平抛专题

合集下载

高考物理平抛运动专题

高考物理平抛运动专题

第二轮重点突破(3)——平抛运动专题连城一中林裕光当物体初速度水平且仅受重力作用时的运动,被称为平抛运动。

其轨迹为抛物线,性质为匀变速运动。

平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体运动这两个分运动。

广义地说,当物体所受的合外力恒定且与初速度垂直时,做类平抛运动。

1、平抛运动基本规律① 速度:v x v 0 ,v y gt合速度v v x2v y2方向:tanθ=gtv x v o②位移 x=v o t y= 1gt2合位移大小: s= x2y2方向:tanα = y g tx 2v o③时间由 y=1gt2得 t= 2y(由下落的高度 y决定)2x④竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。

应用举例(1)方格问题【例 1】平抛小球的闪光照片如图。

已知方格边长闪光照相的频闪间隔 T,求: v0、 g、v c2)临界问题典型例题是在排球运动中,为了使从某一位置和某一高度水平扣出的球既不触网、又不出界,扣球速度的取值范围应是多少?例 2】已知网高 H ,半场长 L,扣球点高 h,扣球点离网水平距离 s、求:水平扣球速度 v 的取值范围。

【例 3】如图所示,长斜面 OA 的倾角为 θ,放在水平地面上,现从顶点 O 以速度 v 0平抛一小球,不计空气阻力,重力加速度为 g ,求小球在飞行过程中离斜面的最大距离 s 是多少?(3)一个有用的推论平抛物体任意时刻瞬时时速度方向的反向延长线与初 速度延长线的交点到抛出点的距离都等于水平位移的一半。

证明:设时间 t 内物体的水平位移为 s ,竖直位移为 h , 则末速度的水平 分量 v x =v 0=s/t , 而竖直 分量 v y =2h/t ,vy2h ,tan ,v x s【例 4】 从倾角为 θ=30 °的斜面顶端以初动能E=6J 向 下坡方向平抛出一个小球,则小球落到斜面上时的动能 E /为 _____ J 。

平抛运动实验练习及答案(含三份专题练习)

平抛运动实验练习及答案(含三份专题练习)

平抛运动实验练习及答案(含三份专题练习)(1)如图所示,用小锤打击弹性金属片,金属片把A球沿水平方向抛出,同时B球松开,自由下落,A、B两球同时开始运动。

观察到两球同时落地,多次改变小球距地面的高度和打击力度,重复实验,观察到两球落地,这说明了小球A在竖直方向上的运动为自由落体运动。

(2)如图,将两个质量相等的小钢球从斜面的同一高度处由静止同时释放,滑道2与光滑水平板吻接,则将观察到的现象是A、B两个小球在水平面上相遇,改变释放点的高度和上面滑道对地的高度,重复实验,A、B两球仍会在水平面上相遇,这说明平抛运动在水平方向上的分运动是匀速直线运动。

21.[2014·安徽卷] (18分)Ⅰ.图1是“研究平抛物体运动”的实验装置图,通过描点画出平抛小球的运动轨迹.(1)以下是实验过程中的一些做法,其中合理的有________.a.安装斜槽轨道,使其末端保持水平b.每次小球释放的初始位置可以任意选择c.每次小球应从同一高度由静止释放d.为描出小球的运动轨迹,描绘的点可以用折线连接(2)实验得到平抛小球的运动轨迹,在轨迹上取一些点,以平抛起点O为坐标原点,测量它们的水平坐标x和竖直坐标y,图2中yx2图像能说明平抛小球运动轨迹为抛物线的是________.a bc d图2图3(3)图3是某同学根据实验画出的平抛小球的运动轨迹,O 为平抛的起点,在轨迹上任取三点A 、B 、C ,测得A 、B 两点竖直坐标y 1为5.0 cm ,y 2为45.0 cm ,A 、B 两点水平间距Δx 为40.0 cm.则平抛小球的初速度v 0为________m/s ,若C 点的竖直坐标y 3为60.0 cm ,则小球在C 点的速度v C 为________m/s(结果保留两位有效数字,g 取10 m/s 2).21.Ⅰ.D3(1)ac (2)c (3)2.0 4.0[解析] Ⅰ.本题考查“研究平抛物体的运动”实验原理、理解能力与推理计算能力.(1)要保证初速度水平而且大小相等,必须从同一位置释放,因此选项a 、c 正确.(2)根据平抛位移公式x =v 0t 与y =12gt 2,可得y =gx 22v 20,因此选项c 正确.(3)将公式y =gx 22v 20变形可得x =2ygv 0,AB 水平距离Δx =⎝⎛⎭⎪⎫2y 2g-2y 1g v 0,可得v 0=2.0 m/s,C点竖直速度v y=2gy3,根据速度合成可得v c=2gy3+v20=4.0 m/s.平抛运动训练1一.不定项选择题1.平抛物体的运动规律可以概括为两点:①水平方向做匀速运动;②竖直方向做自由落体运动.为了研究平抛物体的运动,可做下面的实验,如图所示,用小锤打击弹性金属片,A球就水平飞出,同时B球被松开,做自由落体运动,两球同时落到地面.这个实验()A.只能说明上述规律中的第①条 B.只能说明上述规律中的第②条C.不能说明上述规律中的任何一条D.能同时说明上述两条规律2.平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,在同一坐标系中作出两分运动的v-t图线,如图所示.则以下说法正确的是() A.图线1表示水平分运动的v-t图线B.图线2表示竖直分运动的v-t图线C.t1时刻物体的速度方向与初速度方向夹角为45°D.若图线2倾角为θ,当地重力加速度为g,则一定有tanθ=g3.在研究平抛物体的运动的实验中,为了求平抛物体的初速度,需直接测的数据有()A.小球开始滚下的高度B.小球在空中飞行的时间C.运动轨迹上某点P的水平坐标D.运动轨迹上某点P的竖直坐标4.如图所示,在研究平抛运动时,小球A沿轨道滑下,离开轨道末端(末端水平)时撞开轻质接触式开关S,被电磁铁吸住的小球B同时自由下落.改变整个装置的高度H做同样的实验,发现位于同一高度的A、B两球总是同时落地.该实验现象说明了A球在离开轨道后()A.水平方向的分运动是匀速直线运动B.水平方向的分运动是匀加速直线运动C.竖直方向的分运动是自由落体运动D.竖直方向的分运动是匀速直线运动5.下列哪些因素会使“研究物体平抛运动”实验的误差增大()A.小球与斜槽之间有摩擦B.安装斜槽时其末端不水平C.建立坐标系时,以斜槽末端端口位置为坐标原点D.根据曲线计算平抛运动的初速度时,在曲线上取作计算的点离点O较远6.如右图所示是物体做平抛运动的x-y图象,物体从O点抛出,A、B、C分别为其轨迹上的三点,A、B、C三点的水平距离相等,则A、B、C三点的竖直距离之比为()A.1:1:1 B.1:3:5C.1:4:9 D.不能确定7.一同学做“研究平抛物体的运动”的实验,只在纸上记下重锤线y方向,忘记在纸上记下斜槽末端位置,并只在坐标纸上描出如图所示曲线。

平抛运动专题

平抛运动专题

平抛运动问题归类求解平抛运动的常见问题及求解思路:1、从同时经历两个运动的角度求平抛运动的水平速度做“分解位移法”)若质点以V 0正对倾角为θ的斜面水平抛出,如果要求质点到达斜面的位移最小,求飞行时间为多少?解析:(1)连接抛出点O 到斜面上的某点O 1 ,其间距OO 1为位移大小。

当OO 1垂直于斜面时位移最小。

(2)分解位移:利用位移的几何关系可得θθtg 2,21020g v t gtt v y xtg ===。

、在倾角为α的斜面上的P 点,以水平速度0v 向斜面下方抛出一个物体,落在斜面上的Q 点,证明落在Q 点物体速度α20tan 41+=v v 。

解析:设物体由抛出点P 运动到斜面上的Q 点的位移是l ,所用时间为t ,则由“分解位移法”可得,竖直方向上的位移为αsin l h =;水平方向上的位移为αcos l s =。

又根据运动学的规律可得竖直方向上221gt h =,gt v y =水平方向上t v s 0=解析:︒37和︒53都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到002221tan v gtt v gt x y ===α 所以有01237tan v gt =︒ 同理02253tan v gt =︒ 则16:9:21=t t4. 从竖直方向是自由落体运动的角度出发求解在研究平抛运动的实验中,由于实验的不规范,有许多同学作出的平抛运动的轨迹,常常不能直接找到运动的起点(这种轨迹,我们暂且叫做“残缺轨迹”),这给求平抛运动的初速度带来了很大的困难。

为此,我们可以运用竖直方向是自由落体的规律来进行分析。

[例5] 某一平抛的部分轨迹如图4所示,已知a x x ==21,b y =1,c y =2,求0v 。

T v x x 021==又竖直方向是自由落体运动, 则212gT y y y =-=∆ 代入已知量,联立可得gbc T -=bc gav -=0 5. 从平抛运动的轨迹入手求解问题[例6] 从高为H 的A 点平抛一物体,其水平射程为s 2,在A 点正上方高为2H 的B 点,向同一方向平抛另一物体,其水平射程为s 。

专题一 10 平抛运动(知识点完整归纳)

专题一 10 平抛运动(知识点完整归纳)

10 平抛运动1.基本方法:运动的合成与分解水平方向上:匀速直线运动;竖直方向上:自由落体运动. 2.基本规律(1)位移关系:⎩⎪⎨⎪⎧x =v 0t y =12gt 2 合位移的大小s =x 2+y 2位移方向偏转角tan θ=y x =gt2v 0.(2)速度关系:⎩⎪⎨⎪⎧v x =v 0v y =gt 合速度的大小v =v x 2+v y 2速度方向偏转角tan α=v y v x =gtv 0=2tan θ.3.三个重要推论(1)若速度方向与水平方向的夹角为α和位移方向与水平方向的夹角为θ,则 tan α=2tan θ. (2)平抛运动到任一位置A ,过A 点作其速度方向的反向延长线交Ox 轴于C 点,有OC =x A2(如图1所示).图1(3)任何一段时间内,速度变化量为Δv =g Δt ,方向恒为竖直向下;连续相等的时间间隔Δt 内,竖直方向的位移差不变为Δy =g (Δt )2,在平抛运动轨迹上找几个点,使x 1=x 2=…,利用y 2-y 1=g (Δt )2可求重力加速度.1.和斜面相关的平抛运动解题技巧 (1)在斜面上平抛又落到斜面上(如图2):图2①合位移与水平位移的夹角等于斜面倾角,常用位移关系tan θ=y x =12gt 2v 0t =gt2v 0.②不同落点的速度方向与斜面的夹角相等.③离斜面最远时速度方向与斜面平行(如图3中P 点),若求离斜面最远距离,常沿斜面、垂直斜面将速度和加速度分解.图3(2)平抛运动的物体垂直打在斜面上(如图4):图4合速度与竖直速度的夹角等于斜面倾角θ,常用速度关系tan θ=v x v y =v 0gt .(3)从斜面外恰好与斜面平行的方向落到斜面(如图5):图5合速度与水平速度的夹角等于斜面倾角,常用速度关系tan θ=v y v x =gtv 0.2.类比法处理类平抛运动(1)沿斜面类平抛(如图6):重力沿斜面的分力产生的加速度g sin θ类比重力加速度g .图6(2)电场中类平抛:电场力产生的加速度a =qEm类比重力加速度g .(3)某星球表面平抛:星球表面的重力加速度g ′类比地球表面重力加速度g .示例1 (平抛运动的规律)(2020·全国卷Ⅱ·16)如图7,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h ,其左边缘a 点比右边缘b 点高0.5h .若摩托车经过a 点时的动能为E 1,它会落到坑内c 点.c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为E 2,该摩托车恰能越过坑到达b 点.E 2E 1等于( )图7A .20B .18C .9.0D .3.0 答案 B解析 摩托车从a 点做平抛运动到c 点,水平方向:h =v 1t 1,竖直方向:h =12gt 12,可解得v 1=gh 2,动能E 1=12m v 12=mgh 4;摩托车从a 点做平抛运动到b 点,水平方向:3h =v 2t 2,竖直方向:0.5h =12gt 22,解得v 2=3gh ,动能E 2=12m v 22=92mgh ,故E 2E 1=18,B 正确.示例2 (和斜面有关的平抛运动)(2018·全国卷Ⅲ·17)在一斜面顶端,将甲、乙两个小球分别以v 和v2的速度沿同一方向水平抛出,两球都落在该斜面上.甲球落至斜面时的速率是乙球落至斜面时速率的( )A .2倍B .4倍C .6倍D .8倍 答案 A解析 如图所示,可知:x =v t ,x ·tan θ=12gt 2,则v y =gt =2tan θ·v ,则落至斜面的速率v 落=v 2+v y 2=v1+4tan 2θ,即v 落∝v ,甲、乙两球抛出速度为v 和v2,则可得落至斜面时速率之比为2∶1,故A 正确.示例3 (与斜面有关的平抛运动)(2016·上海卷·23改编)如图8,圆弧形凹槽固定在水平地面上,其中ABC 是位于竖直平面内以O 为圆心的一段圆弧,OA 与竖直方向的夹角为α.一小球以速度v 0从桌面边缘P 水平抛出,恰好从A 点沿圆弧的切线方向进入凹槽.小球从P 到A 的运动时间为______________;直线P A 与竖直方向的夹角正切值tan β=______________.(重力加速度为g )图8答案v 0tan αg 2tan α解析 据题意,小球从P 点抛出后做平抛运动,小球运动到A 点时将速度分解,有tan α=v yv x =gt v 0, 则小球运动到A 点的时间为:t =v 0tan αg ;从P 点到A 点的位移关系有: tan β=v 0t 12gt 2=2v 0gt =2tan α.示例4 (平抛运动的临界问题)(2015·全国卷Ⅰ·18)一带有乒乓球发射机的乒乓球台如图9所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )图9A.L 12g6h <v <L 1g6hB.L 14gh <v <(4L 12+L 22)g6hC.L 12g 6h <v <12(4L 12+L 22)g6hD.L 14g h <v <12(4L 12+L 22)g6h答案 D解析 发射机无论向哪个方向水平发射,乒乓球都做平抛运动.当速度v 最小时,球沿中线恰好过网,有: 3h -h =gt 122①L 12=v 1t 1② 联立①②得v 1=L 14g h当速度最大时,球斜向右侧台面两个角发射,有 (L 22)2+L 12=v 2t 2③ 3h =12gt 22④联立③④得v 2=12(4L 12+L 22)g6h所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12(4L 12+L 22)g6h,选项D 正确.。

【课件】第五章 专题:平抛运动题型总结 课件-高一下学期物理人教版(2019)必修第二册

【课件】第五章 专题:平抛运动题型总结 课件-高一下学期物理人教版(2019)必修第二册
2 tan v y
v0
则v y 2v0 tan
练习1.在一斜面顶端,将甲、乙两个小球分别
以v和V/2的速度沿同一方向水平抛出,两球都落在
A 该斜面上.甲球落至斜面时的速率是乙球落至斜面
时速率的( )A.2倍
B.4倍
C.6

D.8倍
2.对着斜面抛:
如图所示,做平抛运动的物体垂直打在斜面上,
此时物体的合速度与竖直方向的夹角等于斜面的倾
水平初速度v1、v2沿相反方向抛出两个小球1和2(可视为质点),
最终它们分别落在圆弧上的A点和B点,已知OA与OB互相垂
直,且OA与竖直方向成α角,则两小球的初速度之比
v1 v2

C
A.tan α
B.cos α
C.tan α tan α
D.cos α cos α
解析 两小球被抛出后都做平抛运动,设容器的半径 为R,两小球运动的时间分别为t1、t2. 对球 1:Rsin α=v1t1,Rcos α=12gt12, 对球 2:Rcos α=v2t2,Rsin α=12gt22, 联立以上四式解得vv12=tan α tan α,故选 C.
9.如图所示,竖直平面内有A、B、C三点, 三点连线构成一直角三角形,AB边竖直,BC 边水平,D点为BC边中点.一可视为质点的物 体从A点水平抛出,轨迹经过D点,与AC交于 E点.若物体从A运动到E的时间为t1,从A运
B 动到D的时间为t2,则t1: t2为( )
A.1∶1 B.1∶2C.2∶3 D.1∶3
gtan θ D.由于不知道抛出点位置,位移大小无法求解
课堂练习
4、如图8所示,固定斜面的倾角为α,高为h,一小球从斜面顶端 水平抛出,落至斜面底端,重力加速度为g,不计空气阻力,则

平抛运动专题复习

平抛运动专题复习

平抛运动一、平抛运动 1.基本规律 (1)位移关系(2)速度关系2.两个重要推论(1)做平抛运动的物体在任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,即x B =x A2.推导:⎭⎪⎬⎪⎫tan θ=y Ax A -x Btan θ=v y v 0=2yAx A→x B=x A2 (2)做平抛运动的物体在任意时刻任意位置处,有tan θ=2tan α. 推导:⎭⎪⎬⎪⎫tan θ=v y v 0=gtv 0tan α=y x =gt2v 0→tan θ=2tan α 总结:共9个基本物理量,知二求其他。

已知v 0与v ,求t 已知v 0与а,求t 已知v 与а,求v 0、t 已知v 与x ,求v 0、t 已知v 与y ,求v 0、t 已知v 与θ,求v 0、t 已知а与x ,求v 0、t已知а与y ,求v 0、t已知x 与y ,求v 0、t 已知x 与θ,求v 0、t 已知v 0与θ,求t1、抛体+地面【答案】BC 2、2、【答案】3、抛体+墙(靶、飞镖)(2018·河南部分重点中学联考)某同学玩飞镖游戏,先后将两只飞镖a 、b 由同一位置水平投出,已知飞镖投出时的初速度v a >v b ,不计空气阻力,则两支飞镖插在竖直靶上的状态(俯视图)可能是( )解析 两只飞镖a 、b 都做平抛运动,在水平方向上做匀速直线运动,则有x =v 0t ,它们的水平位移大小相等,由于v a >v b ,所以运动时间关系为t a <t b ,由h =12gt 2知h a <h b ,所以插在竖直靶上时a 在b 的上面,选项C 、D 错误;设飞镖插在竖直靶上前瞬间速度与水平方向的夹角为α,则tan α=gt v 0,因为v a >v b ,t a <t b ,所以有αa <αb ,选项A 正确,B 错误。

答案 A 4.(1)顺着斜面平抛(如图12)图12已知v 0与θ,求t 方法:分解位移.x =v 0t , y =12gt 2,tan θ=y x, 可求得t =2v 0tan θg. (2)对着斜面平抛(垂直打到斜面,如图13)图13已知v 0与θ,求t 方法:分解速度.v x =v 0, v y =gt ,tan θ=v x v y =v 0gt, 可求得t =v 0g tan θ.3.在倾角为θ的斜面顶端,以初速度v0水平抛出一小球,不计空气阻力,则小球与斜面相距最远时速度的大小为( )A.v0cos θ B.v0 cos θC.v0sin θ D.v0 sin θ答案 B解析当小球速度方向与斜面平行时离斜面最远,速度的水平分量不变,故v cos θ=v0,解得:v=v0cos θ,故B正确.平抛+半圆如图15所示,半径和几何关系制约平抛运动时间t :图15h =12gt 2,R±R2-h2=v0t,联立两方程可求t.例7(2020·福建泉州市第一次质量检查)某游戏装置如图18所示,安装在竖直轨道AB 上的弹射器可上下移动,能水平射出速度大小可调节的小弹丸.圆心为O的圆弧槽BCD上开有小孔P,弹丸落到小孔时,速度只有沿OP方向才能通过小孔,游戏过关,则弹射器在轨道上( )图18A.位于B点时,只要弹丸射出速度合适就能过关B.只要高于B点,弹丸射出速度合适都能过关C.只有一个位置,且弹丸以某一速度射出才能过关D .有两个位置,只要弹丸射出速度合适都能过关 答案 C解析 根据平抛运动速度反向延长线过水平位移的中点可知,位于B 点时,不管速度多大,弹丸都不可能沿OP 方向从P 点射出,故A 错误;如图所示,根据平抛运动速度反向延长线过水平位移的中点可得:EN =12R (1+cos α),则竖直位移PN=EN ·tan α=12R (1+cos α)tan α,弹射器离B 点的高度为y =PN -R sin α=12R (tanα-sin α),所以只有一个位置,且弹丸以某一速度射出才能过关,故B 、D 错误,C 正确.抛体+自由落体/比较两个平抛的物理量(2019·陕西汉中市下学期模拟)如图7所示,x 轴在水平地面上,y 轴在竖直方向.图中画出了从y 轴上沿x 轴正方向水平抛出的三个小球a 、b 和c 的运动轨迹.不计空气阻力,下列说法正确的是( )图7A .a 和b 的初速度大小之比为2∶1B .a 和b 在空中运动的时间之比为2∶1C .a 和c 在空中运动的时间之比为2∶1D .a 和c 的初速度大小之比为2∶1 答案 C 解析 根据t =2h g 可知a 和b 在空中运动的时间之比为2∶1;根据v =xt可知a 和b 的初速度大小之比为1∶2,选项A 、B 错误.根据t =2hg可知a 和c 在空中运动的时间之比为2∶1;根据v =x t可知a 和c 的初速度大小之比为2∶1,选项C 正确,D 错误. 2019·福建宁德市5月质检)某同学在练习投篮时将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直放置的篮板上,运动轨迹如图6所示,不计空气阻力,关于这两次篮球从抛出到撞击篮板的过程( )图6A .两次在空中运动的时间相等B .两次抛出时的速度相等C .第1次抛出时速度的水平分量小D .第2次抛出时速度的竖直分量大 答案 C解析 将篮球的运动反向处理,即为平抛运动.由题图可知,第2次运动过程中的高度较小,所以运动时间较短,故A 错误.平抛运动在竖直方向上是自由落体运动,第2次运动过程中的高度较小,故第2次抛出时速度的竖直分量较小,故D 错误.平抛运动在水平方向是匀速直线运动,水平射程相等,由x =v 0t 可知,第2次抛出时水平分速度较大,第1次抛出时水平分速度较小,故C 正确.水平分速度第2次大,竖直分速度第1次大,根据速度的合成可知,两次抛出时的速度大小关系不能确定,故B 错误.)从竖直墙的前方A 处,沿AO 方向水平发射三颗弹丸a 、b 、c ,在墙上留下的弹痕如图11所示,已知Oa =ab =bc ,则a 、b 、c 三颗弹丸(不计空气阻力)( )图11A .初速度大小之比是6∶3∶ 2B .初速度大小之比是1∶2∶ 3C .从射出至打到墙上过程速度增量之比是1∶2∶ 3D .从射出至打到墙上过程速度增量之比是6∶3∶ 2 答案 AC解析 水平发射的弹丸做平抛运动,竖直方向上是自由落体运动,水平方向上是匀速直线运动,又因为竖直方向上Oa =ab =bc ,即Oa ∶Ob ∶Oc =1∶2∶3,由h =12gt 2可知t a ∶t b ∶t c=1∶2∶3,由水平方向x =v 0t 可得v a ∶v b ∶v c =1∶12∶13=6∶3∶2,故选项A正确,B 错误;由Δv =gt ,可知从射出至打到墙上过程速度增量之比是1∶2∶3,故选项C 正确,D 错误.4.(2020·山西晋城市模拟)如图3所示,斜面体ABC 固定在水平地面上,斜面的高AB 为 2 m ,倾角为θ=37°,且D 是斜面的中点,在A 点和D 点分别以相同的初速度水平抛出一个小球,结果两个小球恰能落在地面上的同一点,则落地点到C 点的水平距离为(sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,不计空气阻力)( )图3A.34 mB.23 mC.22 mD.43 m 答案 D7.(2019·河南洛阳市期末调研)如图6所示,位于同一高度的小球A 、B 分别以v 1和v 2的速度水平抛出,都落在了倾角为30°的斜面上的C 点,小球B 恰好垂直打到斜面上,则v 1、v 2之比为( )图6A .1∶1 B.2∶1 C.3∶2 D.2∶3 答案 C解析 小球A 、B 下落高度相同,则两小球从飞出到落在C 点用时相同,均设为t ,对A 球:x =v 1t ① y =12gt 2②又tan 30°=y x③ 联立①②③得:v 1=32gt ④ 小球B 恰好垂直打到斜面上,则有:tan 30°=v 2v y =v 2gt⑤则得:v 2=33gt ⑥ 由④⑥得:v 1∶v 2=3∶2,所以C 正确.(2019·湖南永州市第二次模拟)如图14所示,在斜面顶端a 处以速度v a 水平抛出一小球,经过时间t a 恰好落在斜面底端c 处.今在c 点正上方与a 等高的b 处以速度v b 水平抛出另一小球,经过时间t b 恰好落在斜面的三等分点d 处.若不计空气阻力,下列关系式正确的是( )图14A .t a =32t b B .t a =3t b C .v a =32v b D .v a =32v b答案 C解析 a 、b 两球下降的高度之比为3∶1,根据h =12gt 2可知,t =2hg,则a 、b 两球运动的时间关系为t a =3t b ,故A 、B 错误;因为a 、b 两球水平位移之比为3∶2,由v 0=x t得:v a =32v b ,故C 正确,D 错误.如图16,从O点分别以水平初速度v1、v2抛出两个小球(未画出,可视为质点),最终它们分别落在圆弧上的A点和B点,已知OA与OB互相垂直,且OA与竖直方向成α角,不计空气阻力,则两小球初速度大小之比v1∶v2为 ( )图16A.tan αB.cos αC .tan αtan αD .cos αtan α答案 C解析 设圆弧半径为R ,两小球运动时间分别为t 1、t 2.对球1:R sin α=v 1t 1,R cos α=12gt 12;对球2:R cos α=v 2t 2,R sin α=12gt 22,联立解得:v 1v 2=tan αtan α,C 正确.变式4 (多选)(2020·山东济宁市第一次模拟)如图17所示,在竖直平面内固定一半圆形轨道,O 为圆心,AB 为水平直径,有一可视为质点的小球从A 点以不同的初速度向右水平抛出,不计空气阻力,下列说法正确的是( )图17A .初速度越大,小球运动时间越长B .初速度不同,小球运动时间可能相同C .小球落到轨道的瞬间,速度方向可能沿半径方向D .小球落到轨道的瞬间,速度方向一定不沿半径方向 答案 BD临界类平抛(4)速度改变量因为平抛运动的加速度为恒定的重力加速度g,所以做平抛运动的物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt是相同的,方向恒为竖直向下,如图4所示.图41.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动.2.性质:平抛运动是加速度为g的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:自由落体运动.平抛的相遇问题运动的合成与分解关键词:分解、合成、思想、观念、曲线、直线 1、曲线运动的条件和特征下列关于运动和力的叙述中,正确的是( ) A .做曲线运动的物体,其加速度方向一定是变化的 B .物体做圆周运动,所受的合力一定是向心力 C .物体所受合力恒定,该物体速率随时间一定均匀变化 D .物体运动的速率在增加,所受合力一定做正功 答案 D解析 做曲线运动的物体,其加速度方向不一定是变化的,例如平抛运动,选项A 错误;物体做匀速圆周运动时,所受的合力一定是向心力,选项B 错误;物体所受合力恒定,该物体速率随时间不一定均匀变化,例如平抛运动,选项C 错误;根据动能定理可知,物体运动的速率在增加,所受合力一定做正功,选项D 正确.一质点做匀速直线运动。

平抛运动专题

【平抛运动专题】1、曲线与直线运动的条件:2、曲线运动3、解曲线运动基本方法: 运动的合成与分解 (矢量的合成与分解) 1)合运动:物体实际的运动2)分运动:与合运动等效的其它方向的运动----分运动与合运动具有 等时性 。

运算法则:遵循 平行四边形 定则如:平抛运动(初速度水平,只受重力作用)可分解为水平方向上的 匀速直线运动 和竖直方向上的 自由落体运动 ,因此常用的公式有如下几点:(如图1)OPOxsvv x v yαββ图1位移公式:t v s x 0=,221gt s y =2tan v gts s x y ==α 速度公式:0v v x =,gt v y =,0tan v gtv v xy ==β 曲线运动轨迹是F(a)与v 方向 共线曲线运动速度大小可变,可不变是 运动速度方向沿 方向,时刻曲线运动a 恒定a 变化特点2条件直线运动F 合(a)与v 共线 或a=0 曲线运动 F 合(a)与v 共线 a 与 v 同向:a 与 v 反向:两者关系:02tan v gts s xy ==α,0tan v gt v v x y ==β βαtan tan 2=(P 点为OQ 的中点) 竖直方向的运动决定了平抛运动的时间,水平位移大小与水平初速度有关。

3)小船过河问题的分析----运动合成分解的基本应用解决渡河问题时,要先弄清合运动和分运动。

由于河的宽度是确定的,所以首先应确定渡河的速度,然后计算渡河的时间,再根据等时性分别研究两个分运动或合运动。

一般只讨论时的两种情况,一是船头与河岸垂直时渡河时间最短;二是合速度垂直河岸时渡河位移最小。

但如果,船头无论指向何方都不会垂直到达对岸,此时若求渡河的最小位移,会有一定难度。

、河宽d =100 m ,水流速度=3m /s ,船在静水中的速度是4m/s 。

求:(1)欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船经过的位移多大? (2)欲使船航行距离最短,船应怎样渡河?渡河时间多长?(1)设船与岸成角向对岸行驶,如图所示,则当船行至对岸时,当1时,t 最小,即船应沿垂直于河岸的方向渡河(如图所示)。

高三物理专题复习课件-平抛运动

高三物理专题复习课 件-平抛运动
REPORTING
• 平抛运动概述 • 平抛运动的规律 • 平抛运动的实验验证 • 平抛运动的解题技巧 • 平抛运动的综合应用
目录
PART 01
平抛运动概述
REPORTING
平抛运动的定义
平抛运动是指一个物体在不受其 他外力(除重力外)的作用下, 以一定的初速度沿水平方向抛出
律,分析物体的运动轨迹和速度变化。
平抛运动与实际生活结合的问题
总结词
实际生活中的平抛运动应用
详细描述
平抛运动在现实生活中有着广泛的应用,如投篮、投掷标枪、飞机投弹等。通过分析这 些实际问题的物理过程,可以加深对平抛运动的理解,并提高解决实际问题的能力。
THANKS
感谢观看
REPORTING
1. 安装实验装置
按照实验要求,正确安装平抛运 动实验装置,确保轨道稳定、发 射器位置合适。
5. 整理实验器材
实验结束后,按照要求整理实验 器材,确保其安全存放。
实验数据记录与处理
01
数据记录
在实验过程中,使用数据采集软件实时记录小球的飞行轨迹,包括时间
、水平位移、垂直位移等数据。
02 03
数据处理
实验步骤与操作
2. 准备实验数据采集
打开数据采集软件,设置采样频 率、采样时间等参数,确保能够 准确记录小球的运动轨迹。
3. 进行实验
在发射器中放置小球,按下发射 按钮,观察小球的运动轨迹,记 录小球在空中的飞行时间和水平 、垂直位移。
4. 重复实验
为了获得更准确的数据,可以多 次进行实验,并对每次实验的数 据进行记录和分析。
PART 03
平抛运动的实验验证
REPORTING

人教版高中物理必修二专题04 平抛运动的三类模型【知识梳理】

专题04模型1:平抛运动与斜面结合模1.模型构建两类与斜面结合的平抛运动(1)物体从斜面上某一点水平抛出以后又重新落在斜面上,此时平抛运动物体的合位移方向与水平方向的夹角等于斜面的倾角。

(2)做平抛运动的物体垂直打在斜面上,此时物体的合速度与竖直方向的夹角等于斜面的倾角。

2.求解思路已知信息实例处理思路速度方向垂直打到斜面上的平抛运动(1)确定速度与竖直方向的夹角θ,画出速度分解图。

(2)根据水平方向和竖直方向的运动规律分析v x、v y。

(3)根据tan θ=v xv y列式求解。

位移方向从斜面上一点水平抛出后落回在斜面上的平抛运动(1)确定位移与水平方向的夹角θ,画出位移分解图。

(2)根据水平方向和竖直方向的运动规律分析x、y。

(3)根据tan θ=yx列式求解。

模型2:类平抛运动模型1.运动建模当一种运动和平抛运动特点相似,即合外力恒定且与初速度方向垂直的运动都可以称为类平抛运动。

2.模型特点3.分析方法与平抛运动的处理方法一致,将运动分解成沿初速度方向的匀速直线运动和垂直初速度方向的由静止开始的匀加速直线运动。

4.解类平抛运动问题的步骤(1)分析物体的初速度与受力情况,确定物体做类平抛运动,并明确物体两个分运动的方向。

(2)利用两个分运动的规律求解分运动的速度和位移。

(3)根据题目的已知条件和要求解的量充分利用运动的等时性、独立性、等效性解题。

模型三:平抛运动中的临界模型1.模型特点(1)若题目中有“刚好”“恰好”“正好”等字眼,表明题述过程中存在临界点。

(2)若题目中有“最大”“最小”“至多”“至少”“取值范围”等字眼,表明题述的过程中存在着极值,这些极值点也往往是临界点。

2.求解思路(1)画出临界轨迹,找出临界状态对应的临界条件。

(2)分解速度或位移。

(3)列方程求解结果。

高考物理专题分析及复习建议:平抛(类平抛)模型1

高考物理专题分析及复习建议:平抛〔类平抛〕模型证明:⑤任意一段时间内速度的变化量Δv =gΔt,方向恒为竖直向下〔与g 同向〕。

4.解题方法:分解运动①假设位移〔方向〕那么分解位移 ②假设速度〔方向〕那么分解速度例1:如下图,某人骑摩托车在水平道路上行驶,要在A 处越过的壕沟,沟面对面比A 处低,摩托车的速度至少要有多大?例2:如下图,在坡度一定的斜面顶点以大小一样的速度同时水平向左与水平向右抛出两个小球A 和B ,两侧斜坡的倾角分别为和,小球均落在坡面上,假设不计空气阻力,那么A 和B 两小球的运动时间之比为多少?例3:质量为m 、带电量为+q 的小球以水平初速度v 0进入竖直向上的匀强电场中,如图甲所示,今测得小球进入电场后在竖直方向上上升的高度y 与水平方向的位移x 之间的关系如图乙所示〔重力加速度为g 〕。

根据图乙给出的信息,求:(1)电场强度的大小;(2)小球从进入匀强电场到上升到h 高度的过程中,电场力所做的功;(3)小球在h 高度处的动能。

V 1V 0V 2V 3V△V△V △例4:如图,有一倾角为30°的光滑斜面,斜面长L为10m,一小球从斜面顶端以10m/s的速度沿水平方向抛出,〔g取10m/s2〕,求:〔1〕小球沿斜面滑到底端时水平位移s;〔2〕小球到达斜面底端时的速度大小。

例5:如下图,从斜面顶端P处以初速度v向左水平抛出一小球,落在斜面上的A点处,AP之间距离为L,小球在空中运动时间为t,改变初速度v的大小,L和t都随之改变。

关于L、t与v的关系,以下说法中正确的选项是〔〕A.L与v成正比 B.L与20v成正比C.t与v成正比D.t与20v成正比例6:如图,斜面上有a ,b ,c ,d 四个点,ab=bc=cd ,从a 点正上方o 点以速度v 水平抛出一个小球,它落在斜面上b 点,假设小球从o 点以速度2v 水平抛出,不计空气阻力,那么它落在斜面上的〔 〕:A .b 与c 之间某一点B .c 点C .c 与d 之间某一点D .d 点例7:如下图,以10m/s 的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为的斜面上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题六 平抛与类平抛运动
1.如图所示,一高山滑雪运动员,从较陡的坡道上滑下,经过A 点时速度v 0=16m/s ,AB 与水平成θ=530
角。

经过一小段光滑水平滑道BD 从D 点水平
飞出后又落在与水平面成倾角α=37︒的斜坡上C 点.已知AB 两点间的距离s 1=10m ,D 、C 两点间的距离为s 2=75m ,不
计通过B 点前后的速率变化,不考虑运动中的空气阻力。

(取
g =10m/s 2,sin370=0.6)求:
(1)运动员从D 点飞出时的速度v D 的大小;
(2)滑雪板与坡道间的动摩擦因数.
2、国家飞碟射击队进行模拟训练用如图1的装置进行。

被训练的运动员在高为H=20m 的塔顶,在地面上距塔的水平距离S 处有一电子抛靶装置。

圆形靶
以速度2v 竖直上抛。

当靶被竖直上抛的同时,运动员立即用特制的
手枪水平射击,子弹的速度s m v /1001=。

不计人的反应时间、抛
靶装置的高度和子弹在枪膛中的运动时间,忽略空气阻力及靶的大
小(g=10m/s 2)。

求:(1)当s 取值在什么范围内,无论v 2为何值都
不能击中靶?(2)若s=100m ,v 2=20m/s ,请通过计算说明靶能否
被击中?
α
3、小球以15 m/s的水平初速度向一倾角为37°的斜面抛出,飞行一段时间后,恰好垂直撞在斜面上.求:
(1)小球在空中的飞行时间;
(2)抛出点距落球点的高度.(g=10 m/s2)
4、下图为一皮带传动装置,大轮与小轮固定在同一根轴上,小轮与另一中等大小的轮子间用皮带相连,它们的半径之比是1∶2∶3.A、B、C分别为轮子边缘上的三点,那么三点线速度之比v A∶v B∶v C= ;角速度之比ωA∶ωB∶ωC= ;转动周期之比T A∶T B∶T C= ;向心加速度之比a A∶a B∶a C=
.
5、汽车以速度v行驶,驾驶员突然发现前方有一条横沟,为了避免事故,驾驶员应该刹车好还是转弯好?
专题六 平抛与类平抛运动
1.解析:(1) (7分)
由D 到C 平抛运动的时间为t
竖直方向: H Dc =s 2sin37o =12
gt 2
’ 水平方向: s 2cos370=v B t
代得数据,解得v D =20m /s
(2) (7分) A 到B 过程,运动加速a=gsin θ-µgcos θ
v B 2—v 02=2as 1
代人数据,解得 µ=2/15
2.解析:只要靶子在子弹的射程之外,无论靶的速度为何值,都无法击中;如果能击中,击中处一定在抛靶装置的正上方。

(1) 根据平抛运动的规律:、
水平方向:t v s 1/= ① 竖直方向:22
1gt H = ② 要使子弹不能击中靶,则:/s s > ③
联立上面三式,并代入数据可得:m s 200>
(2) 设经过时间t 1击中
水平方向:111t v s = ④ 竖直方向:2112
1gt h = ⑤ 靶子上升的高度:2112221gt t v h -
= ⑥ 联立上面三式,并代入数据得:m h h 2021=+,恰好等于塔高,
所以靶恰好被击中。

反思:解决平抛运动的关键是将平抛运动分解为水平方向的匀速直线运动和竖直方向的自由落体运动,然后从题设条件找准分解的矢量,并分解。

3、解析:解析:将球将要到达落地点时的速度分解,如图所示.
由图可知θ=︒37,φ=︒90-︒37=︒53
(1)tan φ=
0v gt ,则t =g v 0·tan φ=1015×34 s=2 s. (2)h =21gt 2=2
1×10×22 m=20 m. 答案:(1)2 s (2)20 m
小结:解平抛运动的问题时,关键之一在于利用矢量分解的知识将末速度和位移正交分解,建立起各物理量之间的几何关系,如v 0与v 、s 与h 之间的关系;关键之二是根据平抛规律将水平位移与竖直位移、水平速度与竖直速度通过时间联系在一起,从而建立运动学关系,最后将两种关系结合起来求解.
4、解析:由图可知,A 、B 两点线速度相等,A 、C 两点角速度相等.又v =ωr ,可得
C A v v =C A r r ωω=3
1,所以v A ∶v B ∶v C =1∶1∶3;又可得B A ωω=B A r v r v //=12,有ωA ∶ωB ∶ωC =2∶1∶2;因T =ωπ
2,则T A ∶T B ∶T C =1∶2∶1;由向心加速度a n =r v 2,可得B A a a =B A r v r v //22=A B r r =12,又向心加速度a n =ω2
r ,得C A a a =B A r r 22ωω=31=62,那么a A ∶a B ∶a C =2∶1∶6. 答案:1∶1∶3 2∶1∶2 1∶2∶1 2∶1∶6
5.解析:无论刹车还是转弯,都是为了避免汽车驶入沟中,刹车时地面的摩擦力使车减速,转弯时摩擦力则使车速改变方向.
刹车时:μmg =ma
刹车距离为s =a v 22=g
v μ22
转弯时:μmg =m r
v 2
转弯半径为r =g
v μ2
因为r >s ,所以刹车更易避免事故.
答案:应该刹车。

相关文档
最新文档