方差和标准差的区别和联系
方差和标准差的计算

标准差是衡量 数据离散程度 的指标,用于 反映数据的波
动大小。
标准差越大, 数据波动越大; 标准差越小, 数据越趋近于
平均值。
标准差的性质
描述数据离散程度
无单位,与平均值无关
与方差成正比
计算公式为:标准差 = sqrt((1/N) * Σ(xi-μ)^2)
标准差பைடு நூலகம்应用场景
金融领域:评估投资组合的风险 统计学:比较不同数据集的离散程度 质量控制:识别生产过程中的异常值 社会科学:研究不同群体的收入或教育水平的差异
方差和标准差的区别与联系
方差和标准差的区别
方差是数据与平均值之差的平方的平均值,用于衡量数据的离散程度。
标准差是方差的平方根,与方差具有相同的量纲,也可以用于衡量 数据的离散程度。 标准差在数学处理上更加方便,很多统计公式和定理都以标准差的形 式出现。
方差和标准差的区别在于它们的计算方法和量纲不同。
方差和标准差可用于检验数据是 否符合某种分布
方差和标准差在金融领域的应用
风险评估:用于衡量投资组合的风险水平 资产配置:确定不同资产类别的权重,以实现风险和收益的平衡 业绩评估:比较不同投资策略或基金经理的表现,以选择更优的投资方案 资本充足率:评估银行的资本充足情况,确保其具备足够的抵御风险能力
方差的优缺点
优点:可以衡量一组数据的 离散程度,是描述数据稳定 性和可靠性的重要指标。
缺点:对于数据中的异常值 敏感,异常值对方差的影响 较大,可能导致结果失真。
标准差的优缺点
优点:可以衡量一组数据的 离散程度,常用于评估数据 的稳定性。
缺点:对极端值的影响较为 敏感,可能导致评估结果失
真。
如何选择使用方差或标准差
标准差与方差的区别

标准差与方差的区别标准差和方差是统计学中常用的两个概念,它们都是用来衡量数据的离散程度的。
虽然它们都是用来描述数据的分散程度,但是它们之间存在一些区别。
本文将从定义、计算方法、意义等方面对标准差和方差进行比较,帮助读者更好地理解它们之间的区别。
首先,我们来看一下标准差和方差的定义。
方差是指每个数据与平均值之差的平方的平均值,它衡量的是数据与平均值之间的离散程度。
而标准差则是方差的平方根,它的计量单位与原始数据的计量单位相同,因此更容易理解数据的离散程度。
其次,我们来比较一下它们的计算方法。
计算方差的步骤是,首先计算每个数据与平均值的差,然后将这些差的平方求和,最后再除以数据的个数。
而计算标准差则是在计算出方差的基础上,再对方差进行平方根运算。
可以看出,计算标准差需要多一步对方差的平方根运算,相对来说稍微复杂一些。
接着,我们来谈一下它们的意义。
方差和标准差都是用来衡量数据的离散程度的,但是由于标准差的计量单位与原始数据的计量单位相同,因此在实际应用中更为常见。
例如,在财务领域中,标准差常用来衡量资产收益的波动程度,而在生物学中,标准差常用来衡量样本数据的离散程度。
最后,我们需要注意的是,在实际应用中,我们应该根据具体的情况选择使用方差还是标准差。
如果我们只是想衡量数据的离散程度,那么使用方差就可以满足需求。
但是如果我们需要将离散程度与原始数据的计量单位联系起来,那么就应该使用标准差。
总的来说,标准差和方差都是用来衡量数据的离散程度的重要指标。
它们之间的区别在于计算方法和意义的不同,我们在实际应用中需要根据具体的情况选择使用哪一个指标。
希望本文能够帮助读者更好地理解标准差和方差之间的区别,从而更好地应用于实际工作中。
标准差方差区别

标准差方差区别标准差和方差是统计学中常用的两个概念,它们都是用来衡量数据的离散程度的。
虽然它们都是用来表示数据的分散程度,但它们之间还是有一些区别的。
首先,让我们来看看标准差。
标准差是一组数据的离散程度的度量,它是数据偏离平均值的平均距离。
标准差越大,说明数据的离散程度越大,反之则越小。
标准差的计算公式是,标准差=平方根(∑(x-μ)²/n),其中x代表每个数据点,μ代表数据的平均值,n代表数据的个数。
标准差的单位和原始数据的单位是一样的,它可以帮助我们更好地理解数据的分布情况。
接下来,我们来看看方差。
方差也是用来衡量数据的离散程度的,它是每个数据点与平均值之差的平方的平均值。
方差越大,表示数据的离散程度越大,反之则越小。
方差的计算公式是,方差=∑(x-μ)²/n,其中x代表每个数据点,μ代表数据的平均值,n代表数据的个数。
方差的单位是原始数据的单位的平方,它也可以帮助我们更好地理解数据的分布情况。
那么,标准差和方差之间的区别是什么呢?首先,它们的计算公式不同,标准差是方差的平方根。
其次,它们的单位不同,标准差的单位和原始数据的单位是一样的,而方差的单位是原始数据的单位的平方。
最后,它们的意义也略有不同,标准差更直观地表示了数据的离散程度,而方差更多地用于数学推导和统计分析中。
在实际应用中,我们应该根据具体情况选择使用标准差还是方差。
如果我们更关心数据的离散程度,并且希望用一个和原始数据单位相同的指标来表示,那么我们可以选择使用标准差。
而如果我们更关心数据的变化程度,并且希望用一个能够进行数学推导和统计分析的指标来表示,那么我们可以选择使用方差。
总的来说,标准差和方差都是用来衡量数据的离散程度的重要指标,它们在统计学和数据分析中都有着广泛的应用。
我们在实际应用中应该根据具体情况选择使用标准差还是方差,以更好地理解和分析数据的分布情况。
希望本文对标准差和方差的区别有所帮助。
方差、标准差、均方差、均方误差的区别及意义

方差、标准差、均方差、均方误差的区别及意义百度百科上的方差定义如下:(方差)是用概率论和统计方差来度量随机变量或一组数据的离散程度概率论中的方差用来衡量随机变量与其数学期望(即平均值)之间的偏离程度统计学中的方差(样本方差)是每个数据与其平均值之差的平方和的平均值在许多实际问题中,研究方差,即偏离的程度具有重要意义。
如果看这样一段文字,可能会有点费解。
首先,从公式开始。
对于一组随机变量或统计数据,的期望值用E(X)表示,即随机变量或统计数据的平均值,,然后在找到期望值之前将每个数据与平均值之间服从正态分布。
那么我们就不能通过方差直接确定学生偏离平均值多少分。
通过标准差,我们可以直观地得到学生分数分布在0.6826范围内的概率,大约等于34.2%*23,均方差是多少?标准偏差,在中国环境中通常也称为均方误差,不同于均方误差(均方误差是距离每个数据真实值的平方的平均值,即误差平方的平均值)。
计算公式在形式上接近方差。
它的根叫做均方根误差,在形式上接近标准偏差)。
标准偏差是偏离平均值的平方的平均值后的平方根,用σ表示标准差是方差的算术平方根从上面的定义,我们可以得到以下几点:1 .均方偏差是标准偏差,标准偏差是标准偏差2,均方误差不同于均方误差3,均方误差是距离每个数据真实值的平方和的平均值。
例如,我们想测量房间的温度,不幸的是我们的温度计不够精确。
因此,有必要测量5次以获得一组数据[x1,x2,x3,x4,x5]。
假设温度的实际值是x,数据和实际值之间的误差e是x-Xi,那么均方误差MSE=一般来说,均方误差是数据序列和平均值之间的关系,而均方误差是数据序列和实际值之间的关系,所以我们只需要了解实际值和平均值之间的关系。
方差和标准差的区别

方差和标准差的区别方差和标准差是统计学中常用的两个概念,它们都是用来衡量数据的离散程度的。
虽然它们都是用来衡量数据的离散程度,但是它们之间存在着一些区别。
在统计学中,了解方差和标准差的区别对于正确理解数据分布的特征至关重要。
首先,我们先来了解一下方差的概念。
方差是指每个数据与平均值之间的差值的平方的平均数。
方差越大,代表数据的离散程度越大,反之则表示数据的离散程度越小。
方差的计算公式为,方差=Σ(Xi-μ)^2/n,其中Xi代表每个数据,μ代表平均值,n代表数据的个数。
方差的单位是原数据的单位的平方。
接下来,我们来看一下标准差的概念。
标准差是方差的平方根,它用来衡量数据的离散程度,是最常用的衡量数据离散程度的指标之一。
标准差的计算公式为,标准差=√方差,它的单位和原数据的单位是一样的。
在实际应用中,方差和标准差都有各自的优势和不足。
方差对数据的极端值非常敏感,当数据中存在离群值时,方差会受到极端值的影响而变大。
而标准差则相对稳定一些,因为它是方差的平方根,对数据的极端值不太敏感。
因此,在处理含有离群值的数据时,通常会选择使用标准差来衡量数据的离散程度。
另外,方差和标准差在解释数据的离散程度时,具有一定的相对性。
方差的数值大小和原始数据的数值大小有关,因为方差是原始数据与均值的差值的平方的平均数,所以当原始数据的数值较大时,方差的数值也会变大。
而标准差则是方差的平方根,它的数值大小和原始数据的数值大小没有直接的关系,因此可以更好地比较不同数据集的离散程度。
总的来说,方差和标准差都是衡量数据离散程度的重要指标,它们都可以反映数据的波动情况。
但是在实际应用中,我们需要根据具体情况来选择使用哪个指标。
如果数据中存在离群值,通常会选择使用标准差来衡量数据的离散程度;如果需要比较不同数据集的离散程度,通常会选择使用方差来进行比较。
在数据分析和统计推断中,正确理解和使用方差和标准差是非常重要的,它们可以帮助我们更好地理解和解释数据的特征,为决策提供更可靠的依据。
标准差和方差的关系

标准差和方差的关系在统计学中,标准差和方差是两个常用的概念,用于描述数据集的离散程度。
尽管它们有些相似,但它们之间存在着一定的差异。
本文将介绍标准差和方差的定义、计算方法以及它们之间的关系。
1. 方差的定义和计算方法方差是用来衡量数据集中各个数据与其均值之间的偏差程度。
假设我们有一个包含 n 个观测值的数据集,分别表示为x1, x2, …, xn。
首先,我们需要计算这些观测值的平均值μ,计算公式如下:μ = (x1 + x2 + ... + xn) / n然后,我们需要计算每个观测值与平均值之间的差的平方,并将所有差的平方相加,得到方差的计算结果:方差 = ((x1 - μ)² + (x2 - μ)² + ... + (xn - μ)²) / n方差可以帮助我们分析数据集内部的波动性,即各个观测值与平均值的偏离程度。
方差越大,说明数据集内观测值之间的差异越大。
2. 标准差的定义和计算方法标准差是方差的平方根,用于度量数据集中各个观测值与其均值之间的平均偏差程度。
标准差是方差的一种更常用的衍生度量。
计算标准差的公式如下:标准差 = sqrt(方差)标准差可以衡量数据集的离散程度,它的值越大,说明数据集内部的观测值越分散。
3. 标准差和方差的关系标准差和方差之间存在着紧密的关系。
方差是标准差的平方,而标准差是方差的平方根。
具体来说,标准差和方差之间的关系可以用如下公式表示:方差 = 标准差²通过这个公式,我们可以相互转换标准差和方差。
当我们知道方差时,可以通过计算其平方根得到标准差;而当我们知道标准差时,可以通过计算其平方得到方差。
此外,标准差和方差都是描述数据集的离散程度的量度,但由于标准差使用了方差的平方根,因此它的量级与观测值保持一致,更易于理解和解释。
4. 例子为了更好地理解标准差和方差的关系,我们来看一个简单的例子。
假设我们有以下 5 个观测值的数据集:3, 4, 5, 6, 7。
方差和标准差区别

方差和标准差区别方差和标准差是统计学中常用的两个概念,它们都是用来衡量数据的离散程度的。
在实际应用中,我们经常会遇到这两个概念,但是很多人对它们的区别并不是很清楚。
本文将为您详细解释方差和标准差的区别,希望能帮助您更好地理解和运用这两个概念。
首先,让我们来了解一下方差和标准差分别是什么。
方差是一组数据与其平均值之差的平方和的平均值,它是衡量数据离散程度的一种方法。
标准差则是方差的平方根,它也是衡量数据离散程度的一种方法。
简而言之,方差和标准差都是用来描述数据的分散程度的统计量。
那么,方差和标准差之间的区别在哪里呢?首先,方差的计算过程比标准差稍微复杂一些,因为在计算方差时需要先求出平均值,然后再计算每个数据与平均值之差的平方和,最后再除以数据的个数。
而标准差则是方差的平方根,所以在计算过程上相对简单一些。
因此,从计算的角度来看,标准差相对更容易理解和计算。
其次,方差和标准差的单位也有所不同。
方差的单位是原数据的单位的平方,而标准差的单位与原数据的单位相同。
这意味着,当我们比较不同数据集的离散程度时,标准差更容易比较,因为它的单位与原数据的单位一致,更具有可比性。
另外,方差和标准差在解释数据分散程度时的表达方式也有所不同。
方差是数据离散程度的平方,这使得它对原始数据的解释不够直观,而标准差则是方差的平方根,更接近于原始数据的离散程度,更容易理解和解释。
最后,方差和标准差在应用上也有所不同。
在实际问题中,我们更多地会使用标准差来衡量数据的离散程度,因为它更直观、更容易比较,更符合我们对数据分散程度的直观认识。
而方差在一些特定的统计推断和模型中会有更多的应用,比如方差分析等。
综上所述,方差和标准差虽然都是用来衡量数据的离散程度的统计量,但在计算方法、单位、解释方式和应用上都有所不同。
在实际应用中,我们需要根据具体情况选择合适的统计量来描述数据的离散程度,以便更准确地理解和解释数据。
希望本文能够帮助您更好地理解和运用方差和标准差这两个重要的统计概念。
方差和标准差 知识讲解

方差和标准差——知识讲解【学习目标】1. 了解方差和标准差的概念,会计算简单数据的方差,体会它们刻画数据离散程度的意义;2. 知道可以通过样本的方差来推断总体的方差.能解释统计结果,根据结果作出简单的判断和预测;3. 能综合运用统计知识解决一些简单的实际问题. 【要点梳理】要点一、方差和标准差 1.方差在一组数据12,,n x x x …,中,设它们的平均数是x ,各数据与平均数的差的平方的平均数()[]222212)(...)(1x x x x x x nS n -++-+-=叫做这组数据的方差. 方差越大,说明数据的波动越大,越不稳定. 要点诠释:(1)方差反映的是一组数据偏离平均值的情况. 方差越大,稳定性越差;反之,则稳定性越好.(2)一组数据的每一个数都加上(或减去)同一个常数,所得的一组新数据的方差不变. (3)一组数据的每一个数据都变为原来的k 倍,则所得的一组新数据的方差变为原来的2k 倍.2.标准差一般地,一组数据的方差的算术平方根称为这组数据的标准差. 要点诠释:(1)标准差的数量单位与原数据一致.(2)一组数据的方差或标准差越小,这组数据的离散程度越小,这组数据就越稳定. 要点二、方差和标准差的联系与区别联系:方差和标准差都是用来衡量一组数据偏离平均数的大小(即波动大小)的指标,常用来比较两组数据的波动情况.区别:方差是用“先平均,再求差,然后平方,最后再平均”的方法得到的结果,主要反映整组数据的波动情况,是反映一组数据与其平均值离散程度的一个重要指标,每个数据的变化都将影响方差的结果,是一个对整组数据波动情况更敏感的指标.在实际使用时,往往计算一组数据的方差,来衡量一组数据的波动大小. 方差的单位是原数据单位的平方,而标准差的单位与原数据单位相同.【典型例题】类型一、方差和标准差1. 一组数据-2,-1,0,1,2的方差是( )A .1B .2C .3D .4【思路点拨】按照“先平均,再求差,然后平方,最后再平均”的方法,利用求方差的公式:()[]222212)(...)(1x x x x x x nS n -++-+-=计算. 【答案】B【解析】该组数据的平均数是0,所以215s =2222(2)(1)12⎡⎤-+-++⎣⎦=2. 【总结升华】此类题关键是掌握求方差的步骤,记准求方差的公式.举一反三:【变式】学校篮球队五名队员的年龄分别为1715171615,,,,,其方差为0.8,则3年后这五名队员年龄的方差为______. 【答案】0.8.2.已知某样本的标准差是2,则这个样本的方差是( ) A.1 B.2 C.2 D.4【思路点拨】根据标准差的概念计算.标准差是方差的算术平方根. 【答案】D ;【解析】解:由于方差的算术平方根就是标准差,所以样本的方差=22=4.故选D .【总结升华】正确理解标准差的概念,是解决本题的关键.标准差是方差的算术平方根. 举一反三:【变式】下列说法:其中正确的个数有( ) (1)方差越小,波动性越小,说明稳定性越好; (2)一组数据的众数只有一个;(3)数据2,2,3,2,2,5的众数为4; (4)一组数据的标准差一定是正数.A .0个B .1个C .2个D .4个 【答案】B.提示:(1)正确.类型二、方差和标准差的实际应用3.甲、乙两班举行汉字输入比赛,•参赛学生每分钟输入汉字的个数经统计计算后,填入下表:班级 参加人数 中位数 方差 平均字数 甲 55 149 191 135 乙55151110135(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字150个为优秀) (3)甲班学生成绩的波动情况比乙班成绩波动大. A .(1)(2) B .(1)(2)(3) C .(2)(3) D .(1)(3) 【思路点拨】理清表格中所列数据代表的含义,以及数据差异而导致的不同. 【答案】B【解析】甲、乙两班学生的平均字数都是135个/分钟,所以平均水平相同;从中位数上看,乙班的151大于甲班的149,表明乙班优秀的人数多于甲班优秀的人数;从方差上看,甲班的方差大于乙班的方差,所以甲班学生成绩的波动情况比乙班成绩波动大.因此,(1)(2)(3)都正确,选B. 【总结升华】此类题关键是要能从表格中筛选出所需要的信息,理解每个数据所代表的含义. 举一反三: 【变式】(2015•崇左)甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均分是x 甲=85,x 乙=85,x 丙=85,x 丁=85,方差是2S 甲=3.8,2S 乙=2.3,2S 丙=6.2,2S 丁=5.2,则成绩最稳定的是( )A .甲B .乙C .丙D .丁 【答案】B.解:∵2S 甲=3.8,2S 乙=2.3,2S 丙=6.2,2S 丁=5.2,∴2S 乙<2S 甲<2S 丁<2S 丙, ∴成绩最稳定的是乙. 故选B .4.(2016春•商水县期末)甲、乙两种水稻试验田连续5年的平均单位面积产量如下:(单位:吨/公顷)品种 第1年 第2年 第3年 第4年 第5 年 甲 9.8 9.9 10.1 10 10.2 乙9.410.310.89.79.8(1)哪种水稻的平均单位面积产量比较高? (2)哪种水稻的产量比较稳定.【思路点拨】首先求得平均产量,然后求得方差,比较方差,越小越稳定. 【答案与解析】 解:(1)()19.89.910.11010.2105=++++=x 甲, ()19.410.310.89.7105=++++9.8=x 乙, 所以甲、乙两种水稻的平均产量一样高; (2)甲中水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02, 乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.244. ∴0.02<0.244,∴产量比较稳定的水稻品种是甲.【总结升华】此题考查了方差,用到的知识点是方差和平均数的计算公式,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.举一反三: 【变式】为了比较甲、乙两种水稻的长势,农技人员从两块试验田中,分别随机抽取5棵植株,将测得的苗高数据绘制成下图:请你根据统计图所提供的数据,计算平均数和方差,并比较两种水稻的长势. 【答案】5.8 5.2x x ==乙甲∵,,∴甲种水稻比乙种水稻长得更高一些.222.160.56S S ==乙甲∵,,∴乙种水稻比甲种水稻长得更整齐一些.5.(2015春•安达市期末)甲、乙两台机床同时加工直径为10mm 的同种规格零件,为了检查两台机床加工零件的稳定性,质检员从两台机床的产品中各抽取5件进行检测,结果如下(单位:mm ):甲 10 9.8 10 10.2 10 乙 9.9 10 10 10.1 10(1)分别求出这两台机床所加工零件直径的平均数和方差;(2)根据所学的统计知识,你认为哪一台机床生产零件的稳定性更好一些,说明理由. 【思路点拨】(1)根据所给的两组数据,分布求出两组数据的平均数,再利用方差公式求两组数据的方差即可.(2)根据甲的方差大于乙的方差,即可得出乙机床生产的零件稳定性更好一些. 【答案与解析】 解:(1)∵甲机床所加工零件直径的平均数是:(10+9.8+10+10.2+10)÷5=10,乙机床所加工零件直径的平均数是:(9.9+10+10+10.1+10)÷5=10,植株编号 1 2 3 4 5甲种苗高 7 5 4 5 8乙种苗高 6 4 5 6 5∴甲机床所加工零件直径的方差=[(10﹣10)2+(9.8﹣10)2+(10﹣10)2+(10.2﹣10)2+(10﹣10)2]=0.013,乙机床所加工零件直径的方差=[(9.9﹣10)2+(10﹣10)2+(10﹣10)2+(10.1﹣10)2+(10﹣10)2]=0.004,(2)∵S 2甲>S 2乙,∴乙机床生产零件的稳定性更好一些.【总结升华】本题考查了平均数和方差,一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大. 举一反三:【变式】某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次甲 95 82 88 81 93 79 84 78 乙8375808090859295(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由. 【答案】解:1(9582888193798478)858x =+++++++=甲(分), 1(8375808090859295)858x =+++++++=乙(分).甲、乙两组数据的中位数分别为83分、84分. (2)由(1)知85x x ==甲乙分,所以22221[(9585)(8285)(7885)]35.58s =-+-++-=甲, 22221[(8385)(7585)(9585)]418s =-+-++-=乙.①从平均数看,甲、乙均为85分,平均水平相同; ②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为x x =甲乙,22s s <乙甲,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以应派乙参赛更有望取得好成绩.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方差和标准差的区别和联系
方差和标准差的区别和联系,概念不同,计算方法不同,涵盖范围不同。
1、概念不同。
标准差是总体各单位标准值与其平均数离差平方的算术平均数的平方根。
方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。
2、计算方法不同。
样本标准差=方差的算术平方根=s=sqrt((x1-x)^2+(x2-x)^2+……(xn-x)^2)/(n-1))。
方差的计算公式为:设一组数据x1,x2,x3……xn中,各组数据与它们的平均数的差的平方分别是(x1-),(x2-)……(xn-),那么我们用他们的平均数来衡量这组数据的波动大小,并把它叫做这组数据的方差。
3、涵盖范围不同。
由于方差是数据的平方,一般与检测值本身相差太大,人们难以直观地衡量,所以常用方差开根号(取算术平方根)换算回来。
这就是标准差。
方差等于各个数据与其算术平均数的离差平方和的平均数。
其中,分别为离散型和连续型计算公式。
称为标准差或均方差。