轴对称(辅助线构造轴对称)
轴对称(全章知识梳理与考点分类讲解)(人教版)(教师版) 2024-2025学年八年级数学上册基础

专题13.12轴对称(全章知识梳理与考点分类讲解)第一部分【知识点归纳】【知识点一】轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.【知识点二】作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.【知识点三】等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.第二部分【题型展示与方法点拨】【题型1】利用轴对称的性质求值【例1】(2024八年级上·江苏·专题练习)如图,点P 在四边形ABCD 的内部,且点P 与点M 关于AD 对称,PM 交AD 于点G ,点P 与点N 关于BC 对称,PN 交BC 于点H ,MN 分别交AD BC ,于点E F ,.(1)连接PE PF ,,若12cm MN =,求PEF !的周长;(2)若134C D ∠+∠=︒,求HPG ∠的度数.【答案】(1)12cm (2)134°【分析】本题主经考查了轴对称与多边形综合.熟练掌握轴对称性质,多边形内角和公式,是解决问题的关键.n 边形内角和公式()2180n -⋅︒.(1)根据轴对称性质得到,PE ME =,PF NF =,得到PEF !的周长等于线段MN 的长度,为12cm .(2)根据轴对称性质得到,PM AD ⊥,90PGA ∠=︒,PN BC ⊥,90PHB ∠=︒,根据四边形ABCD 内角和为360︒与134C D ∠+∠=︒,得到226A B ∠+∠=︒,根据五边形ABFPE 内角和为540︒,得到134HPG ∠=︒.解:(1)如图,∵点P 与点M 关于AD 对称,∴PE ME =,∵点P 与点N 关于BC 对称,∴PF NF =,∵12ME EF FN MN ++==,∴PEF !的周长为12cm .(2)解:∵点P 与点M 关于AD 对称,∴PM AD ⊥,即90PGA ∠=︒,∵点P 与点N 关于BC 对称,∴PN BC ⊥,即90PHB ∠=︒,∵360A B C D ∠+∠+∠+∠=︒,134C D ∠+∠=︒,∴226A B ∠+∠=︒,∵540A B PHB HPG PGA ∠+∠+∠+∠+∠=︒,∴134HPG ∠=︒.【变式1】(23-24七年级下·广东深圳·期末)如图,四边形ABCD 中,AB AD =,将ABC V 沿着AC 折叠,使点B 恰好落在CD 上的点B '处,若110BAD ∠=︒,则ACB =∠()A .55︒B .45︒C .40︒D .35︒【答案】D 【分析】本题主要考查了轴对称的性质,四边形内角和以及三角形外角性质的运用,解决问题的关键是作辅助线构造四边形AOB E ',解题时注意:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.连接AB ',BB ',过A 作AE CD ⊥于E ,依据BAC B AC '∠=∠,DAE B AE '∠=∠,即可得出12CAE BAD ∠=∠,再根据四边形内角和以及三角形外角性质,即可得到1902ACB ACB BAD '∠=∠=︒-∠.解:如图,连接BB ',过A 作AE CD ⊥于E ,点B 关于AC 的对称点B '恰好落在CD 上,AC ∴垂直平分BB ',AB AB '∴=,BAC B AC '∴∠=∠,AB AD = ,AD AB '∴=,又AE CD ⊥Q ,DAE B AE '∴∠=∠,1552CAE BAD ∴∠=∠=︒,又90AEC =︒∠ ,35ACB ACB '∴∠=∠=︒,故选:D .【变式2】(22-23八年级上·江苏镇江·阶段练习)如图,APT △与CPT △关于直线PT 对称,A APT ∠=∠,延长AT 交PC 于点F ,当A ∠=︒时,FTC C ∠=∠.【答案】36【分析】本题考查轴对称的性质,三角形内角和定理,三角形的外角的性质等知识,证明2APF AFP A ∠∠∠==,利用三角形内角和定理构建方程求解即可.解:APT 与CPT △关于直线PT 对称,A C TA TC APT CPT ∠∠∠∠∴===,,,A APT ∠∠= ,A C APT CPT ∠∠∠∠∴===,FTC C ∠∠= ,22AFP C FTC C A ∠∠∠∠∠∴=+==,180A APF AFP ∠∠∠++=︒ ,5180A ∴∠=︒,36A ∴∠=︒,故答案为:36.【题型2】利用折叠的特征求值【例2】(23-24七年级下·河南新乡·期末)如图,在长方形纸片ABCD 中,点E 在边AD 上,点F 在边BC 上,四边形CDEF 沿EF 翻折得到四边形C D EF ''且点D ¢恰好落在边AB 上;将AED '△沿ED '折叠得到A ED ''△且点A '恰好落在边BC 上.(1)若77BFE ∠=︒,则BFC '∠=.(2)若50A D B '∠='︒,求A EF '∠的度数.【答案】(1)26︒(2)52.5A EF '∠=︒【分析】本题考查了折叠的性质,熟练用折叠的性质进行角度的转换是解题的关键.(1)根据折叠的性质可得EFC EFC '∠=∠,设BFC x '∠=,则可得77EFC x '∠=+︒,根据180EFB EFC ∠+∠=︒列方程,即可解答;(2)根据50A D B '∠='︒可求得EA F '∠,再求出AED '∠和D EA ''∠,利用折叠的性质即可得到D EF '∠,即可解答.解:(1) 四边形CDEF 沿EF 翻折得到四边形C D EF ''且点D ¢恰好落在边AB 上,EFC EFC '∴∠=∠,设BFC x '∠=,则可得77EFC EFC x '∠=∠=+︒,根据180EFB EFC ∠+∠=︒可得7777180x ︒++︒=︒,解得26x =︒,故答案为:26︒;(2)解:在A D B '' 中,∵50A D B '∠='︒,90B Ð=°,40D A B ''∴∠=︒,∵点A '恰好落在边BC 上,90D A E A ''∴∠=∠=︒.180904050EA F ∴∠=︒-︒-︒='︒,AD BC ∥ ,50AEA EA F ''∴∠=∠=︒,1252AED A ED AEA ∴︒''''∠=∠=∠=由折叠的性质,知()1180257752D EF DEF ∠=∠=⨯︒-︒=︒'.52.5A EF D EF A ED ∴∠=∠-'='∠''︒.【变式1】(23-24九年级上·山东枣庄·开学考试)如图,四边形ABCD 为一矩形纸带,点E F 、分别在边AB CD 、上,将纸带沿EF 折叠,点A D 、的对应点分别为A ''、D ,若235∠=︒,则1∠的度数为()A .62.5︒B .72.5︒C .55︒D .45︒【答案】B 【分析】本题考查了邻补角的性质,折叠的性质及平行线的性质,由235∠=︒可得145AEA '∠=︒,再利用折叠的性质求得AEF ∠的度数,然后利用平行线性质即可求得答案,掌握折叠的性质是解题的关键.解:∵235∠=︒,∴18035145AEA ∠=︒-︒='︒,由折叠性质可得,172.52AEF A EF AEA ∠='∠='∠=︒,∵AB CD ∥,∴272.5AEF ∠=∠=︒,故选:B .【变式2】(2024八年级上·江苏·专题练习)如图,在ABC V 和DCB △中,90,,A D AC BD ∠=∠=︒相交于点E ,AE DE =.将CDE 沿CE 折叠,点D 落在点D ¢处,若30BED ∠='︒,则BCD '∠的大小为.【答案】22.5︒【分析】本题主要考查了翻折变换(折叠问题),全等三角形的判定与性质等知识点,解决本题的关键是掌握翻折的性质.证明()ASA ABE DCE ≌,得,ABE DCE BE CE ∠=∠=,然后由翻折的性质和三角形内角和定理即可解决问题.解:在ABE 和DCE △中,90A D AE DE AEB DEC ∠==︒⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABE DCE ≌,∴,ABE DCE BE CE ∠=∠=,∴EBC ECB ∠=∠,由翻折可知:,D CE DCE D EC DEC ''∠=∠∠=∠,∵30BED ∠='︒,∴()118030752D EC DEC AEB ∠=∠=∠=︒-︒='︒,∴907515ABE ∠=︒-︒=︒,∴15ABE DCE D CE '∠=∠=∠=︒,∵,75BE CE AEB =∠=︒,∴37.5EBC ECB ∠=∠=︒,∴37.51522.5BCD EBC D CE ∠=∠-∠=︒-︒=''︒,故答案为:22.5︒.【题型3】线段垂直平分线的性质与判定求值【例3】(23-24八年级上·江苏宿迁·期中)如图,AD 是ABC 的角平分线,DE DF 、分别是ABD △和ACD 的高.(1)试说明AD 垂直平分EF ;(2)若8628ABC AB AC S === ,,,求DE的长.【答案】(1)详见解析(2)4【分析】此题考查了角平分线的性质、全等三角形的判定和性质、垂直平分线的判定等知识,证明()Rt Rt HL AED AFD ≌是解题的关键.(1)利用角平分线的性质证明DE DF =,证明()Rt Rt HL AED AFD ≌,则AE AF =,即可证明结论;(2)根据28ABC S =△列式计算即可.解:(1)证明:∵AD 是ABC ABC △△的角平分线,DE DF 、分别是ABD △和ACD 的高.∴DE DF =,在Rt AED △与Rt AFD △中,AD AD DE DF =⎧⎨=⎩,∴()Rt Rt HL AED AFD ≌,∴AE AF =,∵DE DF =,∴AD 垂直平分EF ;(2)解:∵DE DF =,∴()11128222ABD ACD S S AB ED AC DF DE AB AC +=⋅+⋅=+= ,∵14AB AC +=,∴4DE =.【变式1】(23-24八年级上·四川巴中·期末)如图,在ABC V 中,分别以点A 和点B 为圆心,大于12AB长为半径画弧,两弧相交于点M 、N ,作直线MN ,交BC 于点D ,连接AD .若7AC =,12BC =,则ADC △的周长为()A .12B .14C .19D .26【答案】C【分析】由作图可知,MN 是线段AB 的垂直平分线,根据垂直平分线的性质,可得DA DB =,通过等量代换即可求解,本题考查了垂直平分线的判定和性质,解题的关键是:从作图方法中识别出垂直平分线的作法.解:由题意可得,MN 是线段AB 的垂直平分线,DA DB ∴=,71219ABC C AC AD CD AC CD BD AC BC =++=++=+=+= ,故选:C .【变式2】(23-24九年级上·重庆·期末)如图在ABC V 中,D 为AB 中点,DE AB ⊥,180ACE BCE ∠+∠=︒,EF BC ⊥交BC 于F ,8AC =,12BC =,则BF 的长为.【答案】10【分析】本题考查了线段垂直平分线的性质定理,全等三角形的判定及性质,角平分线的性质定理等;连接AE ,过点E 作EG AC ⊥交AC 的延长线于点G ,由线段垂直平分线的性质得EA EB =,由角平分线的性质得EG EF =,由HL 得Rt Rt EFC EGC ≌ 由全等三角形的性质得CF CG =,同理可得BF AG =,即可求解;掌握相关的判定方法及性质,能根据题意作出恰当的辅助线,构建全等三角形是解题的关键.解:如图,连接AE ,过点E 作EG AC ⊥交AC 的延长线于点G ,D 为AB 中点,DE AB ⊥,EA EB ∴=,180ACE BCE ∠+∠=︒ ,180ACE ECG ∠+∠=︒,ECG BCE ∴∠=∠,EF BC ⊥ ,EG AC ⊥,EG EF ∴=,在Rt EFC △和Rt EGC 中,CE CE EF EG=⎧⎨=⎩,Rt Rt EFC EGC ∴≌ (HL ),CF CG ∴=,同理可得:Rt Rt BFE AGE ≌ ,BF AG ∴=,BC CF AC CG ∴-=+,128CF CF ∴-=+,解得:2CF =,12210BF ∴=-=,故答案:10.【题型4】利用等腰三角形的性质与判定求值或证明【例4】(2024八年级上·江苏·专题练习)如图,在ABC V 中,AC BC =,120ACB ∠=°,CD 是AB 边上的中线,BD 的垂直平分线EF 交BC 于点E ,交AB 于点F ,15CDG ∠=︒.(1)求证:AD AG =;(2)试判断CDE 的形状,并说明理由.【答案】(1)见解析;(2)等边三角形,见解析【分析】本题考查了等腰三角形的性质与判定,线段垂直平分线的性质,等边三角形的判定,掌握等腰三角形的性质与判定是解题的关键.(1)根据等腰三角形的性质得出CD AB ⊥,30A B ==︒∠∠,AD DB =,进而根据15CDG ∠=︒,得出AGD ADG ∠=∠,根据等角对等边即可得证;(2)根据EF 是BD 的垂直平分线,得出DE EB =,根据等边对等角得出30EDB B ∠=∠=︒,进而得出60DCE CDE ∠=∠=︒,可得CDE 是等边三角形.(1)证明:∵AC BC =,120ACB ∠=°,CD 是BC 边上的中线,∴CD AB ⊥,()1180302A B ACB ∠=∠=︒-∠=︒,AD BD =,∴90ADC CDB ∠=∠=︒,∵15CDG ∠=︒,∴9075ADG CDG ∠=︒-∠=︒,∵18075AGD A ADG ∠=︒-∠-∠=︒,∴AGD ADG ∠=∠,∴AD AG =;(2)结论:CDE 是等边三角形.∵EF 垂直平分线段BD ,∴DE EB =,∵30B ∠=︒,∴30EDB B ∠=∠=︒,∴9060CDE EDB ∠=︒-∠=︒,又∵AC BC =,120ACB ∠=°,CD 是BC 边上的中线,∴1602DCB ACB ∠=∠=︒,∴60DCE CDE ∠=∠=︒,∴CDE 是等边三角形.【变式1】(23-24八年级上·湖南株洲·期末)在ABC V 中,36A ∠=︒,72B ∠=︒,则ABC V 是()A .钝角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【答案】B 【分析】本题考查三角形的内角和,等腰三角形的判定,根据三角形的内角和求出72C B ∠=∠=︒即可判断.解:在ABC V 中,36A ∠=︒,72B ∠=︒,∴18072C A B B ∠=︒-∠-∠=︒=∠,∴ABC V 是等腰三角形,故选:B .【变式2】(23-24八年级上·重庆沙坪坝·期末)如图,在ABC ∆中,AB AC =,AD BD =,DE AB ⊥于点E ,若4BC =,BDC 的周长为10,则AE 的长为.【答案】3【分析】本题考查等腰三角形的性质,熟练掌握等腰三角形三线合一是解题的关键.根据已知可得6BD CD +=,从而可得6AB AC ==,然后利用等腰三角形三线合一性质计算解答.解:4BC = ,且BDC 的周长为10,1046BD CD ∴+=-=,AD BD = ,6AD DC ∴+=,6AC ∴=,AB AC = ,6AB ∴=,AD DB = ,DE AB ⊥,132AE AB ∴==.故答案为:3.【题型5】利用等边三角形的性质与判定求值或证明【例5】(2024八年级上·江苏·专题练习)如图,已知Rt ABC △中,90ACB ∠=︒,CD AB ⊥于D ,BAC ∠的平分线分别交BC ,CD 于E 、F .(1)试说明CEF △是等腰三角形.(2)若点E 恰好在线段AB 的垂直平分线上,试说明线段AC 与线段AB 之间的数量关系.【答案】(1)见解析(2)12AC AB =【分析】(1)首先根据条件90ACB ∠=︒,CD AB ⊥,可证出90B BAC ∠+∠=︒,90CAD ACD ∠+∠=︒,再根据同角的补角相等可得到ACD B ∠=∠,再利用三角形的外角性质可得到CFE CEF ∠=∠,最后利用等角对等边即可得出答案;(2)由线段垂直平分线的性质得到AE BE =,根据等腰三角形的性质得到EAB B ∠=∠,由AE 是BAC ∠的平分线,得到CAE EAB ∠=∠,根据直角三角形的性质即可得到结论.解:(1)∵90ACB ∠=︒,∴90B BAC ∠+∠=︒,∵CD AB ⊥,∴90CAD ACD ∠+∠=︒,∴ACD B ∠=∠,∵AE 是BAC ∠的平分线,∴CAE EAB ∠=∠,∵EAB B CEA CAE ACD CFE ∠+∠=∠∠+∠=∠,,∴CFE CEF ∠=∠,∴CF CE =,∴CEF △是等腰三角形;(2)∵点E 恰好在线段AB 的垂直平分线上,∴AE BE =,∴EAB B ∠=∠,∵AE 是BAC ∠的平分线,∴CAE EAB ∠=∠,∴2CAB B ∠=∠,∵90ACB ∠=︒,∴90CAB B ∠+∠=︒,∴30B ∠=︒,∴12AC AB =.【点拨】此题主要考查了直角三角形综合,熟练掌握直角三角形性质,角平分线性质,三角形外角性质,等腰三角形的判定和性质,线段垂直平分线的性质,是解题的关键.【变式1】(23-24八年级上·福建福州·期末)如果,,a b c 为三角形的三边长,且满足()()()0a b b c c a ---=,那么该三角形的形状为()A .等腰三角形B .等边三角形C .不等边三角形D .无法确定【答案】D【分析】本题考查了等腰三角形和等边三角形的判定,掌握等腰三角形和等边三角形的判定方法是解题关键.根据()()()0a b b c c a ---=得到a b =或a c =或b c =或a b c ==,从而可以判定该三角形的形状.解:∵()()()0a b b c c a ---=,∴0a b -=或0b c -=或0c a -=或0a b b c c a -=-=-=,解得a b =或a c =或b c =或a b c ==,∴该三角形的形状为等腰三角形或等边三角形,故选:D .【变式2】(23-24九年级上·河北邯郸·期末)如图1,ABC V 和ADE V 是等边三角形,连接BD ,CE 交于点F .(1)BD CE 的值为;(2)BFC ∠的度数为︒.【答案】160【分析】本题考查了全等三角形的判定及性质,等边三角形的性质.(1)根据等边三角形的性质得出AB AC =,AD AE =,BAC DAE ∠=∠,再由DAE BAE BAC BAE ∠+∠=∠+∠,得出CAE BAD ∠=∠,利用SAS 可证得CAE BAD ≌△△,从而可得出结论;(2)由()SAS CAE BAD △≌△,可得ABD ACE ∠=∠,再根据AOC BOF ∠=∠,结合三角形内角和即可求解.解:(1)∵ABC V 和ADE V 是等边三角形,∴AB AC =,AD AE =,BAC DAE ∠=∠,∵DAE BAE BAC BAE ∠+∠=∠+∠,∴CAE BAD ∠=∠,∴()SAS CAE BAD △≌△,∴BD CE =,则1BD CE=,故答案为:1;(2)由()SAS CAE BAD △≌△,可得ABD ACE ∠=∠,∵AOC BOF ∠=∠,AOC ACE BAC BOF ABD BFC ∠+∠+∠=∠+∠+∠,∴60CFB BAC ∠=∠=︒,∴60BFC ∠=︒,故答案为:60.【题型6】利用30度所对的直角边等于斜边一半求值或证明【例6】(2024八年级上·江苏·专题练习)在Rt ABC △中,90ACB ∠=︒,M 是边AB 的中点,CH AB ⊥于点H ,CD 平分ACB ∠.(1)求证:CD 平分MCH ∠;(2)过点M 作AB 的垂线交CD 的延长线于点E ,求证:CM EM =;(3)AEM △是什么三角形?证明你的猜想.【答案】(1)见解析(2)见解析(3)AEM △是等腰直角三角形,证明见解析【分析】(1)根据直角三角形斜边上的中线等于斜边的一半得到AM CM BM ==,由等腰三角形的性质得到CAB ACM ∠=∠,由余角的性质得到CAB BCH ∠=∠,等量代换得到BCH ACM ∠=∠,根据角平分线的性质得到ACD BCD ∠=∠,即可得到结论;(2)根据EM AB ⊥,CH AB ⊥,得到EM AB ∥,由平行线的性质得到HCD MED ∠=∠,由于HCD MCD ∠=∠,于是得到MCD MED ∠=∠,即可得到结论;(3)根据CM EM =,AM CM BM ==,于是得到EM AM BM ==,由EM AB ⊥,推出AEM △是等腰直角三角形.(1)证明:Rt ABC △中,90ACB ∠=︒,M 是AB 边的中点,AM CM BM ∴==,CAB ACM ∴∠=∠,90CAB ABC ∴∠=-∠,CH AB ⊥ ,90BCH ABC ∴∠=-∠,CAB BCH ∴∠=∠,BCH ACM ∴∠=∠,CD 平分ACB ∠,ACD BCD ∴∠=∠,ACD ACM BCD BCH ∴∠-∠=∠-∠,即MCD HCD ∠=∠,CD ∴平分MCH ∠;(2)证明:EM AB ⊥ ,CH AB ⊥,∴EM CH ∥,HCD MED ∴∠=∠,HCD MCD ∠=∠ ,MCD MED ∴∠=∠,CM EM ∴=;(3)解:AEM △是等腰直角三角形,CM EM = ,AM CM BM ==,EM AM BM ∴==,EM AB ⊥ ,AEM ∴△是等腰直角三角形.【点拨】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰直角三角形的判定和性质,角平分线的定义,等腰三角形的性质,熟练掌握各定理是解题的关键.【变式1】(23-24九年级上·安徽合肥·期末)如图,ABC V 中,9030ACB A ∠=︒∠=︒,,CD AB ⊥于点D ,若1BD =,则AD 的长度为()A .5B .4C .3D .2【答案】C 【分析】本题主要考查直角三角形的性质,熟练运用“在直角三角形中,30︒角所对的直角边等于斜边的一半”是解题的关键.由含30︒角的直角三角形的性质可分别求得BC 和AB 的长,进而求得AD 的长.解:∵在ABC V 中,9030ACB A ∠=︒∠=︒,,∴=60B ∠︒,∵CD AB ⊥,∴30BCD ∠=︒,∴在Rt BCD △中,22BC BD ==,∴在Rt ABC △中,24AB BC ==,∴413AD AB BD =-=-=.故选:C .【变式2】(23-24七年级下·陕西西安·阶段练习)如图,在Rt ABC △中,90C ∠=︒,AD 是CAB △的平分线,DE 垂直平分AB ,若3CD =,则BD =.【答案】6【分析】本题主要考查线段垂直平分线的性质、30︒所对的直角边是斜边的一半,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.由角平分线和线段垂直平分线的性质可求得30B CAD DAB∠=∠=∠=︒,在Rt ACD△中,根据直角三角形的性质可求得AD,则可得出BD的长.解:DE垂直平分AB,DA DB∴=,B DAB∴∠=∠,AD平分CAB∠,CAD DAB∴∠=∠,90C∠=︒,390CAD∴∠=︒,30CAD∴∠=︒,26AD CD∴==,6BD AD∴==.故答案为:6.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2024·四川巴中·中考真题)如图,在ABCV中,D是AC的中点,CE AB⊥,BD与CE交于点O,且BE CD=.下列说法错误的是()A.BD的垂直平分线一定与AB相交于点EB.3BDC ABD∠=∠C.当E为AB中点时,ABCV是等边三角形D.当E为AB中点时,34BOCAECSS=△△【答案】D【分析】连接DE ,根据CE AB ⊥,点D 是AC 的中点得12DE AD CD AC ===,则BE DE =,进而得点D 在线段BD 的垂直平分线上,由此可对选项A进行判断;设ABD α∠=,根据BE DE =得EDB ABD α∠=∠=,的2AED EDB ABD α∠=∠+∠=,再根据DE AD =得2A AED α∠=∠=,则3BDC A ABD α∠=∠+∠=,由此可对选项B进行判断;当E 为AB 中点时,则12BE AB =,CE 是线段AB 的垂直平分线,由此得AC BC =,然后根据12BE AB =,12CD AC =,BE CD =得AB AC =,由此可对选项C进行判断;连接AO 并延长交BC 于F ,根据ABC V 是等边三角形得30OBC OAC ∠=∠=︒,则OA OB =,进而得2OB OF =,3AF OF =,由此得12OBC S BC OF ∆=⋅,1322ABC S BC AF BC OF ∆=⋅=⋅,由此可对选项D进行判断,综上所述即可得出答案.解:连接DE ,如图1所示:CE AB ⊥ ,点D 是AC 的中点,DE ∴为Rt AEC △斜边上的中线,12DE AD CD AC ∴===,BE CD = ,BE DE ∴=,∴点D 在线段BD 的垂直平分线上,即线段BD 的垂直平分线一定与AB 相交于点E ,故选项A 正确,不符合题意;设ABD α∠=,BE DE = ,EDB ABD α∴∠=∠=,2AED EDB ABD α∴∠=∠+∠=,DE AD = ,2A AED α∴∠=∠=,3BDC A ABD α∴∠=∠+∠=,即3BDC ABD ∠=∠,故选B 正确,不符合题意;当E 为AB 中点时,则12BE AB =,CE AB ⊥ ,CE ∴是线段AB 的垂直平分线,AC BC ∴=,12BE AB = ,12CD AC =,BE CD =,AB AC ∴=,AC BC AB ∴==,ABC ∴ 是等边三角形,故选C 正确,不符合题意;连接AO ,并延长交BC 于F ,如图2所示:当E 为AB 中点时,点D 为AC 的中点,∴根据三角形三条中线交于一点得:点F 为BC 的中点,当E 为AB 中点时,ABC V 是等边三角形,60ABC BAC ∴∠=∠=︒,AF BC ⊥,AF 平分OAC ∠,BD 平分ABC ∠,30OBC OAC ∴∠=∠=︒,OA OB ∴=,在Rt OBF △中,2OB OF =,2OA OB OF ∴==,3AF OA OF OF ∴=+=,12OBC S BC OF ∆∴=⋅,1322ABC S BC AF BC OF ∆=⋅=⋅,∴13OBC ABC S S ∆∆=,故选项D 不正确,符合题意.故选:D .【点拨】此题主要考查了直角三角形斜边上的中线,线段垂直平分线的性质,等腰三角形的判定与性质,等边三角形的判定和性质,理解直角三角形斜边上的中线,线段垂直平分线的性质,熟练掌握等腰三角形的判定与性质,等边三角形的判定和性质是解决问题的关键.【例2】(2024·江苏宿迁·中考真题)如图,在ABC V 中,5030B C ︒∠∠=︒=,,A 是高,以点A 为圆心,A 长为半径画弧,交AC 于点E ,再分别以B 、E 为圆心,大于12BE 的长为半径画弧,两弧在BAC ∠的内部交于点F ,作射线AF ,则DAF ∠=.【答案】10︒/10度【分析】本题主要考查角平分线的作法及三角形内角和定理,根据题意得出AF 平分BAC ∠,然后利用三角形内角和定理求解即可.解:因为5030B C ∠=︒∠=︒,,所以1805030100BAC ∠=︒-︒-︒=︒,根据题意得:AF 平分BAC ∠,所以1502BAF BAC ∠==︒,因为AD 为高,所以90BDA ∠=︒,所以180509040BAD ∠=︒-︒-︒=︒,所以504010DAF BAF BAD ∠=∠-∠=︒-︒=︒,故答案为:10︒.2、拓展延伸【例】(22-23八年级上·吉林长春·阶段练习)在等腰ABC V 中,CA CB =,30B ∠=︒,将一块足够大的直角三角尺PMN (90M ∠=︒、30MPN ∠=︒)按如图所示放置,顶点P 在线段AB 上滑动,三角尺的直角边PM 始终经过点C ,并且与CB 的夹角PCB α∠=,斜边PN 交AC 于点D .(1)当P 运动到AB 中点时,α=__________度;(2)当45α=︒时,请写出图中所有的等腰三角形(ABC V 除外)__________.(3)在点P 的滑动过程中,当PCD △的形状是以PC 为底的等腰三角形时,请在指定位置画出此时形成的图形,并指出此时图中的所有直角三角形(PMN 除外).不用说明理由.【答案】(1)60;(2)ACP △和PCD △;(3)此时图中的所有直角三角形是PBC △和APD △.【分析】本题属于三角形综合题,考查了全等三角形的判定与性质,等腰三角形的判定,外角性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.(1)根据等腰三角形的性质得到CP AB ⊥,求得90BPC ∠=︒,根据三角形的内角和定理即可得到结论;(2)根据三角形的内角和定理得到120BCA ∠=︒,求得1204575ACP ∠=︒-︒=︒,根据等腰三角形的判定定理得到ACP △是等腰三角形,求得PDC PCD ∠=∠,根据等腰三角形的判定定理得到PCD △是等腰三角形(3)当PD CD =时,PCD △以PC 为底的等腰三角形,根据等腰三角形的性质得到30PCD CPD ∠=∠=︒,即12030α-=°°,推出PBC △是直角三角形,根据三角形的内角和定理得到60CPB ∠=︒,求得603090BPD ∠=︒+︒=︒,于是得到APD △是直角三角形.解:(1)AC BC = ,点P 为AB 中点,CP AB ∴⊥,90BPC ∴∠=︒,30B ∠=︒ ,903060α∴=︒-︒=︒,故答案为:60;(2)CA CB = ,30B ∠=︒,30A B ∴∠=∠=︒,120BCA ∴∠=︒,45BCP α∠==︒ ,1204575ACP ∴∠=︒-︒=︒,75APC BCP B ∠=∠+∠=︒ ,ACP APC ∴∠=∠,ACP ∴△是等腰三角形,30CPD ∠=︒ ,45APD ∴∠=︒,75CDP A APD ∴∠=∠+∠=︒,PDC PCD ∴∠=∠,PCD ∴ 是等腰三角形,故答案为:ACP △和PCD △;(3)如图,120ACB ∠=︒ ,120PCD α∴∠=︒-,当PD CD =时,PCD △以PC 为底的等腰三角形,30PCD CPD ∴∠=∠=︒,即12030α-=°°,90α∴=︒;PBC ∴△是直角三角形,60CPB ∴∠=︒,6030BPD ∴∠=︒+︒,90APD ∴∠=︒,APD ∴ 是直角三角形,综上所述,此时图中的所有直角三角形是PBC △和APD △.。
2022七年级数学上册第二章轴对称阶段核心方法等腰三角形中作辅助线常用的八种方法鲁教版五四制

解法三:如图③,在BC上截取CE=CA,连接DE. 因为CD平分∠ACB,所以∠ACD=∠ECD. 又因为CD=CD,所以△ACD≌△ECD(SAS). 所以AD=DE,∠BAC=∠DEC. 因为∠BAC=2∠B,且易知∠DEC=∠B+∠BDE, 所以∠BDE=∠B.所以DE=BE, 所以AC+AD=CE+BE=BC.
所以△ABE≌△PBE(AAS).所以 BA=BP. 所以 BC=CP+BP=CE+AB.
(2)DE⊥DF. 解:因为△BED≌△AFD, 所以∠BDE=∠ADF. 所以∠BDE+∠EDA=∠EDA+∠ADF=90°. 所以∠EDF=90°. 所以DE⊥DF.
2 如图,在△ABC中,AC=2AB,AD平分∠BAC交BC于 D,E是AD上一点,且EA=EC.试说明:EB⊥AB.
解:如图,作EF⊥AC于点F. 因为EA=EC,所以AF=FC. 因为AC=2AB,所以AF=AB. 因为AD平分∠BAC,所以∠BAE=∠FAE. 又因为AE=AE,所以△ABE≌△AFE(SAS). 所以∠ABE=∠AFE=90°.所以EB⊥AB.
过点 E 分别作 EM⊥BA 交 BA 的延长线于点 M,EN⊥BC 于点 N. 因为 BE 平分∠ABC,EM⊥BA,EN⊥BC,所以 EM=EN. 因为∠BAC=100°,所以∠CAM=180°-100°=80°.
∠EAM=∠NDE=80°, 在△EMA 和△END 中,∠AME=∠DNE=90°,
第二章
轴对称
阶段核心方法 等腰三角形中作辅助线常用的八种方法
习题链接
温馨提示:点击 进入讲评
1
5
2
6
3
7
4
8
答案呈现
1 如图,在△ABC中,∠A=90°,AB=AC,D为 BC的中点,E,F分别是AB,AC上的点,且BE= AF.试说明: (1)DE=DF; (2)DE⊥DF.
八年级第十三章《轴对称》知识点及典型例题

第十三章《轴对称》一、知识点归纳(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。
4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。
5.画一图形关于某条直线的轴对称图形步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
(二)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。
(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)用坐标表示轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);(五)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)(六)关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);(七)等腰三角形1、等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
初中数学辅助线添加技巧:轴对称

初中数学辅助线添加技巧:轴对称方法总结1.图形的折叠是指某个图形或其部分沿某直线翻折,这条直线为对称轴.在近年来全国各地的中考题中,图形折叠问题渐渐成了考查的热点模型.思路:图形的折叠问题分为两类题型:一是考察图形折叠的不变性:只需抓住不变量,即对应边相等,对应角相等;二是考察图形折叠的折痕:只需抓住折痕垂直平分对应点所连的线段且平分对应边所成的夹角.2.轴对称变换是作点、线、图形关于某一直线的对称图形,从而使图形中隐藏条件凸显出来或将分散条件集中起来,从而达到解题目的.那么,我们在什么情况下应该想到用或作轴对称呢?以下给出几种常见考虑要用或作轴对称的基本图形.(1)线段或角度存在2倍关系时,可考虑对称;(2)有互余、互补关系的图形,可考虑对称;(3)角度和或差存在特殊角度的,可考虑对称;(4)路径最短问题,基本上运用轴对称,将分散的线段集中到两点之间,从而运用两点之间线段最短,来实现最短路径的求解.所以最短路径问题,需要考虑轴对称.几何最值问题的几种中考题型及解题作图方法如下所示.3.轴对称的基本模型(1)(2)(3)(4)典例精析例1.如图,在△ABC中,∠B=22.5°,边AB的垂直平分线交BC于点D,DF⊥AC于点F,交BC边上的高AE于点G,求证:EG=EC.GFED CBA证明:连接AD.21GFEDCBA∵点D 为AB 垂直平分线上一点, ∴DA DB =,∴22.5BAD B ∠=∠=︒, 又AE BC ⊥,∴45DAE ADE ∠=∠=︒, ∴DE AE =, ∵DF AC ⊥ ∴290C ∠+∠=︒, 又∵190C ∠+∠=︒, ∴12∠=∠, ∴AEC DEG △≌△, ∴EG GC =.点拨:本题用到了基本模型(4),线段的垂直平分线“模型”是典型的轴对称基本模型. 例2.(1)如图1,把矩形ABCD 沿EF 折叠,使点B 落在边AD 上的点B'处,点A 落在点A'处.若AE =a ,AB =b ,BF =c ,请写出a ,b ,c 之间的一个等量关系 .(2)如图2,Rt △ABC 中,∠ACB =90°,∠A =50°,,将其折叠,使点A 落在边CB 上A'处,折痕为CD ,则∠A'DB =( )A .40°B .30°C .20°D .10°(3)如图3,等边△ABC 的边长为1cm ,D 、E 分别是AB 、AC 边上的点,将△ADE 沿直线DE 折叠,点A 落在A'处,且点A'在△ABC 外部,则阴影部分图形的周长为 cm .(4)如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点记为A ′,折痕交AD 于点E ,若M 、N 分别是AD 、BC 边的中点,则A ′N = ; 若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(2n ≥,且n 为整数),则A ′N = (用含有n 的式子表示)图4图3图2图1N MABCDE ABCDEF ABCDA解(1)222c a b =+(提示B'E =BF =FB =c ) (2)D ;(3)3;(4(n ≥2,且n 为整数). 点拨:本例中几个题都是折叠问题,折叠与轴对称是密不可分的,对于折叠问题,我们的思路通常是确定对应边、对应角及折痕,折叠前后的图形全等,且折痕是对应点连线的垂直平分线,求线段长通常确定一个直角三角形或两个相似三角形,利用勾股定理和相似三角形的性质求解.例3.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,求折痕MN 的长度.NM A BCDEF解:方法一:过点M 作MHAD 交CD 于点H ,连接DE .H NM A BCD EF∵正方形ABCD ,MN 是折痕,∴,MN DE MH AD ⊥=, ∵E 是BC 中点, ∴4BE CE ==, 易证MHN DCE △≌△, ∴MN DE =,在Rt DCE △中,CD =8,EC =4,∴DE ==,∴MN =.方法二:延长NE 交AB 的延长线于点H ,由题意可知EN =DN ,CE =4.K HN M A B CDEF在Rt NEC △中,设DN =x , ∵222EN EC CN =+, ∴()22248x x =+- ∴5x =,∴5,3DN CN ==.易证,5,10NEC HEB HE NE HN ===△≌△, ∵ABCD ,∴DNM HMN ∠=∠. ∵DNM HNM ∠=∠, ∴HMN HNM ∠=∠. ∴10MH NH ==. 作NK AB ⊥于K ,∴3KB NC BH ===. ∴4MK =. ∵8KN =,∴MN ==点拨:本例是一道典型的考查折痕的问题,方法一应用了折痕垂直平分对应点所连线段,再用正方形中一个经典模型:并将MN 转化;方法运用了折痕平分对应边所成的夹角,和平行线一起构成等腰三角形.例4.在四边形ABCD 中,AB =30,AD =48,BC =14,CD =40,90ABD BDC ∠+∠=︒,求四边形ABCD 的面积.40144830A B CD解:作BD 的垂直平分线l ,以l 为对称轴,作ABD △关于l 的轴对称图形A'DB △.l A'40144830A B CD∴,30,48,ABD A'DB S S A'D AB A'B AD A'DB ABD =====∠=∠△△. ∴90A'DC A'DB BDC ABD BDC ∠=∠+∠=∠+∠=︒. ∴A'DC △是直角三角形.∴50A'C ,在A'BC △中,50,48,14A'C A'B AD BC ====. 而22222214481962304250050BC A'B A'C +=+=+===, ∴由勾股定理逆定理可知90A'BC =∠︒. ∴A'BC A'DC ABCD A'BCD S S S S ==+△△四边形四边形 1111481430403366009362222A'B BC A'D CD =+=⨯⨯+⨯⨯=+=. 点拨:题目给出两角互余,考虑直接将两角挪在一起,构成直角,进而得到特殊三角形,特殊图形具有特殊性质,便于我们做题.而此题我们利用轴对称达到这一目的.应用了基本模型(1),因此说互余、互补关系的图形与轴对称有着很奇妙的关系,也是轴对称的应用.例5.在四边形ABCD 中,连接AC ,BC =CD ,60BAC ACD ∠-∠=︒,求证:AD CD AB +≥.ABCD证明:以AC 所在直线为对称轴将ADC △翻折到AD'C △的位置,连接BD'.D'ABCD则,CD'CD BC ACD ACD'==∠=∠.∵60BCD'BAC ACD'BAC ACD ∠=∠-∠=∠-∠=︒, ∴D'BC △为等边三角形.∴AD CD AD'D'B AB +=+≥,等号成立时AC 平分BAD ∠.点拨:本题中出现角度差为特殊角60°,提示我们可以进行对称变换“构造”出60°角.例6.问题:已知△ABC 中,∠BAC =2∠ACB ,点D 是△ABC 内一点,且AD =CD ,BD =BA .探究∠DBC 与∠ABC 度数的比值.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明. (1)当∠BAC =90°时,依问题中的条件补全右图. 观察图形,AB 与AC 的数量关系为________________;当推出∠DAC =15°时,可进一步推出∠DBC 的度数为_________; 可得到∠DBC 与∠ABC 度数的比值为_______________.(2)当∠BAC ≠90°时,请你画出图形,研究∠DBC 与∠ABC 度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.ABC解:(1)图形补全如下图所示,ABCD①当∠BAC =90°时, ∵∠BAC =2∠ACB , ∴∠ACB =45°,在△ABC 中,∠ABC =180°-∠ACB -∠BAC =45°, ∴∠ACB =∠ABC , ∴AB =AC (等角对等边); ②当∠DAC =15°时, ∠DAB =90°-15°=75°,∵BD =BA ,∴∠BAD =∠BDA =75°, ∴∠DBA =180°-75°-75°=30°,∴∠DBC =45°-30°=15°,即∠DBC =15°, ∴∠DBC 的度数为15°; ③∵∠DBC =15°,∠ABC =45°, ∴∠DBC =15°:∠ABC =45°=1:3, ∴∠DBC 与∠ABC 度数的比值为1:3.(2)猜想:∠DBC 与∠ABC 度数的比值与(1)中结论相同.证明:如图,作∠KCA =∠BAC ,过B 点作BK ∥AC 交CK 于点K ,连接DK .654321l K ABCD E∴四边形ABKC 是等腰梯形, ∴CK =AB , ∵DC =DA , ∴∠DCA =∠DAC , ∵∠KCA =∠BAC , ∴∠KCD =∠3, ∴△KCD ≌△BAD , ∴∠2=∠4,KD =BD , ∴KD =BD =BA =KC . ∵BK ∥AC , ∴∠ACB =∠6,∵∠BAC =2∠ACB ,且∠KCA =∠BAC , ∴∠KCA =2∠ACB , ∴∠5=∠ACB ,∴∠5=∠6, ∴KC =KB , ∴KD =BD =KB , ∴∠KBD =60°,∵∠ACB =∠6=60°-∠1, ∴∠BAC =2∠ACB =120°-2∠1,∵∠1+(60°-∠1)+(120°-2∠1)+∠2=180°, ∴∠2=2∠1,∴∠DBC 与∠ABC 度数的比值为1:3.点拨:本题出现倍角关系,又有轴对称的基本模型(2)、(3),所以很容易想到用对称解决问题.本题的难点在于轴对称的选择.例7.(1)在正方形ABCD 中,M 是BC 的中点,2CM =,点P 是BD 上一动点,则PM PC +的最小值是 .(2)若将(1)中的正方形换成菱形且60ABC ∠=︒,其它条件不变,则PM PC +的最小值是 .(2)(1)M CDPAB PABCDM解:(1)2)点拨:求线段和最小时,可以利用对称性求解. 例8.阅读下列材料:问题:如图1,在四边形ABCD 中,M 是BC 边的中点,且90AMD ∠=︒,试判断AB +CD 与AD 之间的大小关系。
如何学初二轴对称证明题解题方法和技巧

如何学初二轴对称证明题解题方法和技巧【如何学初二轴对称证明题解题方法和技巧】引言:在初中数学的学习中,轴对称证明题是一个相对复杂且需要掌握一定技巧的知识点。
轴对称性是几何图形中重要的一种对称性质,理解和掌握轴对称证明题的解题方法和技巧对于提高数学水平至关重要。
本文将探讨如何学习初二轴对称证明题的解题方法和技巧,以帮助同学们更好地掌握这一知识点。
一、了解轴对称性质的基本概念1.1 轴对称性的定义轴对称性是指一个图形可以通过某条直线将图形分成两个完全相同的部分。
这条直线称为轴线或对称轴。
在轴对称性中,对于图形上的任意一点P,如果存在一点P',使得将P绕轴线旋转180度后能够得到P',则称图形具有轴对称性。
1.2 轴对称性的性质轴对称性具有以下基本性质:(1)轴对称图形的对称轴是唯一的;(2)轴对称图形上的任意两点关于对称轴对称;(3)轴对称图形上的任意点与对称轴的距离与与对称点的距离相等。
二、掌握轴对称证明题的基本方法2.1 观察和分析题目在解决任何数学问题时,首先需要仔细观察和分析题目。
对于轴对称证明题,要注意题目中是否提供了图形或几何图形的描述,还需明确题目中要求证明的内容。
2.2 使用已知条件在解轴对称证明题时,常常需要利用已知条件进行分析和推理。
已知某条边平行于对称轴,或已知某个点对称于另一个点等等。
2.3 利用轴对称性质进行推理轴对称图形具有特殊的性质,对称轴是图形的一个重要特征。
在解轴对称证明题时,可以利用轴对称性质进行推理。
可以通过证明两个点对称于第三个点,从而推出所要证明的结论。
2.4 使用辅助图形和方法在解决复杂的轴对称证明题时,有时可以借助辅助图形和方法来简化问题或引出结论。
可以通过构造辅助线或辅助图形,或利用相似性质等方法来解决问题。
三、练习和巩固知识点为了更好地掌握轴对称证明题的解题方法和技巧,同学们需要进行大量的练习和巩固。
可以选择一些相关的练习题,通过反复的实践来提高解题能力。
人教版数学八年级上第十二章“轴对称”简介

第十二章“轴对称”简介课程教材研究所李海东八年级上册第12章是“轴对称”,主要包括轴对称和等腰三角形的有关内容。
本章共安排了三个小节和两个选学内容,教学时间约需13课时,具体分配如下(仅供参考):12.1 轴对称3课时12.2 作轴对称图形3课时12.3 等腰三角形5课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图本章知识结构如下图所示:(二)教科书内容本章的主要内容是从生活中的图形入手,学习轴对称及其基本性质,欣赏、体验轴对称在现实生活中的广泛应用。
在此基础上,利用轴对称,探索等腰三角形的性质,学习它的判定方法,并进一步学习等边三角形。
轴对称是现实生活中广泛存在的一种现象,是密切数学与现实联系的重要内容。
在本章第1小节“轴对称”中,教科书立足于学生的生活经验和数学活动经历,从观察现实生活中的对称现象开始,引出轴对称图形和图形的轴对称的概念,从整体上概括出轴对称的特征。
结合探索对称点的关系,归纳得出对应点连线被对称轴垂直平分的性质,并结合这一性质的得出,讨论了垂直平分线的性质定理及其逆定理。
接下来,在第2小节“作轴对称图形”中,通过作轴对称图形、简单的图案设计、确定最短路线等活动,让学生进一步体会轴对称的应用价值和丰富内涵。
用坐标表示轴对称,从数量关系的角度刻画了轴对称。
教科书从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y轴对称的点的坐标的规律,并进一步探讨了如何利用这种规律在平面直角坐标系中作出一个图形关于x轴或y轴对称的图形。
等腰三角形是一种特殊的三角形,它除了具有一般三角形的所有性质外,还有许多特殊的性质。
由于它的这些特殊性质,使它比一般三角形应用更广泛。
而等腰三角形的许多特殊性质,又都和它是轴对称图形有关,这也是教科书把这部分内容安排在本章的一个重要原因。
在本章第3小节“等腰三角形”中,利用等腰三角形的轴对称性,得出了“等边对等角”“三线合一”等性质,并进一步讨论了等腰三角形的判定方法以及等边三角形的性质与判定方法的内容。
轴对称重点和难点

轴对称图形主要内容:轴对称与轴对称图形、轴对称的性质、设计轴对称图案、线段、角的轴对称性、等腰三角形的轴对称性、等腰梯形的轴对称性。
重点:垂直平分线、角平分线、等腰三角形(直角三角形、等边三角形)的性质、等腰梯形的常用辅助线;难点是如何灵活应用所学知识解决问题。
难点:通过具体的轴对称图形实例,让学生经历观察、比较、分析等数学活动,从而让学生认识轴对称图形,知道轴对称与轴对称图形之间的区别,而后通过线段与角、等腰三角形、等腰梯形等轴对称图形加深对轴对称图形的理解。
变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
考点三、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A ∠-︒ 2、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
这个判定定理常用于证明同一个三角形中的边相等。
推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
等腰三角形的性质与判定等腰三角形性质 等腰三角形判定 中线1、等腰三角形底边上的中线垂直底边,平分顶角;2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。
轴对称知识点汇总3篇

轴对称知识点汇总3篇轴对称这一章,知识点琐碎,内容繁杂,极易混淆,多练这些题,有助同学们把握重难点,有所突破!下面是小编给大家带来的轴对称知识点汇总,欢迎大家阅读参考,我们一起来看看吧!轴对称最全知识点汇总一、知识梳理1、轴对称如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴.两个图形中的对应点叫对称点.2、轴对称图形把一个图形沿一条直线折叠,如果直线两旁的部分能互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴.这个图形关于这条直线(成轴)对称.3、轴对称与对称轴的区别与联系区别:轴对称指的是两个图形的位置关系,而轴对称图形指的是具有对称性的某一个图形.联系:如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形.如果把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分图形就成轴对称.4、一些典型图形的对称轴条数和表述语言正方形有4条对称轴,分别是对角线所在直线,2条;对边中点连线所在直线,2条.长方形有2条对称轴,是对边中点连线所在直线,2条.等腰三角形有1条对称轴,是顶角顶点与对边中点连线所在直线.(或顶角角平分线,底边中线,底边上的高所在直线)等边三角形有3条对称轴,分别是任意顶点与对边中点连线所在直线,3条.(或任意角角平分线,任意边的中线,任意边上的高所在直线)等腰梯形有1条对称轴,是上底中点与下底中点连线所在直线.圆有无数条对称轴,分别是直径所在直线,无数条.5、垂直平分线(中垂线)定义垂直并且平分一条线段的直线,叫做这条线段的垂直平分线.书写格式:判定:∵AO=A′O,∠1=90°,∴l 是AA′的垂直平分线.性质:∵l是AA′的垂直平分线,∴AO=A′O,∠1=∠2=90° .6、轴对称性质成轴对称的两个图形全等,且(1)对应点的连线被对称轴垂直平分.(2)对应点的连线互相平行(或在同一条直线上).(3)对应线段相等,对应角相等.(4)对应线段所在直线的交点在对称轴上(或对应线段所在直线互相平行).7、对称轴的作法法1:作一条对应点的连线,并作其中垂线.法2:作两条对应点的连线,并分别作其中点,两点确定一条直线.法3:分别延长两对对应线段,确定两个交点,两点确定一条直线.8、给出一个图形及对称轴,作其对称图形的作法过原图形各点画对称轴的垂线,以各点到垂足的距离为半径,截取相等,将所作对应点分别相连.八年级数学轴对称知识讲解轴对称【学习目标】1.理解轴对称图形以及两个图形成轴对称的概念,弄清它们之间的区别与联系,能识别轴对称图形.2.理解图形成轴对称的性质,会画一些简单的关于某直线对称的图形.3.理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及判定,会画已知线段的垂直平分线.4.能运用线段的垂直平分线的性质解决简单的数学问题及实际问题.【要点梳理】要点一、轴对称图形轴对称图形的定义一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.要点二、轴对称1.轴对称定义把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.要点三、轴对称与轴对称图形的性质轴对称、轴对称图形的性质轴对称的性质:若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的性质:轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.要点四、线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心初二数学轴对称测试题及答案1.下列图形不是轴对称图形的是( )2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )A.5B.6C.11D.163.已知am=5,an=6,则am+n的值为( )A.11B.30C.D.4.下列计算错误的是( )A.(﹣2x)3=﹣2x3B.﹣a2•a=﹣a3C.(﹣x)9+(﹣x)9=﹣2x9D.(﹣2a3)2=4a65.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是( )A.SASB.ASAC.SSSD.AAS6.计算(x+3y)2﹣(3x+y)2的结果是( )6.计算(x+3y)2﹣(3x+y)2的结果是( )A.8x2﹣8y2B.8y2﹣8x2C.8(x+y)2D.8(x﹣y)27.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为( )厘米.A.16B.18C.26D.288.计算(﹣2x+1)(﹣3x2)的结果为( )A.6x3+1B.6x3﹣3C.6x3﹣3x2D.6x3+3x29.分解因式:x2﹣4y2的结果是( )A.(x+4y)(x﹣4y)B.(x+2y)(x﹣2y)C.(x﹣4y)2D.(x﹣2y)210.如图,AD是角平分线,E是AB上一点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②CE平分∠DEF;③AD垂直平分CE.其中正确的是( )A①②③ B、① C、② D、③二、填空题(共6小题,每小题3分,共18分)11.计算:20130﹣2﹣1=__________12.化简(1- )(m+1)的结果是 .13.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是.14.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是度.15.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.16.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.三、解答题(共8题,共72分)17.(本题8分)计算:(1)(3a﹣2b)(9a+6b); (2)(﹣2m﹣1)2;18.(本题8分)分解因式:4m2﹣9n219.(本题8分)解分式方程 =20.(本题8分)已知:如图,AB=CD,AB∥CD,DE⊥AC,BF⊥AC,E、F是垂足,AF=5,求CE的长.21.(本题10分)如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为;运用与拓广:22.(本题8分)2015年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?23.(本题10分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.24.(本题12分)如图,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?参考答案一、选择题1. B.2. C.3. B.4. A.5. A.6. B.7. B.8. C.9. B. 10. A二、填空题11. 12. m. 13. 2+n. 14. 60 15. 15 16.十一.三、解答题17.解:(1)原式=3(3a﹣2b)(3a+2b)=3(9a2﹣4b2)=27a2﹣12b2;(2)原式=4m2+4m+1;18.解:4m2﹣9n2=(2m+3n)(2m﹣3n).19.解:去分母得:3x=2x+2,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.20.解:∵DE⊥AC,BF⊥AC,∴∠DEC=∠AFB=90°,∵AB∥CD,在△DEC和△BFA中,∠DEC=∠AFB,∠ C=∠A,DC=BA,∴△DEC≌△BFA,∴CE=AF,∴CE=5.21.解:(1)如图:B′(3,5),C′(5,﹣2);(2)(b,a);22.解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,,解得:x=72,经检验,x=72是原分式方程的解,且符合题意,则2.5x=180,答:高铁列车的平均时速为180千米/小时;(2)630÷180=3.5,则坐车共需要3.5+1.5=5(小时),王老师到达会议地点的时间为1点40.故他能在开会之前到达.23.解:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)在△DOE和△COE中,OC=OD,∠EUC=∠BOE,OE=OE,∴△DOE≌△COE,∴DE=CE,∴OE是线段CD的垂直平分线.24.解:(1)BP=2t,则PC=BC﹣BP=6﹣2t;(2)△BPD和△CQP全等理由:∵t=1秒∴BP=CQ=2×1=2厘米,∴CP=BC﹣BP=6﹣2=4厘米,∵AB=8厘米,点D为AB的中点,∴B D=4厘米,∴PC=BD,在△BPD和△CQP中,BD=PC,∠B=∠C,BP=CQ,∴△BPD≌△CQP(SAS);(3)∵点P、Q的运动速度不相等,∴BP≠CQ又∵△BPD≌△CPQ,∠B=∠C,∴BP=PC=3cm,CQ=BD=4cm,∴点P,点Q运动的时间t= = 秒,∴VQ= = 厘米/秒.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称
【例1】
⑴如图,在l上找一点P,使P A+PB最小。
⑵如图,在l上找一点P,使P A+PB最小。
⑶如图,点P在锐角∠AOB的内部,在OB边上求作一点D,在OA边上求作一点C,使
△PCD的周长最小。
⑷如图,点C、D在锐角∠AOB的内部,在OB边上求作一点F,在OA边上求作一点E,使四边形CEFD周长最小。
长度(距离)最值问题:
点——点
线——线
点——线
两点一线
两线一点
两线两点
【例2】
如图,∠AOB=30°,点P位于∠AOB内,OP=3,点M、N分别是射线OA、OB上的动点,求△PMN的最小周长。
【例3】
如图,正方形ABCD 中,AD =8,M 是 DC 上的一点,且DM =2,N 是AC 上的一动点,求DN +MN 的最小值。
【例4】
如图:点M 是四边形ABCD 的BC 边的中点,120AMD ∠=,° 证明:1
2
AB BC CD AD +
+≥
【例5】
在直角△ABC 的斜边AC 上取两个点R ,S ,使得AR =SC 。
在直角边AB 上任取点N ,在BC 上任取一点P 。
求证:RN NP PS AC ++≥。
在线测试题
温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
1.在下列命题中:
①两个全等三角形是轴对称图形
②两个关于直线l 对称的图形是全等形 ③等边三角形是轴对称图形 ④线段有三条对称轴 正确命题的个数是( ) A .1 B .2 C .3 D .4
2.下列图形中,不一定是轴对称图形的是( )
A .线段
B .角
C .三角形
D .等腰直角三角形
3.如图,点A和点B不在直线l上,它们到直线l的距离都等于2,且AB=4,又已知点P 在直线l上,则P A+PB的最小值为( )
l
A B
A.4 B.5 C.42D.43
4.如图,点A和点B不在直线l上,它们到直线l的距离都等于1,又已知点P在直线l 上,且P A+PB的最小值为4,则AB=( )
l
A B
A.3 B.2 C.32D.23
5.如图,点P在锐角∠AOB的内部,OP=6,且P到OB、OA边的距离都等于3,在OB 边上求作一点D,在OA边上求作一点C,使△PCD的周长最小值为( )
P
O B
A
A.6 B.7 C.53D.63
6.某供电部门准备在输电主干线l上连接一个分支线路同时向新落成的A、B两个居民小区
送电,分支点为M,已知居民小区A、B到主干线l的距离分别为
12
AA=千米,
12
BB=
千米,且
114
A B=千米。
居民小区A、B在主干线l的两旁如图所示,则最短线路的长度
是( )千米。
A.5 B.4 C.53D.2
7.如图,60
AOB=︒
∠,点P位于AOB
∠内,3
OP=,点M、N分别是射线OA、OB上的动点,则PMN
△的最小周长为()
N
M P
B
A
O A.23B.32
C.33D.42
8.如图,EFGH是一个矩形的台球台面,有黑白两球分别位于A,B两点位置上,撞击黑球A,使A先碰撞台边EF反弹后两击中白球B,下列方法正确的是( )
A.H G
E F
B
A
B.
H G
E F
B
A
C.H G
E F
B′
B
A
D.
H G
E F
B
A
9.如图,A,B是公路l(l为东西走向)两旁的两个村庄,A村到公路l的距离1km
AC=,B村到公路l的距离2km
BD=,B村在A村的南偏东45︒方向上,则A,B两村之间的距离为( )
A.23B.32C.33D.2
10.如图,P是BAC
∠平分线AD上一点,P与A不重合,AC AB
>.则下列结论正确的是( )
A
C B
D
P
A.PC PB AC AB
-=-B.PC PB AC AB
-<-
C.PC PB AC AB
->-D.无法确定。