全国百优案例);4门省级精品课,1门省级精品共享课。

近年来,学院本科生参加省级及以上“挑战杯”、“创青春”等学科专业技能竞赛90多项,其中获得国家级金奖1项、银奖4项、铜奖6项,其他全国性竞赛一等奖4项、二等奖21项、三等奖11项;省级金奖10项、银奖10项、铜奖17项,其他全省性竞赛一等奖4项、二等奖4项。

中华名特优植物园概况,各省园药草

中华名特优植物园概况,各省园药草

中华名特优植物园概况福建农林大学是一所具有73年办学历史的高校,办学实力较强,办学规模较大。

由于农林高校十分需要校园教学基地,学校集中了广大师生的聪明与智慧,精心创建了具教学功能、科研功能、科普功能、运动功能、社会功能和创新教育功能六位一体的“中华名特优植物园”。

“中华名特优植物园”占地面积7万多平方米,位于校园中心。

模拟中国及其34个省区的行政地图,按实际面积的比例划分建设成34个省园,每个省园分别种植该省具有园林景观、净化环境、人体保健等功能的名特优植物、名特优花卉和名特优中草药等,并按照各种植物的生态习性和植物造景原理进行合理配臵,至今已种植675种。

每一种植物都附上相应的说明牌,如福建园的“高T 白茶”这一名特优植物的说明牌写上:“高T白茶,山茶科(Theaceae),学名:Camellia sinensis,白茶中的茶氨酸(Tea Amino)可使提高人体免疫力的干扰素分泌量增加5倍,高T白茶中的茶氨酸是一般白茶的1.5-2倍。

”“中华名特优植物园”的“国界”线为宽1.8米的道路构成,总长819米,由水洗石铺面,花岗岩切边,从高处俯瞰可以清晰地看出白色的道路似中国地形图,“国界”的外旁为不同颜色的植物组成的植物篱笆,一种颜色代表与一个国家的边界。

“中华名特优植物园”中建设了2000M2的智能化温室,用于引进、保存和展示在福建气候条件下不能正常生长发育的其它生态区的名特优植物。

“中华名特优植物园”周边是色块地被,以及名特优果树组成的树阵、硬质铺装组成的人工景观和苗圃地等植物园辅助配套设施。

“中华名特优植物园”具有六大功能:(1)教学功能,中华名特优植物园既是园林、园艺11个本科专业课程的教学实习基地,也是实验取材基地;既是实践基地,也是学生独立科研和创新活动的基地。

(2)科研功能,中华名特优植物园是中国各地名特优植物的活体种质资源库和基因库,是植物学、分子遗传学、分子生物学等学科科学研究极其重要的基础。

农业院校校外科教基地建设研究——以福建农林大学为例

农业院校校外科教基地建设研究——以福建农林大学为例

1 农 业院 校校 外 科教基 地建 设 的意义
实 践 是 进 行 科 学 研 究 与 探 索 的重 要 手 段 , 是 促 进 理 论 联 系 实 际 的 重 要 方 法 ,是 农 林 学 科 学 生 掌 握 知 识 和 技 能 的 重 要 环
节 。长 期 以来 我 国农 业 高 等 教 育 中 普 遍 存 在 实 践 教 学 落 后 于 理
校工作 的中心是教学 和科研 。 而应 用性很 强的农林 学科 , 在 教
学 过 程 中相 当 多 的 实 践 性 教 学 环 节 必 须 由 教 学基 地来 完成 。教 学农 场 、 林 场等科 教基地是 学校 的教学辅助 单位 , 是 农 林 院 校 学 生教 学 、 生产、 毕业 实 习实践 的重 要场所 , 无 论 是 作 物 的 栽
论 教 学 的现 象 , 特别是 大学扩招后 , 高等教育大众 化的推进 , 带 来 了学校教学 资源的紧张和不足 。 尤 其 是 实验 室 和 实 践 基 地 建
设 严重滞后 , 其弊端体 现得 越来越明显 。《 高等教育 法》 第 五条 明确规 定 : “ 高等教 育的任务 是培养 具有创 新精神 和实践 能力
高校独 立建设 的校外 基地 , 属 于高校 固定资产 ; 二是 由高 校与
有关政 府 、 企 事 业单 位 共 同合 作 建 立 的 校 外 基 地 。 属 于 合 作 双 方 共 建 基 地 。本 文 主 要 对 高 校 独 立 建 设 的校 外 基 地 的管 理 模 式
进 行探讨。
培、 育种 。 动 物的饲养 还是动植 物 的遗传 育种 、 疾病 防治等 等 ,
[ 关键词 ] 农业院校; 科教基地; 建设 [ 中 图分 类 号 ] G 6 4 7 ; S - 3 [ 文献标识码 ] A 验告 诉我们 , 加强 实践性 教学 , 首 先 要 有 一 个 良好 的 实 践 教 学 基地 。 而 基 地 建 设 管 理 的好 坏 直 接 影 响 到 教 育 质 量 的高 低 。 高

应用无人机可见光影像和面向对象的随机森林模型对城市树种分类

应用无人机可见光影像和面向对象的随机森林模型对城市树种分类

第52卷第3期东㊀北㊀林㊀业㊀大㊀学㊀学㊀报Vol.52No.32024年3月JOURNALOFNORTHEASTFORESTRYUNIVERSITYMar.20241)国家自然科学基金项目(31901298),西藏自治区科学技术重点研发计划项目(XZ202201ZY0003G),福建农林大学省级大学生创新创业训练项目(S202310389046),福建农林大学科技创新专项基金项目(KFb22033XA)㊂第一作者简介:陈逊龙,男,1998年10月生,福建农林大学林学院,硕士研究生㊂E-mail:1220496002@fafu.edu.cn㊂通信作者:张厚喜,福建农林大学林学院㊁南方红壤区水土保持国家林业和草原局重点实验室(福建农林大学)㊁海峡两岸红壤区水土保持协同创新中心(福建农林大学)㊁福建长汀红壤丘陵生态系统国家定位观测研究站,副教授㊂E-mail:zhanghouxi@126.com㊂收稿日期:2023年10月23日㊂责任编辑:王广建㊂应用无人机可见光影像和面向对象的随机森林模型对城市树种分类1)陈逊龙㊀孙一铭㊀郭仕杰㊀段煜柯㊀唐桉琦㊀叶章熙㊀张厚喜(福建农林大学,福州,350002)㊀㊀摘㊀要㊀为及时准确的了解城市树种空间分布信息,提升城市居民生活水平和推动城市生态系统可持续发展㊂以福州市仓山区城市森林为研究对象,应用无人机(UAV)监测城市树种空间分布及其动态变化的可见光影像,根据最佳尺度对影像进行分割,并提取分割对象的光谱㊁地形㊁指数㊁纹理和几何特征㊂通过对不同类型特征的组合构建不同的分类方案,利用递归特征消除法(RFE)筛选出优选特征子集,利用面向对象方法结合随机森林(RF)模型对城市树种进行分类㊂结果表明:在随机森林模型分类的过程中,利用光谱特征对树种分类的总体分类精度为82.12%;地形特征对树种分类的贡献度率为14.96%;指数特征和纹理特征的引入,在一定程度提高了树种的分类精度;几何特征的贡献较小,在分类过程中没有明显的贡献㊂特征优选子集的S10方案分类精度最高,总体精度达92.42%,Kappa系数为0.91㊂说明特征优选能够降低高维度特征的复杂性,在大幅减少数据冗余的同时提高了分类精度㊂在最优特征子集下,随机森林(RF)算法分类的总体精度比极致梯度提升(XGBoost)㊁轻量级梯度提升机(LightGBM)和k最近邻算法(KNN)分别提高了1.15%㊁1.81%和15.15%,Kappa系数分别提高了1%㊁2%和17%㊂关键词㊀城市树种;无人机影像;面向对象;随机森林模型;地形特征分类号㊀S771.8UrbanTreeSpeciesClassificationbyUAVVisibleLightImageryandOBIA-RFModel//ChenXunlong,SunYim⁃ing,GuoShijie,DuanYuke,TangAnqi,YeZhangxi,ZhangHouxi(FujianAgricultureandForestryUniversity,Fuzhou350002,P.R.China)//JournalofNortheastForestryUniversity,2024,52(3):48-59.Inordertoobtaintimelyandaccuratespatialdistributioninformationofurbantreespecies,improvethelivingstand⁃ardsofurbanresidents,andpromotethesustainabledevelopmentofurbanecosystems,thisstudytakestheurbanforestinCangshanDistrict,FuzhouCityastheresearchobject.Itappliesunmannedaerialvehicles(UAVs)tomonitorthevisiblelightimagesofurbantreespeciesspatialdistributionandtheirdynamicchanges.Theimagesweresegmentedbasedontheoptimalscale,andthespectral,terrain,Index,texture,andgeometricfeaturesofthesegmentedobjectsareextracted.Differentclassificationschemeswereconstructedbycombiningdifferenttypesoffeatures,andtheoptimalfeaturesubsetwasselectedusingtherecursivefeatureelimination(RFE)method.Theurbantreespecieswereclassifiedusingtheob⁃ject⁃orientedmethodcombinedwiththerandomforest(RF)model.TheresultsshowedthatintheprocessofRFmodelclassification,theoverallclassificationaccuracyoftreespeciesusingspectralfeatureswas82.12%.Thecontributionrateofterrainfeaturestotreespeciesclassificationwas14.96%.TheintroductionofIndexfeaturesandtexturefeaturesim⁃provestheclassificationaccuracyoftreespeciestoacertainextent.Geometricfeatureshaveasmallcontributionanddonothaveasignificantcontributionintheclassificationprocess.TheS10schemeoffeatureselectionsubsethadthehighestclas⁃sificationaccuracy,withanoverallaccuracyof92.42%andaKappacoefficientof0.91.Thisindicatesthatfeatureselec⁃tioncanreducethecomplexityofhigh⁃dimensionalfeatures,whilegreatlyreducingdataredundancyandimprovingclassifi⁃cationaccuracy.Undertheoptimalfeaturesubset,theoverallaccuracyofclassificationusingtheRFalgorithmwasin⁃creasedby1.15%,1.81%,and15.15%comparedtoextremegradientboosting(XGBoost),lightgradientboostingma⁃chine(LightGBM),andk⁃nearestneighboralgorithm(KNN),respectively.TheKappacoefficientwasincreasedby1%,2%,and17%,respectively.Keywords㊀Urbantreespecies;UAVimagery;Object-based;Randomforestmodel;Terrainfeature㊀㊀城市树木作为城市的重要组成部分是评估城市生态环境的重要指标之一,具有重要的生态㊁经济和社会效益[1]㊂随着城市化进程的不断深化,城市树木的生态效益也日渐凸显㊂然而,不同种类㊁种植结构和种植区域的城市树木会产生不同的生态环境效益[2]㊂因此,及时准确地获取城市树种的类别和空间分布信息对城市规划㊁城市树木的管理与维护具有重要意义[3]㊂传统的城市树种分类主要依靠地面调查,然而该方法存在成本高㊁耗时长且难以获取大尺度数据等不足[4]㊂近年来,遥感技术飞速发展,为城市树种的准确快速识别提供了新的途径㊂然而,传统的高分辨率卫星遥感影像易受天气和环境因素干扰㊁时效性较差且费用昂贵㊂此外,免费提供的卫星遥感影像空间分辨率低,难以适用于树种层面的识别研究[5]㊂相比传统的遥感平台,近地无人机(UAV)能在较小空间尺度上提供高分辨率的遥感影像和地理数据,具有更高的适用性,是遥感数据获取的重要手段之一[6]㊂然而,目前有关树种信息提取的无人机遥感研究多集中于多光谱㊁高光谱影像的分类领域,但由于搭载多光谱㊁高光谱传感器的无人机普遍价格昂贵,极大地限制了其在实际生产中的推广应用㊂随着数码技术的发展,通过搭载可见光传感器的无人机获取包含树种信息的遥感影像,具有获取方便㊁成本低㊁空间分辨率高等优点,已成为遥感影像识别树种研究方向上重要的数据源之一[7]㊂根据遥感影像分类单元的不同,可将分类方法归为基于像元和面向对象两类㊂基于像元的方法主要关注局部像素的光谱信息,在处理高分辨率遥感影像时对噪声比较敏感㊁稳健性差,极易出现错分㊁漏分现象[8]㊂为弥补基于像元方法的不足,面向对象的影像分析技术(OBIA)逐渐被用于处理高分辨率遥感影像[9]㊂OBIA方法综合考虑区域相邻像素的纹理㊁形态以及空间结构等多维特征,减少了 椒盐噪声 的同时,通常具有更高的准确率[10]㊂然而,随着特征维数的增加,数据处理的难度呈几何倍数增长,使得传统分类算法的应用受到一定限制㊂随机森林(RF)是一种基于集成学习思想集成多颗决策树的机器学习算法,通过对样本的决策树建模以及组合多棵决策树的预测,最终由分类树投票决定数据的分类[11]㊂随机森林算法不仅具有模型简单㊁分类精度更高㊁校正参数更少的特点,而且鲁棒性强,不易过拟合,在遥感领域高维特征分类中得到广泛应用[12]㊂面向对象方法可以有效减少 同物异谱 现象,而随机森林算法在处理高维数据时有其独特的性能优势,二者的结合在一定程度上提高了分类精度㊂宗影等[13]将面向对象方法和随机森林算法的有机结合,有效提高了滨海湿地植被的分类精度,总体精度达87.07%;赵士肄等[14]将面向对象方法和随机森林算法应用于耕地领域,并与其他机器学习分类算法进行对比验证,结果表明基于面向对象的随机森林模型取得了最高的耕地提取精度,并减弱了 椒盐 噪声,优化了分类结果;耿仁方等[15]研究结果表明,基于面向对象结合随机森林算法对岩溶湿地植被具有较高的识别能力,在95%置信区间内的总体精度为86.75%㊂虽然该方法的研究已经取得了一定的成功,但不同类型的特征对城市树种信息提取效果的影响尚不明确㊂因此,面向对象结合随机森林的方法对于城市树种分类的效果有待进一步探讨㊂此外,目前主流的数据源是大尺度的卫星影像和航空影像,或者是特征信息更加丰富的多光谱和激光雷达影像,而消费级无人机可见光影像在城市树种的精细分类方面还鲜有报道㊂因此,本文以福州市仓山区无人机可见光影像为研究对象,基于OBIA-RF模型,通过特征优选,构建最佳子集并比较不同机器学习算法的分类精度,并分析不同特征对城市树种分类的影响,构建该研究区城市行道树的最佳特征子集,比较不同分类算法对城市树种的分类效果,进一步评估OBIA-RF模型的分类性能和适用性,为城市生态系统保护及生态环境治理提供技术支持㊂1㊀研究区概况研究区位于福建省福州市仓山区(见图1),该区域属于南亚热带海洋性季风气候温暖湿润,冬季无严寒,夏季无酷暑㊂年日照时间1700 1980h,年降水量900 2100mm,气温20 25ħ㊂福州市仓山区典型树种包括白兰(Michelia✕alba)㊁荔枝(Li⁃tchichinensis)㊁芒果(Mangiferaindica)㊁南洋楹(Fal⁃catariafalcata)㊁榕树(Ficusmicrocarpa)㊁棕榈(Tra⁃chycarpusfortunei)㊁樟(Cinnamomumcamphora)等㊂研究区地势平坦,自然环境相对复杂,具备城市的基本特征,对研究城市树种分类具有一定的代表性㊂2㊀研究方法2.1㊀无人机数据采集与预处理实验数据于2020年2月8日采集,采用搭载FC6310S可见光镜头的大疆精灵4Pro(DJIPhantom4Pro)无人机进行航拍获取研究区影像,为削弱阴影对分类过程的干扰,选择天气状况良好无风有云的时间段进行作业㊂飞行相关参数设置如下:航高设置为60m,航向与旁向重叠率均为70%,镜头角度-90ʎ,光圈值f/5,曝光时间1/200s,IOS速度为IOS-400㊂本次飞行共获得450张航拍影像,照片分辨率为5472ˑ3078㊂通过瑞士Pix4Dmapper专业摄影测量软件对所采集的原始数据进行空中三角测量㊁点云重建㊁裁切以及镶嵌等操作,得到研究区的正射影像(DOM)和数字地表模型(DSM)㊂为了精确获得研究区的道路信息,采用天地图在线矢量影像作为辅助信息,并通过手绘的方式提取道路矢量数据㊂根据实际调查情况,利用缓冲分析,将缓冲距离设置为5m,得到了行道树的矢量分布图,然后,将矢量布图与原始影像叠加,最终裁剪出了研究区影像㊂2.2㊀地形特征提取归一化数字表面模型(nDSM)是一种反映地物绝对高度的高程模型[16],可为地物判别提供可靠依94第3期㊀㊀㊀㊀㊀㊀㊀陈逊龙,等:应用无人机可见光影像和面向对象的随机森林模型对城市树种分类据㊂使用ArcMap10.2软件进行地形特征提取㊂首先,通过人工目视解译方法从DSM中选取950个地面点,并批量提取栅格的高程信息,其中100个样本点的高程数据用以验证精度㊂其次采用插值的方法生成数字高程模型(DEM)㊂为获取更加精确的地面高程信息,比较常见的插值方法(克里金插值法㊁反距离权重法㊁样条插值法以及自然邻域法)生成的数字高程模型(DEM),以均方根误差㊁平均绝对值误差和决定系数(R2)作为评分指标(见表1)㊂4种插值方法均可得到较高精度的DEM数据,综合考虑决定系数(R2)㊁平均绝对值误差以及均方根误差,最终确定采用克里金插值法生成连续的DEM数据㊂最后,根据已生成的DEM数据,利用Arc⁃Map10.2软件中的栅格计算器,将DSM数据与DEM数据相减得到nDSM数据[17]㊂图1㊀研究区概况图表1㊀不同插值方法精度评价方㊀法决定系数(R2)平均绝对值误差均方根误差克里金插值法0.990.070.04反距离权重法0.990.080.04样条插值法0.990.080.05自然邻域法0.990.070.042.3㊀最佳分割尺度确定影像分割是面向对象方法中至关重要的初始环节,分割结果将直接影响分类精度[18]㊂本研究采用尺度参数评价工具(ESP2),结合目视解译的方法确定最佳分割尺度,所有图像分割过程均在eCogni⁃tion9.0Developer9.0软件完成㊂ESP2是用以评价不同尺度影像整体最大差异性的工具,通过计算整体局部方差均值随尺度变化率评估不同地物所对应的最佳尺度参数[19]㊂而ESP2计算出的尺度参数往往是多个值,需要结合人工目视才能确定最佳分割尺度㊂形状参数和紧致度参数是准确表示不同树种轮廓,使得对象内部同质性高的关键㊂综合考虑无人机影像的特点以及影像对象形状和紧致度因子的相互关系,将形状参数设置为0.5,紧致度参数设置为0.3㊂其他必要参数为:各波段的权重值设置为1㊁起始分割尺度为40㊁分割步长为1㊁迭代80次㊂随着尺度的增大,局部方差均值整体呈现上升的趋势,而尺度变化率呈现下降的趋势(见图2)㊂为了获得图像的过分割和欠分割之间的临界值,选取尺度变化率峰值为51㊁57㊁76㊁80㊁89㊁104㊁109和118作为相对最佳分割尺度参数,采用多尺度分割算法得到分割结果(见图3)㊂当分割尺度参数设置较大(分割尺度参数大于104)时,白兰㊁榕树和背景多处05㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀东㊀北㊀林㊀业㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第52卷被划分为同一个对象,不同树种存在混淆现象难以被区分㊂当分割尺度参数设置较小(分割尺度小于76)时,不同地物内部出现了过分割现象,增加了数据冗余㊂当分割尺度参数设置76 89时,植被与背景区分相对明显,不同的树种之间能够被分割成独立的对象,整体分割效果较为理想㊂权衡分割效果与实际情况的吻合度,最终确定研究区无人机影像最佳分割尺度参数为76,并利用该分割尺度参数进行城市行道树提取㊂图2㊀ESP2最佳分割尺度估计图图3㊀不同尺度参数分割效果图2.4㊀对象光谱特征提取光谱特征是遥感影像的重要特征之一,地物通常具有不同的光谱特征,因此根据可见光影像中的地物光谱信息的差异可以用来区分不同的地物类型[20]㊂植被指数利用植被在不同波段下反射和吸收的特性,增强植被信息的同时使非植被信息最小化[21],被广泛应用于林业病虫害防治㊁农作物生长量估计㊁生态环境监测等领域[22]㊂在遥感图像中,不同地物通常具有复杂程度不同的边缘特征,因此,形状特征可以作为快速准确识别地物类型的有效手段[23]㊂纹理特征是遥感影像的底层特征,不受图像亮度的影响,能够综合反映像素的灰度分布和结构信息,利用纹理特征可以有效弥补可见光影像光谱信息的不足[6]㊂在面向对象的分类过程中,结合纹理特征对于提升分类精度效果显著[24]㊂地形特征能真实反映不同地物的高程信息,在影像分类过程中对于区分不同类型的地物具有重要意义㊂因此,本研究共选取光谱㊁指数㊁纹理㊁几何以及地形5大特征,剔除无效特征筛选出40个子特征,具体如下:(1)光谱特征(SPEC):主要包括:红色(R)波段的像元亮度的均值(MR)㊁绿色(G)波段的像元亮度的均值(MG)㊁蓝色(B)波段像元亮度的均值(MB)㊁最大差异值(Md)㊁亮度值(Br)㊂(2)指数特征(INDE):包括植被颜色指数(ICIVE)㊁可见光波段差异植被指数(IVDVI)㊁联合指数2(ICOM2)㊁超绿指数(IEXG)㊁超绿超红差分指数(IEXGR)㊁植被指数(IVGE)㊁归一化红绿差异指数(INGRDI)以及归一化绿蓝差异指数(INGBDI)(见表2)㊂(3)几何特征(GEOM):包括面积㊁边界长㊁宽度㊁长度㊁不对称性㊁长宽比㊁边界指数㊁圆度㊁像素个数㊁紧致度㊁体积㊁密度㊁椭圆拟合㊁主方向㊁形状指数㊁最大封闭椭圆半径㊁最小封闭椭圆半径以及矩形拟合㊂15第3期㊀㊀㊀㊀㊀㊀㊀陈逊龙,等:应用无人机可见光影像和面向对象的随机森林模型对城市树种分类(4)纹理特征(GLCM):基于灰度共生矩阵(GLCM)提取影像的纹理特征,包括对比度(TCON)㊁相关性(TCOR)㊁相异性(TDIS)㊁熵(TENT)㊁同质度(THOM)㊁均值(TMEA)㊁角二阶矩(TASM)和标准差(TSD)等特征值[6](见表3)㊂(5)地形特征:归一化数字表面模型(nDSM)㊂表2㊀植被指数及表达式指数特征公㊀式归一化红绿差异指数(INGRDI)[25]INGRDI=(MG-MR)/(MG+MR)归一化绿蓝差异指数(INGBDI)[26]INGBDI=(MG-MB)/(MG+MR)超绿指数(IEXG)[27]IEXG=2MG-MB-MR超绿超红差分指数(IEXGR)[28]IEXGR=MG-MB-2.4MR可见光波段差异植被指数(IVDVI)[21]IVDVI=(2MG-MR-MB)/(2MG+MR+MB)植被颜色指数(ICIVE)[29]ICIVE=0.44MR-0.88MG-0.39MB+18.79植被指数(IVGE)[30]IVGE=MG/MaRM1-aB,a=0.667联合指数2(ICOM2)[31]ICOM2=0.36IEXG+0.47ICIVE+0.17IVGE㊀㊀注:MR㊁MG㊁MB分别为红㊁绿㊁蓝波段像元亮度的均值㊂表3㊀纹理特征及表达式纹理指标公㊀式角二阶矩(TASM)TASM=ðNgi=0ðNgj=0p(i,j)2对比度(TCON)TCON=ðNgi=0ðNgj=0p(i,j)ˑ(i-j)2相关性(TCOR)TCOR=ðNgi=0ðNgj=0((i-ux)ˑ(j-uy)ˑp(i,j)2)/σxσy相异性(TDIS)TDIS=ðNgi=0ðNgj=0p(i,j)ˑ|i-j|熵(TENT)TENT=ðNgi=0ðNgj=0p(i,j)ˑlnp(i,j)同质度(THOM)THOM=ðNgi=0ðNgj=0p(i,j)ˑ(1/(1+(i+j)2))均值(TMEA)TMEA=ðNgi=0ðNgj=0p(i,j)ˑi标准差(TSD)TSD=ðNgi=0ðNgj=0p(i,j)ˑ(i-ux)2㊀㊀注:其中i,j是像元在图像中的行列坐标,p(i,j)为像素对的频数,Ng为灰度级数,ux㊁σx分别为px的均值和标准差,uy㊁σy分别为py的均值和标准差㊂2.5㊀试验样本选取本实验通过实地调查获取样本数据㊂调查者沿着研究区的主要道路记录了绿化树种,并排除了数量较少或被其他冠层遮挡的树种,最终确定了7类树种(白兰(Michelia✕alba)㊁荔枝(Litchichinensis)㊁芒果(Mangiferaindica)㊁南洋楹(Falcatariafalca⁃ta)㊁榕树(Ficusmicrocarpa)㊁棕榈(Trachycarpusfor⁃tunei)㊁樟(Cinnamomumcamphora))以及草地㊁灌木作为研究对象㊂根据遥感影像中不同地物类型的分布位置与大致面积比例,共选取了1100个样本点㊂为了避免较小的样本数量影响模型分类精度,将最小样本数量设置为60㊂采用Scikit-learn中内置的train_test_split函数进行分层抽样,按7:3的比例将数据划分为训练集和测试集(见表4),使各类别样本点数量大致与该类别的总面积成比例㊂训练集用于构建分类模型,测试集用于验证分类精度㊂表4㊀训练和验证样本地物总样本数训练样本数测试样本数白兰20014060草地503515灌木503515荔枝1409842芒果20014060南洋楹1208436榕树1409842棕榈604218樟1208436总计11007703302.6㊀分类模型与参数优化2.6.1㊀随机森林算法随机森林算法(RF)是一种通过集成学习的装袋思想将多棵决策树集合起来的算法,每棵决策树都充当预测目标类别的分类器㊂随机森林模型在样本数据和分类特征选择方面具有随机性,不容易过拟合,并且表现出良好的稳健性,即使在处理具有缺失值的高维数据时,仍能保持较高的分类精度㊂因此,它被认为是当今最好的算法之一[32]㊂目前,随机森林算法已经广泛集成在各种软件包中,使用Stata数据管理统计绘图软件㊁R语言统计软件可以轻松实现㊂在模型构造的过程中,通常只需要确定每个树节点包含的特征数量(M)以及决策树数量(N),就足以保证模型的性能[33]㊂本文采取递归特征消除法(RFE)[34]结合交叉验证(Cross-Validation)确定最佳特征数(见图4)㊂随着特征维数的增加,整体分类精度曲线经历 几何增长 ㊁ 缓慢上升 这个两个阶段后趋于平稳㊂当特征数为20时,各分类精度曲线均处于相对最高点,因此最终将特征数量的参数设置为20㊂在使用装袋方法生成训练集的过程中,随机森林算法会导致原始数据集中大约37%的数据未被抽到,这部分数据被称为袋外(OOB)数据㊂利用袋外数据对随机森林模型进行评估是一种无偏估计方法,且在一定程度上能减少计算量,提高算法的运行效率[35]㊂因此,本文采取遍历不同数量(1 1000)决策树的方法,通过比较袋外误差的大小,确定最佳的决策树数量(见图5)㊂当决策树数量小于85时,不同子集的袋外数据误差均随着决策树数量的增加而急剧下降,而后随着决策树数量的增加袋外数据误差的下降速度逐渐迟缓,当决策树数量为200时,袋外数据误差处于相对最低点㊂因此,选择决策树25㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀东㊀北㊀林㊀业㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第52卷的最佳数量为200㊂图4㊀模型分类精度与特征数的关系曲线图5㊀袋外误差与决策树数量的关系曲线2.6.2㊀其他分类模型为充分探索随机森林算法对城市树种信息提取的适用性,引入当下流行的机器学习算法作为对照,包括极致梯度提升(XGBoost)㊁轻量级梯度提升机(LightGBM)以及k最近邻算法(KNN)㊂XGBoost是一种基于增强学习(Boosting)的集成算法,它通过在梯度下降方向上将弱分类器集成到强分类器中,并迭代生成新树以拟合先前树的残差㊂XGBoost能够自动利用中央处理器(CPU)的多线程进行分布式学习和多核计算,在保证分类准确度的前提下提高计算效率,尤其适用于处理大规模数据[36-37]㊂LightGBM也属于增强学习方法,基本原理与XG⁃Boost相似㊂但LightGBM使用基于直方图的决策树算法来减少存储与计算成本,并优化模型训练速度[38]㊂KNN算法是一种近似自变量与连续结果之间的关系的非参数方法[39],其基本思路是通过计算待分类样本与临近样本的距离(欧氏距离㊁曼哈顿距离)来确定所属类别,是一种简单而有效的分类算法㊂为了防止过拟合,本研究在JupyterNotebook平台上利用Scikit-learn库中的GridSearchCV包对这3种分类器参数进行了调优(见表5)㊂表5㊀不同分类器的超参数分类器参㊀数参数取值范围极致梯度提升(XGBoost)决策树数量[50,100,150,200]最大树深度[3,5,7,9]学习率[0.01,0.05,0.10]样本抽样率[0.6,0.8,1.0]特征抽样率[0.6,0.8,1.0]轻量级梯度提升机(LightGBM)学习率[0.01,0.05,0.10]决策树数量[50,100,150,200]叶子节点数[10,20,30,40]最大树深度[3,5,7,9]k最近邻算法(KNN)近邻数[1,2,3,4,5,6,7,8,9,10]2.7㊀试验方案构建不同树种之间单一特征的差异有限,难以满足树种分类的要求㊂因此,本研究采取增加特征数量的方式来提高分类精度,并探究不同特征组合对分类结果的影响(见表6)㊂表6㊀研究区各地物特征值地物特征不同地物的特征值草地灌木白兰荔枝芒果南洋楹榕树棕榈樟面积6859.673636.732928.797194.057200.108688.483457.752263.137325.01不对称性0.550.430.440.430.450.420.480.560.45边界指数1.741.462.011.971.991.842.062.191.79边界长578.70340.20431.95650.41669.29670.73488.16408.63601.00亮度值83.1078.79115.6974.0977.2081.1571.6396.8763.83植被颜色指数-29.14-33.17-47.78-21.15-18.89-21.62-29.96-17.74-20.18联合指数214.1116.2520.1911.7410.7511.6015.279.2511.82紧致度1.851.631.871.911.861.802.002.361.85密度2.032.102.042.102.102.161.971.822.09超绿指数76.6087.77117.8159.6253.9359.8280.8348.3158.52超绿超红差分指数-215.56-204.06-304.33-194.88-204.07-199.54-168.32-273.24-155.97椭圆拟合0.680.750.630.670.670.710.590.500.68角二阶矩000000000对比度556.77786.24877.55597.29614.12770.77714.25765.51514.11相关性0.870.820.820.880.880.840.850.860.90相异性17.1319.0521.6618.1218.6820.2819.7219.6216.64熵8.798.668.909.149.189.198.948.699.07同质度0.060.060.050.050.050.050.050.050.06均值127.03126.07125.67126.81126.68126.73126.23125.97126.8835第3期㊀㊀㊀㊀㊀㊀㊀陈逊龙,等:应用无人机可见光影像和面向对象的随机森林模型对城市树种分类续(表6)地物特征不同地物的特征值草地灌木白兰荔枝芒果南洋楹榕树棕榈樟标准差34.1734.6536.2336.4036.2335.7636.4037.6636.32长度143.4591.1085.96136.33136.90144.38100.0389.62138.31长宽比1.811.741.521.551.551.511.621.781.61主方向113.61130.6395.3296.5294.5694.5591.4883.5681.45最大差异值1.641.691.531.471.361.201.501.341.46蓝色(B)波段像元亮度的均值84.4766.8094.6274.2079.0881.7263.64105.5364.38绿色(G)波段像元亮度的均值136.22133.75189.36116.28116.90120.40118.79141.29101.72红色(R)波段像元亮度的均值111.38112.92166.2898.74100.7999.2693.11128.7580.55归一化数字表面模型0.321.7012.517.1612.0423.2010.9611.938.67归一化绿蓝差异指数0.210.270.270.200.170.180.260.130.21归一化红绿差异指数0.100.090.070.080.070.100.130.050.12像素个数6859.673636.732928.797194.057200.108688.483457.752263.137325.01最大封闭椭圆半径0.580.720.490.560.540.610.450.380.59最小封闭椭圆半径1.451.391.441.491.451.431.511.631.45矩形拟合0.820.860.800.820.820.830.780.740.82圆度0.860.670.950.930.920.821.061.250.86形状指数1.841.552.092.042.061.902.162.321.86可见光波段差异植被指数0.170.200.190.150.130.140.210.090.17植被指数1.361.431.381.301.261.301.461.181.37体积6859.673636.732928.797194.057200.108688.483457.752263.137325.01宽度80.7852.7558.0390.8190.4997.8862.9651.4688.94㊀㊀根据优选特征贡献率(见表7),将所选取的5大特征组合形成了10种试验方案(S1 S10)㊂光谱特征作为每幅遥感影像的基本特征,作为基础被纳入到这10种方案的构建中㊂其中,S1仅包含光谱特征;为了全面探究其他特征对分类结果的影响,在S1基础上引入了地形㊁指数㊁纹理等3个总体特征贡献率较高的特征,通过遍历这3个特征的各种组合得到了S2 S8;S9包含了所有的特征;根据20个优选特征组合建立S10,具体的分类方案见表8㊂表7㊀优选特征重要性优选特征重要性/%归一化数字表面模型14.96最大差异值12.41联合指数25.57植被颜色指数5.42绿色(G)波段像元亮度的均值4.84归一化绿蓝差异指数4.67超绿指数4.58亮度值4.36可见光波段差异植被指数3.42植被指数3.26红色(R)波段像元亮度的均值3.05角二阶矩2.90蓝色(B)波段像元亮度的均值2.86超绿超红差分指数2.78标准差2.25归一化红绿差异指数2.23熵2.03相关性1.97均值1.41边界指数1.28表8㊀分类方案方案特征子集特征数量S1光谱5S2光谱+地形6S3光谱+指数13S4光谱+纹理13S5光谱+地形+指数14S6光谱+地形+纹理14S7光谱+指数+纹理21S8光谱+地形+指数+纹理22S9光谱+地形+指数+纹理+几何40S10优选特征202.8㊀精度评价本文根据混淆矩阵对模型的分类精度进行定量评价㊂混淆矩阵也称为误差矩阵,是遥感影像二分类问题上的一种评价方法,反映了分类结果与真实地物类别之间的相关性[40]㊂混淆矩阵的评价指标包括总体精度(OA)㊁Kappa系数(Kp)㊁生产者精度(PA)以及用户精度(UA)㊂其中,总体精度指正确分类样本与总体样本的比值;生产者精度指分类结果与参考分类相符合的程度;用户精度指样本分类正确的可能性;Kappa系数是用于检验遥感影像分类结果的一致性,也可以用以均衡分类效果[41]㊂各指标计算公式如下:㊀㊀㊀㊀㊀OA=ðni=1xiiN;㊀㊀㊀㊀㊀Kp=Nðni=1xii-ðni=1xi+x+iN2-ðni=1xi+x+i;45㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀东㊀北㊀林㊀业㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第52卷㊀㊀㊀㊀㊀PA=xii/x+i;㊀㊀㊀㊀㊀UA=xii/xi+㊂式中:N为参与评价的样本总数;n为混淆矩阵的行列数;xii为混淆矩阵第i行㊁第i列上的样本数;xi+和x+i分别为第i行和第i列的样本总数㊂3㊀结果与分析3.1㊀随机森林算法的不同分类方案精度由表9可知,随着不同特征类型数量的增加,总体分类精度和kappa系数整体呈上升趋势㊂其中,仅利用光谱特征作为分类依据的方案S1精度最低,总体精度和kappa系数分别为82.12%和0.79,说明光谱特征是遥感影像最重要的特征之一,但仅利用光谱特征难以达到所需的分类精度㊂方案S2 S4是在S1的基础上分别加上地形㊁指数和纹理特征,相比方案S1,这3个方案的总体分类精度分别提高了5.15%㊁4.55%㊁1.82%,kappa系数分别提高了0.06㊁0.06㊁0.03㊂在分类过程中,地形特征相较于指数和纹理特征扮演着更重要的角色,大幅提高了分类精度㊂方案S5 S7是在光谱特征的基础上加入地形㊁指数和纹理特征的两两组合,旨在研究它们之间的相互作用对分类精度的影响㊂整体而言,与S2 S4相比,这3个方案的总体分类精度呈上升趋势㊂其中,S6具有最高的总体精度和kappa系数,分别达到90%和0.88;其次是S7,和S1相比,总体精度和kappa系数分别提高了7.27%和0.09;而S5总体精度和kappa系数只增长了6.36%和0.08㊂表明地形与指数特征交互作用在分类过程中提供了更大的贡献度㊂方案S8是由特征重要性靠前的光谱㊁地形㊁指数以及纹理特征构成㊂与包含所有特征的方案S9相比,S8反而具有更高的总体分类精度和kappa系数,分别达到92.12%和0.91㊂表明几何特征对分类精度具有负向影响,它的加入降低了分类精度㊂方案S10由优选特征组成,其获得了所有子集中最高的分类精度和kappa系数,分别为92.42%和0.91㊂与S9相比,分类精度提高了0.60%㊂说明特征优选方法能消除高维复杂特征间的信息冗余,使模型仅利用较少特征数量并获得更高的运行效率和分类精度㊂表9㊀不同分类方案分类精度方案总体精度/%Kappa系数方案总体精度/%Kappa系数S182.120.79S690.000.88S287.270.85S789.390.88S386.670.85S892.120.91S483.940.82S991.820.91S588.480.87S1092.420.91㊀㊀由表10可知,虽然S1方案的用户精度与生产者精度整体上处于最低水平,但棕榈树的用户精度达到了100%,表明棕榈与其他树种存在明显的光谱差异㊂方案S2加入地形指数后,各类地物的用户精度与生产者精度相比S1都有不同程度的提高,用户精度提升幅度1.88% 8.18%,生产者精度提升幅度2.78% 11.11%,因为地形特征的加入更好的反映了不同地物之间的空间关系,从而大幅提高了分类精度㊂方案S3在S1的基础上加入了指数特征,荔枝㊁榕树以及樟的用户精度分别提升了10.95%㊁9.18%和8.72%,说明植被指数对荔枝㊁榕树以及樟分类效果显著,但对于其他树种的区分能力有限㊂方案S4加入纹理特征,芒果和樟的用户精度提升了8.85%和9.00%,而棕榈和榕树的生产者精度分别提升了22.22%和11.9%,说明这些树种的纹理结构特异性强与其他地物的差异显著,因此纹理特征的加入对分类精度有正向影响㊂方案S5与S2相比,荔枝和榕树的用户精度提升了7.05%和5.12%,而草地的精度下降了5.88%;与S3相比,灌木的用户精度提升了4.47%㊂总体而言,地形特征与指数特征的组合对分类精度的提升不显著,并且在某些树种的分类上精度出现不同程度的下降,说明这二者的组合产生了冗余信息影响了分类精度㊂方案S6与S2相比,芒果与樟的用户精度分别提升了6.44%和7.66%,而棕榈树和榕树的生产者精度分别提升了27.78%和11.90%,这个结果与方案S4类似,说明地形特征和纹理特征的组合与树种的分类精度呈正相关㊂方案S7与S6相比,除个别树种外,整体精度出现了不同程度的降低,波动范围为-6.21% 4.04%㊂然而,与方案S5相比,总体分类精度有一定的提升,波动范围是-0.58% 7.55%㊂方案S8与表现最好的方案S7相比,荔枝和榕树的总体分类精度分别提升了9.42%和6.67%,其他树种的总体分类精度保持稳定,这表明高维度的特征组合带来了更多的信息,在一定程度上提高了分类精度㊂综合所有特征的方案S9与S8相比,总体分类精度呈现出不升反降的现象,波动范围为-10.23% 4.74%,说明高纬度的特征产生了冗余信息,影响了随机森林模型的分类性能㊂优选特征子集S10与S9相比,总体分类精度有所提升,其中灌木㊁草地以及荔枝的用户精度分别提升了10.23%㊁5.88%和3.55%㊂由此可见,特征优选通过对高维数据集的降维和优化,使模型仅利用较少的特征仍能保证良好的分类效果㊂3.2㊀应用优选特征子集对不同分类模型的精度评价由表11可知,随机森林模型的分类精度最高,总体精度为92.42%,比k最近邻算法(KNN)㊁极致55第3期㊀㊀㊀㊀㊀㊀㊀陈逊龙,等:应用无人机可见光影像和面向对象的随机森林模型对城市树种分类。

丰达3A级旅游景区汇报材料

丰达3A级旅游景区汇报材料

福建省闽清丰达生态农业大观园景区评定“三星乡村旅游”经营单位验收汇报一、景区整体概况:福建省闽清丰达生态农业大观园有限公司是从个体农户——创办于1983年的闽清丰达第一农场发展而来,位于闽清县上莲乡山头自然村.2005年6月成立福建省闽清丰达生态农业大观园有限公司,注册资金800万元。

目前,园区有名优果树、林木种植,家禽畜饲养、渔业养殖和乡村游宾馆综合区;开展农业观光旅游与科研教育相结合,与外地进行乡村旅游建设交流,为观光园的中长期发展引进了先进的农业技术和注入了新的经营管理理念;为了丰富和发展乡村游旅资源,引进名优农业新品种,拓展旅游项目,形成了以绿色生态的种植业、养殖业和森林资源为依托,以采摘、骑马、登山、烧烤、垂钓、野菜特色餐饮、挖笋、棋牌等诸多休闲旅游项目于一体的综合性生态农业观光园.观光园现有固定职工53人,其中农技员4人.观光园经营面积达6050多亩,其中菌草(牧草)600亩,芦柑160亩,美国脐橙150亩,意大利血橙200亩,台湾百香果500亩,台湾青花梨160亩,台湾摩天岭甜柿150亩,台湾红(黄)心葡萄柚100亩,东魁杨梅180亩,黄甜笋500亩,马尾松249亩,杉树120亩,毛竹536亩,阔叶林193亩,高氧桉树631亩,杉木1388亩,森林面积达3117亩(有林权证),各种绿化树苗共22520棵;新建鱼塘90亩,水库一座,长600米,宽60米,库容量10万立方米,每年放养有草鱼、红鲢鱼、鲤鱼、斑点鱼、鳊鱼、鲟鱼等名特优鱼十三万多尾;公司现有宾馆二座建筑面积达2600平方米,有完善的停车场,公共厕所等设施。

现可年接待游客5万多人次,2011年公司总收入上千万元.近年来,我公司以建设绿色、生态型旅游农业观光园为宗旨,建立立体农业生态循环系统,以养鸡、鸭、兔、羊的粪便作为果树的肥料,提高水果的营养价值;引进了捕食螨(天敌虫)进行防治虫害,达到生物防治的目的,应用物理技术用光控诱虫灯来诱杀多种害虫,保证水果绿色高产和优质;引进以色列的先进灌溉技术,保证果园果树的正常生长.公司从1998年以来被福州市列为“农业产业化重点基地"、“农业星火计划示范基地”、“海峡西岸农业示范点”、“福建省农科教示范基地",“福建农林大学、福建省农业职业技术学院学生教育实践基地”、“福建省新农村科普示范基地".发明了“底盘营养土果树育苗法”、“病树拨除装置"、“吸沼液车”、“大田藤本植物恒温嫁接装置”和“水处理沉淀过滤器”等专利。

农科教基地实施方案

农科教基地实施方案

农科教基地实施方案一、背景介绍。

农科教基地是指为了促进农业科技创新、推动农业教育发展、服务乡村振兴战略而建设的实训和科研基地。

在当前农业现代化发展的大背景下,建设农科教基地对于提高农业生产效率、培养农业人才、推动农业科技创新具有重要意义。

二、建设目标。

1. 提升农业科技水平,通过农科教基地的建设,推广先进的农业生产技术和管理经验,提高农民科技素养,促进农业科技的广泛应用。

2. 培养农业人才,通过农科教基地的实施,为农业院校学生提供实践机会,培养一批懂农业、爱农业、能发展农业的复合型人才。

3. 服务乡村振兴,农科教基地将成为农民学习、交流、展示的平台,为乡村振兴提供科技支撑和人才支持。

三、建设内容。

1. 基地选址,选择交通便利、水土资源丰富、气候适宜的地区作为农科教基地的选址。

2. 建设规模,根据实际需求,确定农科教基地的建设规模,包括实训场地、科研实验室、示范田地等。

3. 设施建设,建设实训教室、多功能会议室、农业科技展示馆等设施,为学生和农民提供学习和交流的场所。

4. 科研项目,开展农业科技研究项目,推动农业科技成果的转化和应用。

5. 师资队伍,建设专业的教师团队,为学生和农民提供专业的培训和指导。

四、实施步骤。

1. 确定规划方案,制定农科教基地的详细规划方案,包括选址、建设内容、投资预算等。

2. 筹集资金,通过政府支持、社会捐赠、合作办学等方式筹集建设资金。

3. 开展建设,按照规划方案,逐步开展农科教基地的建设工作,确保建设质量和进度。

4. 招募师资队伍,通过公开招聘、引进人才等方式,组建农科教基地的师资队伍。

5. 开展培训和实践,开展农业技术培训、科研实践等活动,为学生和农民提供学习和实践机会。

五、保障措施。

1. 政策支持,争取政府各项扶持政策,为农科教基地的建设和发展提供政策保障。

2. 资金保障,建立健全的资金管理制度,确保农科教基地的资金使用合理、透明。

3. 师资保障,加强师资队伍建设,提高教师的教学和科研水平。

福建农林大学研究生教育管理系统

福建农林大学研究生教育管理系统

福建农林大学研究生教育管理系统福建农林大学研究生教育管理系统是一种基于现代信息技术的教育管理工具。

该系统旨在提供全面的教育服务,方便研究生的学习和生活,促进教学和科研的高效运作。

本文将从系统的设计背景、功能模块、特点和应用效果等方面详细介绍福建农林大学研究生教育管理系统。

福建农林大学研究生教育管理系统的设计背景是为了满足高校研究生教育管理的需求。

随着我国高等教育的迅速发展,研究生教育在高等教育体系中占据重要地位。

研究生教育具有专业性强、知识深度高等特点,因此需要一个专门的管理系统来提供个性化、便捷的服务。

福建农林大学研究生教育管理系统的功能模块包括学籍管理、课程管理、导师管理、科研管理、学位管理、学业指导、就业服务等。

学籍管理模块主要包括学生信息的录入、修改和查询,以及学籍变更的申请和审核等功能。

课程管理模块可以帮助学生选课、查询课程信息、统计学分等。

导师管理模块提供导师信息的管理、学生指导记录的管理等功能。

科研管理模块可以帮助学生上传和下载科研文档、管理科研项目等。

学位管理模块主要包括学位申请和学位评定等功能。

学业指导模块可以提供学生论文选题、撰写和答辩等服务。

就业服务模块可以提供就业信息发布、就业指导等功能。

福建农林大学研究生教育管理系统的特点包括智能化、个性化、网络化和安全性等。

系统具有智能化特点,可以根据学生的需求提供相应的服务,如个性化选课推荐、学业指导建议等。

系统支持网络化操作,学生可以通过网络随时随地访问系统,进行相关操作。

系统具有一定的安全性,只有授权人员才能访问和修改系统数据。

福建农林大学研究生教育管理系统的应用效果主要体现在教学管理的规范化和便捷化,以及学生学习和生活的便利性。

系统通过优化教学管理流程,提高了教育管理的效率和精确度,减少了人工操作的出错率。

学生可以通过系统方便地查询课程信息、教师信息、科研文献等,提高了学习效率。

系统还可以提供个性化的学业指导和就业服务,帮助学生更好地规划未来发展。

福建农林大学科技计划项目经费管理办法(试行)-福建农林大学动物

福建农林大学科技计划项目经费管理办法(试行)-福建农林大学动物

福建农林大学科技计划项目经费管理办法(试行)第一章总则第一条为了进一步加强和规范学校科技计划项目(即纵向项目)经费的管理,完善内部控制和监督制约机制,保障资金安全和使用效益,依据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发…2014‟11号)、《财政部、科技部关于调整国家科技计划和公益性行业科研专项经费管理办法若干规定的通知》(财教【2011】434号)和《教育部关于进一步加强高校科研项目管理的意见》(教技【2012】14号)等有关国家(部委)科技经费管理办法,结合学校实际,特制定本管理办法。

第二条本办法适用于列入学校科技计划管理的,经费来源于省直各厅局及以上政府部门且以科技计划形式批准立项并拨付(或由主持单位转拨)的财政性经费、国际科技合作中与国外政府和学术机构间的合作项目经费以及学校批准立项的校拨各类科技项目经费等纵向科技计划项目经费。

第三条本办法适用的各类科技计划项目经费,均应全部纳入学校财务统一管理,单独核算,专款专用,接受学校及上级财政、审计部门的监督和检查。

第二章经费开支范围第四条科技计划项目经费支出分为直接费用和间接费用。

(一)直接费用是指在项目研究开发过程中发生的与之直接相关的费用,主要包括设备费、材料费、测试化验加工费、燃料动力费、差旅费、会议费、国际合作与交流费、出版/文献/信息传播/知识产权事务费、劳务费、专家咨询费和其他支出等。

1. 设备费:指在项目研究开发过程中购臵或试制专用仪器设备,对现有仪器设备进行升级改造,租赁外单位仪器设备而发生的费用,以及为此发生的运输、包装、装卸和零星土建的费用。

其中从国外引进的仪器、设备、样品、样机的购臵费包括海关关税和运输保险费用。

2. 材料费:指进行项目研究、开发、试验所需的动(植)物的购臵、种植和养殖费;标本、样品的采集加工费;辅助材料、低值易耗品和零配件的购臵费用,以及为此发生的运杂包装费用。

3. 测试化验加工费:指研究、开发项目带料外加工或因本单位不具备条件而委托外单位(包括单位内部独立经济核算单位)协作进行试验、加工、测试、计算和分析等发生的费用,以及项目研究、开发、试验而租赁的场地、实验基地等所发生的费用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建农林大学校外科教基地简介
一、尤溪洋中科教基地:地处尤溪县洋中镇镇区,距我校约100公里,高速开车单程耗时约1小时10分钟。

基地占地总面积 895亩,其中试验田178亩,山林地717亩(正在与尤溪县政府办理土地置换手续)。

综合大楼占地20亩,大楼一期工程已完成,综合楼共有6层,总面积5356平方米,建有实验室、仓库、食堂、住宿区,可同时容纳约100名学生实习住宿。

基地经多年建设,已初具规模,有26项国家及省部级科研项目进驻实施,国家薯类作物品种综合区域试验站、国家食用菌品种改良中心福建分中心、农作物优良品种示范园等都落户洋中。

二、闽侯白沙科教基地:地处闽侯县白沙镇新坡村,距我校约40公里,开车单程耗时约40分钟。

基地总面积180亩,现有水稻、蔬菜、麻类、薯类等十多项国家、省重点科研项目进驻实施。

主要承担农学、植物保护、林学、土壤学、园林、园艺等专业学生的校外实验实习教学任务。

基地建有面积528平方米的大楼,配有办公室、会议室、仓库,可同时容纳约40名学生实习住宿。

三、西芹教学林场位于南平市延平区西芹镇。

全场分为院口、场部、沙溪口、对河四个工区,主要造林树种以杉、松为主,兼有其它阔叶用材林、经济林、特用材、防护林,造林树种有30多种。

森林经营总面积1.75万亩,其中教学科研实验林0.8937万亩。

四、莘口教学林场位于三明市三元区西南部。

厂部设在莘口镇,场部下设有莘口、沙阳2个工区,黄沙、小湖2个护林点。

树种除杉木、马尾松外,还人工引种驯化栽培大量的珍贵乡土树种,如香樟、闽楠、建柏、米槠、格氏栲、檫树、青冈栎、观光木、木荷、酸枣等四十多种。

森林经营总面积2.9万亩,其中可供教学科研面积0.3万亩。

五、漳州分部主要以“福建农林大学漳州分部科技服务站”为窗口,从事农业科技推广及咨询服务。

相关文档
最新文档