加速器中的脉冲功率技术课程ppt(第3章)_Marx发生器_层叠线
加速器第3章

输电电流 b—带宽<0.6m,v—速度<30m/s,振动、磨损、 风耗∝v3表面电荷密度最大值
通常 原因:带表面附近电场不均匀。 一般采用电晕喷电,可使表面均匀带电。
提高ic措施 1)增加输电带数量(一般不>2) ) 2)加分压棍(金属) ) 使电场沿带匀整, σ→σM 带易与棍相擦, 导致ic不稳。 解决办法: 再加保护棍(绝缘)
1 i ∆V = N − 2 fC
流强 10毫安 毫安
纹波
1 i δV = 2 fC
绝缘磁芯高压电源 端电压0.3~4MV 纹波 大,重量大,但电源利 用率高,价格低 我国已生产0.3MV 30mA, 0.6MV 30~60mA, 1.5MV 10mA绝缘磁芯高压 电子辐照加速器,用 于电线电缆辐照,生 产泡沫塑料,处理污 水废气。
3)复激输电(利用下行边) 复激电源、自偏压 优点:设备少,成本低;缺点:总波动大。
4)用高气压气体作为绝缘介质 提高Eb 提高σM
临界气压现象:如 右图电晕系统,当 气压上升时会出现 临界气压现象。此 时间隙火花放电的 击穿电压会低于电 晕起始电压,当p>pc 时,击穿前不再有 电晕,输电系统无 法工作。
出射 粒子 靶物质 直流电源 北大4.5 北大4.5 MV 单级静电加速器
北大4.5 MV 单级静电加速器 北大4.5
静电加速器
第三节 高压电场与绝缘介质
一、绝缘介质 1.气体 高气压气体的击 穿电压远高于其 它绝缘介质。在 大间隙均匀电场 中各种介质的击 穿电压如右图。
击穿场强与下列因素有关: 1)间隙长度 均匀电场中击穿场强随d↑而下降。一 个大气压下: d=0.5mm,Eb=5MV/m d=10mm,Eb=3MV/m 2)气压 p<10atm,近似线性; p>10atm,上升减慢。
脉冲功率技术

目录目录 0摘要 (1)一、脉冲功率技术的发展历史及现状 (2)二、脉冲功率技术的储能技术 (4)2.1惯性储能 (4)2.1.1直流发电机 (5)2.1.2单极脉冲发电机(HPG) (5)2.1.3同步发电机 (6)2.1.4主动补偿脉冲发电机 (7)2.2电容储能 (8)2.2.1电容器组放电 (8)2.2.2电容器组放电技术要点 (8)2.3电感储能 (9)2.3.1电感与电容器储能密度比较 (9)2.3.2电感储能的缺点 (10)三、串联谐振CCPS恒流充电 (11)3.1串联谐振CCPS概述 (11)3.2串联谐振CCPS工作原理 (11)3.3串联谐振CCPS恒流充电的MATLAB仿真 (14)总结 (16)参考文献 (17)脉冲功率技术摘要所谓脉冲功率技术是指将很大的能量(通常为几百千焦耳至几十兆焦耳)储存在储能元件中通常为电容器、电感器等, 然后通过快速开关(动作时间在毫微秒左右)将此能量在毫微秒至微秒时间内释放到负载上, 以得到极高的功率(兆瓦左右)。
脉冲功率技术研究的主要内容是如何经济地和可靠地储存能量, 并将大能量和大功率有效地传输到负载上。
不断提高的能量、功率、上升时间和平顶度、重复率、稳定性和寿命的要求, 给脉冲功率技术提出了一系列的科学技术问题。
本文介绍了,给储能元件电容充电的一种恒流充电电源,分析了CCPS充电的原理以及实现问题。
关键词:脉冲功率,CCPS,恒流充电,储能技术脉冲功率技术及其应用一、脉冲功率技术的发展历史及现状脉冲功率技术(PPT,Pulsed Power Technology)正式作为一个独立的部门发展,还是近几年的事。
事实上作为脉冲功率技术基础的脉冲放电, 早就存在于大自然中。
而对脉冲放电的研究则开始于研究天然雷电特性, 以及它对输电线路、建筑物危害及其防护措施。
当时这种放电仅限于毫秒级和微秒级。
四十年代末期, 就有人开始注意到亚微秒及毫微秒级的高压强流脉冲放电形式。
加速器原理 配套课件

● 加速器全名为“荷电粒子加速器”,是使带电粒子在真空中受磁场力控制、 电场力加速而达到高能量的一种装置。
如图所示,电视机及计算机 显示器就是一小型的加速器。
●加速器应称为“粒子加能器” 但“加速器”的名称早已为人们 普遍接受,故一直被沿用。
● 加速器技术是核技术的 一个重要分支。
3)回旋加速器 ● 1958年—1959年,清华大学2.5MeV电子回旋加速器出束。 ● 1958年:原子能研究所自苏联引进了磁极直径1.2m回旋加速器。60年代
初,先后由北京重型电机厂、上海先锋厂仿制了1.2m、1.5m回旋加速器。 ● 20世纪70年代末至80年代初,由一机部自动化所(即现北京机械工业自
动化研究所)与清华大学、国家计量局合作研制了25MeV电子回旋加速器
§1.1 加速器及其发展历史
三、加速器发展历史
4、加速器技术在中国的发展
4)电子直线加速器 ● 1964年,科学院高能所30MeV电子直线加速器建成。 ● 1974年—1975年初,北京(北京医疗器械研究所、清华大学)、上海
(上海医疗器械厂、高能所)各自研制的10MeV医用电子行波直线加速器 相继成功出束。1977年,上述加速器通过鉴定后,北京医疗器械研究所、 上海医疗器械厂、南京电子管厂、四川东风电机厂、四机部十二所开始小 批量生产或研制医用和工业用电子行波直线加速器
加速器原理 配套课件
目录
第一章 绪 论 第二章 粒子源与束流品质 第三章 倍压加速器 第四章 高压静电加速器 第五章 回旋加速器 第六章 电子感应加速器 第七章 自动稳相准共振加速器基础 第八章 回旋型准共振加速器 第九章 环型准共振加速器
加速器原 理
第一章:绪 论
§1.1 加速器及其发展历史
加速器中的脉冲功率技术课程ppt(第2章)

参考:OrCADPSpiceAD9_21简明教程
6
Accelerator Lab of Tsinghua University
2.1 概述
第二章 脉冲功功率,积累起来得到一定的能量,然后将其以高得多的 功率释放到负载上。
3~4学时
3
Accelerator Lab of Tsinghua University
参考书目
Peter D. Pearce: Application of pulsed power technology in accelerators and industry, not published, 2006 S T Pai, Qi Zhang: Introduction to high power pulse technology, World Scientific Publishing Co. Pte. Ltd., 1995 曾正中:《实用脉冲功率技术引论》,陕西科学技术出版社,2003 刘锡三:《高功率脉冲技术》,2005 韩旻:《脉冲功率技术基础》,清华大学电气工程与应用电子技术系,2002
tr I max
— 上升时间 — 峰值电流
现代大型脉冲功率装置的 K pr 已达到1018~1020 W/s !
世界最大的发电站:
K pr Pmax tr Pmax T /4 4 f Pmax 4 50(Hz) 10 (W) 2 10
10 12
W/s
远低于脉冲功率装置所能达到的功率增长率。 TW级的束流功率并不能够使用传统的加速器得到 !
Accelerator Lab of Tsinghua University
直线加速器系统讲义PPT课件

P MU MIM
2. 调制器的效率( M )
M P 出 P 入
3. 重复频率( f M )
fM 1TM
7
4. 脉冲波形
用于表示脉冲波形常用的三个参数
1)脉冲前沿 : 从稳定值的5%上升到90%所用的时间。
2)脉冲后沿 c : 从稳定值的90%下降到5%所用的时间。
5
四 简单工作原理 • 直流高压电源通过充电电感向传输线充电,当充到两倍
的电源电压后,处于等待状态。 • 当有一低压脉冲加到开关管(闸流管)的栅极上时,开
关管则导通。 • 传输线通过开关管向负载放电。 • 负载上得到一高压脉冲,其宽度由传输线长度决定。
6
§1.2 脉冲调制器的技术要求
一 基本参数
4
§1.1 引言
一 脉冲调制器的定义
凡是能够将一种信号的电压变化(或某种信息变化)去
改变振荡参数的设备叫调制器。脉冲调制器就是用脉冲的 电压去改变微波源的振荡幅度。
二 脉冲调制器在加速器中的应用
在使用微波电场加速带电粒子的加速器中的微波源大 多是脉冲工作的。
三 脉冲调制器的作用
负责提供给微波源(磁控管、速调管)一定振幅、一 定包络宽度、一定重复周期、功率为一定大小的高压脉 冲。
I l ----调制器的输出电流
14
Rl
ul il
1 Kul1
2
3.电子枪
1) 非线性阻抗。 2)相应于磁控管是高阻(在工作点附近 约几百K )。
因此,在设计调制器时,不考虑电子枪的负 载对调制器的影响。
15
§1.3 线型脉冲调制器的基本电路
2
充电隔离元件
5
储能元件
加速器ppt

第三节 加速器的分类
按加速电场:1直流高压式加速器 2电磁感应式加速器 3谐振式加速器
按粒子种类:1电子加速器 2轻离子加速器 3重离子加速器 4微粒子团加速器
按加速粒子能量:1低能加速器,能量在100 MeV以下
2中能加速器,能量在0.1~1GeV间的称
3高能加速器,能量高于1 GeV。
按粒子运动轨道:1直线加速器 2回旋加速器(开螺旋线) 3同步加速器(闭合环)
核反应堆,核燃料生产和核武器设计制造方面都需要加速 器提供有关的核反应,核裂变和中子运动的各种核参数。
用加速器粒子模拟反应堆中核辐射材料的辐射损伤,研究 材料的加固措施,加速器产生的强中子流还可以分别使 U238和Th232转化为Pu239和U233等核燃料。
五、在医疗方面的应用 随着科学技术的进步,人民生活和质量的提高,人们对医
3 束流输运分析系统 多数加速器还设有由若干弯转 磁铁和电磁四极透镜等组成的,用以在源和加速器 之间、加速器和靶之间,或当多个加速器串接工作 时,在加速器之间输运和分析所需的粒子束。
4 辅助系统 电源系统、控制系统、冷却系统等。
第二节 加速器的发展历史
历史上第一个人工核反应
1 9 1 9 年 E. 卢 瑟 福 ( E.Rutherford) 用 天然放射源实现了第一个人工核反 应 从而激发了人们寻求用人造快速 粒子源来变革原子核的设想。
第一节加速器的基本构成第二节加速器的发展历史第三节加速器的分类第四节加速器的应用第五节粒子运动参量的相对论表述粒子加速器particleaccelerator用人工方法借助于各种不同形态的电场将各种不同种类的带电粒子加速到更高能量的电磁装置产生各种高能量的带电粒子束是人们变革原子核和基本粒子认识物质深层结构的重要工具
脉冲的产生与变换教学课件

基于DSP的脉冲产生与变换
要点一
总结词
要点二
详细描述
数字信号处理能力强
DSP(数字信号处理器)是一种专门用于数字信号处理的 微处理器,具有强大的数字信号处理能力和高速的运算速 度。基于DSP的脉冲产生与变换,可以利用DSP的运算模 块和数字滤波器,对脉冲信号进行各种数字信号处理,如 滤波、调制和解调等。由于DSP的数字信号处理能力强, 因此这种方案适合于对脉冲信号进行复杂的数字信号处理 。
脉冲调制的变换是指通过改变脉冲的 幅度、宽度、相位等参数,将信息加 载到脉冲信号上的一种技术。
脉冲调制的变换方法包括脉幅调制、 脉宽调制、脉码调制等,广泛应用于 雷达、通信、测量等领域。
脉冲放大的变换
脉冲放大的变换是指通过放大脉冲信号的幅度,提高其能量 的一种技术。
脉冲放大的变换方法包括线性放大和开关放大等,广泛应用 于雷达发射机、激光器等领域。
利用可编程逻辑器件,如FPGA、CPLD等,通过编程配置内部逻辑资源来产生数 字脉冲。
模拟脉冲的产生
模拟电路
利用模拟电子元件,如电阻、电容、 电感等,通过模拟电路设计实现模拟 脉冲的产生。
波形合成
利用波形合成技术,通过模拟信号发 生器或波形合成器来产生模拟脉冲信 号。
03
脉冲的变换技术
脉冲调制的变换
脉冲整形的变换
脉冲整形的变换是指通过改变脉冲的形状,改善其波形质 量的一种技术。
脉冲整形的变换方法包括滤波整形、限幅整形、微分整形 等,广泛应用于信号处理、雷达、通信等领域。
脉冲多相制的变换
脉冲多相制的变换是指通过将多个不同相位或相位的脉冲信号合成在一起,形成 一种新的脉冲信号的一种技术。
高功率脉冲马克思发生器

高功率脉冲马克思发生器摘要脉冲是短时间内突变,随后又迅速返回其初始值的物理量。
脉冲功率技术是一门新兴的技术。
从上世纪70年代后期,随着核物理技术、电子束、加速器、激光、放电理论和等离子体技术的研究和日益广泛的应用,脉冲功率技术才得到重视和迅速的发展。
本论文首先介绍了仿真软件Multisim的发展以及在电路模拟方面的各种功能,然后介绍了高功率脉冲技术的发展、应用和MARX发生器的原理,同时结合Multisim设计电路,最后对MARX发生器的元件参数和仿真结果进行了研究。
本课题是通过对高功率脉冲技术知识的了解,利用Multisim软件设计出基本的MARX发生器的电路,然后对其进行仿真,最后通过对开关等元件参数的调整设计出一套能产生高功率脉冲电压的MARX发生器。
关键词:高功率脉冲技术;MARX发生器;MultisimAbstractPulse mutation is a short time, then quickly returns to its initial values of physical quantities. Pulsed power technology is a new technology. In the later than 1970s ,as nuclear technology, electron beam, accelerator, laser, discharge theory and plasma technology has been widely research and application of pulse power technology to get attention and rapid development. This thesis firstly introduces the development of simulation software, Multisim and various functions in the circuit simulation, and then introduces the development and application of high power pulse technology and the principle of MARX generator, at the same time, combined with Multisim circuit design, the components of MARX generator parameters and simulation results are studied.This topic is through the understanding of the high power pulse technology, using the Multisim software to design the basic circuit of MARX generator, then carries on the simulation, finally through the adjustment of the switch element parameters, such as design a set of MARX generator can generate high power pulse voltage.Key words:High Pulsed Power Technology ; MARX generator ; Multisim目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1课题背景 (1)1.2高功率脉冲技术研究意义及现状 (1)1.3本课题研究的主要内容 (2)2 马克思发生器相关理论 (3)2.1马克思发生器的概述 (3)2.2马克思发生器的原理 (3)主要元件及其功用 (4) (6) (7)2.3马克思发生器的充电过程分析 (10)2.4马克思发生器的放电过程分析 (10)3 MULTISIM 简介 (13)3.1M ULTISIM的概述 (13)M ULTISIM的主窗口界面 (13) (13)工具栏 (17)3.2M ULTISIM对元器件的管理 (18)3.3输入并编辑电路 (19)3.3.1设置M ULTISIM的通用环境变量 (19)3.3.2取用元器件 (19)3.3.3将元器件连接成电路 (20)3.4虚拟仪器及其使用 (20)3.5M ULTISIM的优势和特点 (21)M ULTISIM的特点 (21) (23)M ULTISIM附加功能 (24)4 基于MULTISIM的高功率脉冲MARX发生器 (25)4.1元件选择与参数设定 (25)4.2电路图设计 (28)4.3马克思发生器运行及结果仿真 (28)发生器运行的电路变化 (28)4.3.2仿真结果 (29)4.4结果分析 (30)4.5其他实验电路图 (31) (31) (32)致谢 (35)参考文献 (36)附录 (37)附录A英文原文 (37)附录B中文翻译 (49)1 绪论1.1 课题背景利用NI Multisim11可实现计算机仿真设计与虚拟实验,与传统的电子电路设计与实验方法相比,具有如下特点:设计与实验可以同步进行,可以边设计边实验,修改调试方便;设计和实验用的元器件及测试仪器仪表齐全,可以完成各种类型的电路设计与实验;可方便的对电路参数进行测试和分析;可直接打印输出实验数据、测试参数、曲线和电路原理图;实验中不消耗实际的元器件,元器件种类不受限制,成本低、速度快、效率高;所设计的电路可直接在产品中使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Accelerator Lab of Tsinghua University 解决上述问题的办法:
使用高压同轴电缆来建造 PFN Marx 发生器: 建造简单,结构紧凑,运行成本低,可靠性高。 ➢ 适用于产生低、中能的脉冲,如 10~100J; ➢ 重复频率工作:~ 200 Hz,受开关恢复时间及电源重复充电能力的限制。
3.2 Marx 发生器
3.2.1 概述
Marx发生器脉冲充电装置示意图
➢ 工作原理:电容器并联充电,串联放电 ➢ 多个电容器:Marx 发生器的级数 ➢ 开关放电同步的好坏,直接决定了发生器同步性能的好坏 ➢ 脉冲能量范围:几 Joules ~ 几十 kJ ➢ 多个 Marx 发生器可进行级联,为加速粒子提供高压脉冲
29
Accelerator Lab of Tsinghua University
Erection time (ns)
Erection time (ns)
90
80
70
60
50
40
30
20
10
0
0
5
10
15
20
25
30
35
40
Voltage (kV)
Cable PFN Marx generator 输出脉冲建立时间与充电电压的关系曲线
10KV 5KV
0V 0s V(C2:2)
20us
40us
Time
60us
80us
100us
12
Accelerator Lab of Tsinghua University 3.2.2 级联 Marx 发生器
➢ 由火花间隙开关实现并联充电转变为串联放电
➢ 输出电压: Vtotal ngV
➢ 电压脉冲上升时间很短,一般 < 1 μs。 ➢ 级数:4 ~ 100,一般使用 20 ~ 50 级,视充电电压、火花开关
v( t) 5000
C1 C2 , R2 R1
V
(t)
V
exp
t R2C1
exp
t R1C2
0 0 0 0
2 10 6
4 10 6
6 10 6
t
Tim e
8 10 6
10 5
电压上升沿:
1
exp
t R1C2
Non-Inverting Marx
C1 C2 , R2 R1
V(t)V exp
t R2C1
exp
t R1C2
C1:储能电容;C2:负载电容
R1:wave front resistor
R2:tail biting resistor
美国Fermi 实验室的Cockcroft-Walton高压发生器 英国剑桥大学Rutherford实验室的第一台
Cockcroft-Walton高压发生器
7
Accelerator Lab of Tsinghua University
倍压加速器原理图
8
Accelerator Lab of Tsinghua University
冷却、真空、聚焦系统
靶 电子枪
控
制
加速管
微波功率
系
馈送口
统
微波功率源 微波传输系统
脉冲调制器
充气系统
5
Accelerator Lab of Tsinghua University Cockcroft-Walton 高压倍加器
➢ 1930’s Cockcroft and Walton (级联整流电路)
27
Accelerator Lab of Tsinghua University ➢ 开关的触发
一般在第一个火花开关使用电信号触发,其它开关依次触发。 也可以充入干燥空气,待各级 PFN 充电完成后释放空气进行 触发。
40kV/div 25ns/div
Cable PFN Marx generator 输出脉冲的形状
➢ 若没有锐化电容器(peaking capacitor),则 R = Rm + Zl and C = Cm and L = Lm + Ls,脉冲上升时间为:
L
tr
2.3 R
例:
Cm= 6nf, Rm = 2.5Ω, Lm = 2μH, Rsh = 800Ω, Cp = 1.2nf, Rp = 1.6Ω, Cs = 30pf, Ls = 200nH, Zl = 50Ω。
传统的 Marx 发生器的问题: 1)脉冲上升时间(自感大,上升时间>100ns) 2)负载阻抗的匹配 3)能量转换效率
25
Accelerator Lab of Tsinghua University
集总元件的PFN Marx发生器的缺点: 1)系统体积大 2)可靠性低 3)运行成本高
使用集总元件的 PFN Marx 发生器
28
Accelerator Lab of Tsinghua University
Risetime (ns)
Risetime (ns)
70
60
50
40
30
20
10
0
0
5
10
15
20
25
30
35
40
Voltage (kV)
Cable PFN Marx generator 输出脉冲上升时间与充电电压的关系曲线
的幅值,并减小上升沿时间。 ➢ 闭合开关 S2,则电容 Cm 和 Cp 将向负载 Zl 放电,开始输出脉冲。
➢ 由于时间常数 CpZl小,负载上电压脉冲的上升时间快。 ➢ S1 和 S2 闭合的顺序:S1闭合后,Cp充电到最高电压后S2闭合。 ➢ Cp<< Cm
16
Accelerator Lab of Tsinghua University
参数、电容器工作电压而定。 ➢ 开关触发顺序:从第一个火花开关开始
13
Accelerator Lab of Tsinghua University ➢ 所有开关均闭合后的电路如图示。
开关闭合后:
总电容: 总电阻:
CS
C n
RS ngR
14
Accelerator Lab of Tsinghua University 3.2.3 快 Marx 发生器(Fast Marx generator)
Z L/C PFN Marx 发生器输出阻抗:ZM ngZ
每路充电电压:VCH ,则输出电压:VL ngVCH
FWHM 脉宽: T 2mg LC
最大输出电流: IM
VCH L/C
24
Accelerator Lab of Tsinghua University 3.2.5 同轴线 PFN Marx 发生器
3.1 概述 3.2 Marx 发生器
3.2.1 概述 3.2.2 级联 Marx 发生器 3.2.3 快 Marx 发生器(Fast Marx generator) 3.2.4 PFN Marx 发生器 3.2.5 同轴线 PFN Marx 发生器
3.3 层叠线发生器
3.3.1 同轴线脉冲发生器 3.3.2 直流充电型层叠线倍压器 3.3.3 脉冲馈入的层叠线发生器(Pulse fed stacked line
内容
第二章 脉冲功率技术基础
3~4学时
➢ 电容储能
➢ 电感储能
➢ 传输线理论
PSpice软件使用介绍
1学时
第三章 高压脉冲形成系统
3~4学时
➢ Marx发生器
➢ 脉冲形成线理论
➢ Blumlein传输线 2
Accelerator Lab of Tsinghua University
第三章 高压脉冲形成系统
PFN Marx发生器: 共有 n 路PFN,每路 PFN 单
元数为 m。
缺点: 1)组成元件多; 2)可靠性降低; 3)建造难度较大,成本高; 4)脉宽不能改变。
23
Accelerator Lab of Tsinghua University
PFN Marx 发生器
每路 PFN 单元数相同、参数相同,阻抗:
Main switch current From S1
S1和S2闭合时间分开后的模拟结果
20
Accelerator Lab of Tsinghua University
3.2.4 PFN Marx 发生器
100001 104
Simple Marx generator
Voltage across load capacitor
Accelerator Lab of Tsinghua University
加速器中的脉冲功率技术
邢庆子
清华大学工物系加速器实验室 Tel: 62788047 – 8 (o)
E-mail: xqz@
1
Accelerator Lab of Tsinghua University
18
Accelerator Lab of Tsinghua University
电容充电电压 50kV,有锐化电容器(peaking capacitor)。 脉冲上升时间仅为 10ns。
19
Accelerator Lab of Tsinghua University
Peaking Capacitor current From S2
阻变化而改变;
2)输出阻抗与频率无关:Z L / C 容易进行负载阻抗匹配;
3)PFN 储能与负载得到的能量接近相等; 4)由输出电压和时间的关系,可提出明确的绝缘要求。