熔模精密铸造工艺简介
熔模铸造工艺(3篇)

第1篇一、熔模铸造工艺的定义熔模铸造工艺,又称精密铸造,是一种将金属熔化后注入预先制成的型腔中,冷却凝固后取出金属制品的铸造方法。
该工艺主要用于制造形状复杂、尺寸精度要求高的零件。
二、熔模铸造工艺的原理熔模铸造工艺的基本原理是将可熔化的材料(如蜡、塑料等)制成所需形状的熔模,再将熔模组装成型腔,将熔融金属注入型腔,冷却凝固后取出金属制品。
具体过程如下:1. 制作熔模:将可熔化的材料制成所需形状的熔模,通常采用手工或机械加工方法。
2. 组装型腔:将熔模组装成型腔,并固定在型腔架上。
3. 熔化金属:将金属加热至熔化状态。
4. 注入金属:将熔融金属注入型腔,使其填充熔模形成的型腔。
5. 冷却凝固:将型腔冷却至室温,使金属凝固。
6. 脱模:将型腔从金属制品中取出,得到所需的金属制品。
三、熔模铸造工艺的过程1. 熔模制作:根据零件图纸,采用手工或机械加工方法制作熔模。
熔模应保证形状、尺寸和精度符合要求。
2. 组装型腔:将熔模组装成型腔,并固定在型腔架上。
3. 熔化金属:选择合适的金属材料,将其加热至熔化状态。
4. 注入金属:将熔融金属注入型腔,确保填充完全。
5. 冷却凝固:将型腔冷却至室温,使金属凝固。
6. 脱模:将型腔从金属制品中取出,得到所需的金属制品。
7. 后处理:对金属制品进行清理、去毛刺、抛光等后处理。
四、熔模铸造工艺的应用熔模铸造工艺广泛应用于以下领域:1. 航空航天:制造发动机叶片、涡轮盘、机匣等高精度零件。
2. 汽车:制造发动机缸体、缸盖、曲轴等关键部件。
3. 电子:制造集成电路封装、精密模具等。
4. 医疗器械:制造心脏支架、人工关节等精密医疗器械。
5. 机械制造:制造齿轮、轴承、凸轮等精密零件。
五、熔模铸造工艺的优缺点1. 优点:(1)高精度:熔模铸造工艺可以制造形状复杂、尺寸精度高的零件。
(2)高复杂度:可以制造形状复杂、尺寸精度高的零件,满足各种复杂结构的制造需求。
(3)高质量:金属熔化后注入型腔,减少了氧化、污染等不良因素的影响,保证了金属制品的质量。
熔模精密铸造

熔模精密铸造工艺熔模精密铸造,又称失蜡铸造,是用易熔材料(例如蜡料或塑料)职称科容次那个模型(简称熔模或模型),在其上涂覆若干层特制的耐火涂料,经过干燥和硬化形成一个整体型壳后,再用蒸汽或热水从型壳中用熔掉模型,然后把型壳置于砂箱中,在其四周填充干砂造型,最后将铸型放入焙烧炉中经过高温焙烧(如采用高强度型壳时,可不必造型而将脱模后的型壳直接焙烧),铸型或型壳经焙烧后,于其中浇注熔融金属而得到铸件。
熔模精密铸造获得的产品精密、复杂,接近于零件最后形状,可不加工或很少加工就直接使用,是一种近净形成形的先进工艺,是铸造行业中一项优异的工艺技术,其应用非常广泛。
它不仅是用于各种类型各种合金的铸造,而且生产出的铸件尺寸精密、表面质量比其它铸造方法要高,甚至其他铸造方法难于铸得的复杂、耐高温、不易于加工的铸件,均可采用熔模精密铸造铸得。
基于生产者的要求不同,熔模精铸生产方法基本分为两种类型。
第一种是一般工艺,基本上是采用手工及手动装置和简单机械化,生产成本低。
第二种是当前大多数专业化工厂采用的生产方式,即在车间内部装有悬链输送器及机械化制壳流水线。
这种生产布置的优点是:工艺及其配套的机械化适合生产快速调整,不受特设的辅机相互制约,可充分有效的利用时间,虽然成本要高一些,但其生产率高。
当前采用熔模精铸得尺寸精确、表面光洁、强度适中的零件及整体件,不用(或少用)加工以及由于成分等关系不能加工或难以加工的零件,是熔模精铸生产工艺技术发展的集中趋势。
此外,从适应零件形状、大小、尺寸精度及材料品种的广泛性而言,在各种精密铸造方法(压铸、陶瓷铸、熔模)中,熔模精铸是最富有灵活性的特种铸造方法。
因为除常规合金可用此法生产外,所有高强度合金几乎均可用此法生产。
熔模铸件尺寸精度较高,一般可达CT4-6(砂型铸造为CT10~13,压铸为CT5~7),当然由于熔模铸造的工艺过程复杂,影响铸件尺寸精度的因素较多,例如模料的收缩、熔模的变形、型壳在加热和冷却过程中的线量变化、合金的收缩率以及在凝固过程中铸件的变形等,所以普通熔模铸件的尺寸精度虽然较高,但其一致性仍需提高(采用中、高温蜡料的铸件尺寸一致性要提高很多)。
《熔模精密铸造技术》课件

缺点
成本高
熔模精密铸造技术需要高昂的设备和工艺成 本,生产成本较高。
对操作人员要求高
熔模精密铸造技术需要经验丰富的操作人员 和技术人员,对工人的技能要求较高。
生产周期长
熔模精密铸造技术的生产周期较长,需要经 过多个工序和复杂的工艺流程。
不适合大规模生产
由于其高昂的成本和复杂的工艺流程,熔模 精密铸造技术不适合大规模生产。
03 熔模精密铸造技术的工艺 流程
模具设计
01
模具设计是熔模精密铸造技术 的第一步,需要综合考虑产品 结构、工艺要求、材料特性等 因素。
02
设计过程中,需要使用CAD等 计算机辅助设计软件进行建模 和模拟,以提高模具设计的准 确性和效率。
03
模具设计应注重细节处理,如 模具的浇口、排气口、冷却水 道等,以确保铸造过程的顺利 进行。
其他领域应用
能源领域
熔模精密铸造技术可用于制造燃气轮机叶片、核反应堆结构件等,提高能源转换效率和安全性。
医疗器械领域
熔模精密铸造技术可以生产高精度、高质量的医疗器械,如人工关节、牙科植入物等,提高医疗效果和使用寿命 。
感谢您的观看
THANKS
模具设计
根据铸件的结构和尺寸, 进行模具设计,确保模具 的精度和稳定性。
模具制作工艺
采用合适的工艺方法制作 模具,如雕刻、3D打印等 ,确保模具的表面质量和 尺寸精度。
金属充型
金属液制备
将熔融的金属液通过浇注系统送入模具型腔 。
充型速度与方向
控制金属液的充型速度和方向,以保证金属液能够 均匀填充型腔,避免气孔、夹渣等缺陷的产生。
特点
高精度、高效率、低成本、适用 范围广,可铸造复杂形状和薄壁 零件,广泛应用于航空、汽车、 船舶、能源等领域。
熔模铸造的特点和应用范围

熔模铸造的特点和应用范围1. 熔模铸造简介好嘞,今天咱们来聊聊熔模铸造。
这玩意儿可不是普通的铸造工艺,而是一种高超的技术。
想象一下,就像做蛋糕,先得有模具,熔模铸造就是这个模具的艺术家。
它的基本原理简单粗暴,先把蜡模做出来,然后浇上熔融金属,等金属冷却固化,最后把蜡融掉,嘿,神奇的金属部件就出炉了!听起来是不是挺酷的?2. 熔模铸造的特点2.1 高精度首先,熔模铸造最大的特点就是高精度。
你可以把它想象成在拼拼图,拼得越仔细,最后的图案就越完美。
这种铸造方式能达到非常细致的形状和表面光滑度,简直是“工艺中的工艺”!比如说,汽车零件、航空器组件,都是对精度有着近乎苛刻要求的地方,熔模铸造轻松驾驭。
2.2 复杂形状再来说说它的另一个牛逼之处,那就是能做复杂形状的部件。
比方说,一些形状奇特的艺术品或者高科技的仪器,传统铸造可能会发愁,但熔模铸造可不怕。
就像会魔法一样,蜡模能随心所欲地造型,成品完全符合设计师的想法,简直是一种“想象力与技术结合”的完美体现!3. 熔模铸造的应用范围3.1 航空航天接下来,我们聊聊熔模铸造的应用范围。
这东西用得可广了,首先在航空航天领域那是无人能敌。
飞机、火箭的发动机部件,很多都得靠熔模铸造来实现,没办法,安全第一呀!而且,随着科技的发展,这些部件还得轻、强、耐高温,熔模铸造就能满足这些要求,简直是个超级英雄!3.2 医疗器械再说医疗器械。
想想看,手术刀、植入物,这些东西对精度和材料的要求都非常高,稍微差点可就“麻烦大了”。
熔模铸造在这方面也是大展拳脚,很多高精度的医疗器械部件,都是通过这项技术来制作的。
可以说,熔模铸造不仅仅是个技术活,更是关乎人命的大事,想想都觉得责任重大呢。
4. 小结总的来说,熔模铸造是个神奇的存在,凭借它的高精度和能制造复杂形状的特点,在各个行业里大放异彩。
无论是航天还是医疗,它都能发挥不可替代的作用。
就像一位默默无闻的英雄,在背后默默奉献,却又总能让人心生敬意。
精密铸造工艺-熔模铸造

一定的强度
在搬运和组装过程中不易损坏。
易于脱壳
在铸件冷却后能够顺利脱去壳型,不 损伤铸件表面。
合金选择与性能要求
符合产品使用要求
良好的铸造性能
根据产品的使用环境和性能要求选择合适 的合金种类和牌号。
合金应具有较低的熔点和良好的流动性, 以便于充型和补缩。
安全操作规程及培训要求
制定安全操作规程
明确各工序的安全操作要求和注 意事项,确保操作人员严格遵守
。
应急预案与演练
对新员工和转岗员工进行安全培 训,提高员工的安全意识和操作
技能。
安全培训与教育
对涉及特种作业的员工,如电工 、焊工等,必须持证上岗,确保 操作安全。
特种作业人员持证上岗
制定针对熔模铸造过程中可能出现 的紧急情况的应急预案,并定期进 行演练,提高员工的应急处置能力。
加强人才培养
加强人才培养和引进,培养一支高素质、专业化的熔模铸造技术人才队伍,推动行业的技 术进步和可持续发展。例如,建立完善的人才培养和激励机制,吸引和留住优秀人才。
感谢您的观看
THANKS
蜡料选择与性能要求
低熔点和高流动性
确保蜡料在注射时能够充分填充模具,形成 精确的蜡模。
易于脱模
与模具材料之间有良好的分离性,降低脱模 难度。
稳定性好
在存放和使用过程中不易变质或产生缺陷。
对环境友好
无毒无害,符合环保要求。
壳型材料及其性能要求
高耐火度
能够承受高温金属液的冲刷而不破裂 或变形。
良好的透气性
较高的力学性能
良好的耐蚀性和耐磨性
合金应具有足够的强度、硬度和韧性等力 学性能,以满足产品的使用要求。
铸造硅溶胶工艺

铸造硅溶胶工艺硅溶胶铸造工艺,也称为熔模精密铸造,是一种高精度、高质量的铸造方法,广泛应用于不锈钢及其他合金的铸造领域。
以下是硅溶胶铸造工艺的主要步骤和特点:一、工艺流程1. 蜡模制作- 蜡料处理:包括静置脱水、搅拌蒸发脱水、静置去污等步骤,以确保蜡料的质量。
- 压制蜡模:在特定温度和压力下,将蜡料注入模具中,形成与铸件形状相同的蜡模。
2. 模组制作- 蜡模修整:对蜡模进行修整,确保表面平整光滑、无缺陷。
- 模组焊接:将多个蜡模焊接到浇口杯上,形成模组,便于后续操作。
3. 制壳- 沾浆:将模组浸入硅溶胶与石英砂制成的浆料中,形成初步型壳。
- 撒砂:在型壳上撒上石英砂,增强型壳的强度。
- 干燥:将型壳进行干燥,确保固化效果。
- 重复沾浆、撒砂和干燥过程,形成多层型壳。
4. 脱蜡- 使用蒸汽或热水将型壳中的蜡模熔掉,留下型腔。
5. 焙烧- 将型壳置于焙烧炉中,进行高温焙烧,以去除残留的水分和有机物,提高型壳的强度。
6. 浇注- 将熔融的金属液注入焙烧后的型壳中,待金属液冷却凝固后,形成铸件。
7. 清壳- 清理铸件表面的型壳,得到最终的铸件。
二、工艺特点1. 高精度:硅溶胶铸造工艺可以生产出尺寸精度和表面质量都非常高的铸件,其尺寸精度一般可达CT4-6级,表面粗糙度可达Ra1.6-3.2μm。
2. 少切削或无切削:由于铸件精度高,通常只需进行少量的机械加工或无需加工即可直接使用,大大节省了材料和加工成本。
3. 复杂形状:硅溶胶铸造工艺能够生产形状复杂、难以用其他方法加工的铸件,如喷气式发动机的叶片等。
4. 耐高温:硅溶胶铸造工艺能够生产高温合金铸件,这些铸件在高温环境下仍能保持良好的性能。
三、应用领域硅溶胶铸造工艺广泛应用于航空、汽车、机床、船舶、内燃机、气轮机、电讯仪器、武器、医疗器械以及工艺美术品等领域。
综上所述,硅溶胶铸造工艺是一种高精度、高质量的铸造方法,其工艺流程复杂但具有显著的优势和应用价值。
熔模铸造简介

熔模铸造简介1.熔模铸造发展概况1.1. 概述熔模铸造又称熔模精密铸造,是一种近净形的液态金属成型工艺,应用该工艺获得的每个铸件都是经多种工序、多种材料、多种技术共同协作综合的结果。
熔模铸造通常是指在易熔材料制成的模样表面包覆若干层耐火材料制成型壳,再将模样熔化排出型壳,从而获得无分型面的铸型,经高温焙烧后即可填砂浇注的铸造方案。
由于模样广泛采用蜡质材料来制造,故常将熔模铸造称为“失蜡铸造”。
1.2. 工艺流程熔模铸造工艺全过程:1.蜡模成型:将蜡料压入金属型腔模具,冷却取出形成蜡模;2.组树:将若干蜡模焊在一根蜡制的浇注系统上,组成蜡模组;3.沾浆:将蜡模组浸入水玻璃和石英粉配置的浆料中;4.硬化壳:将蜡模组放入硬化剂中进行硬化,如此重复数次,直到蜡模表面形成一定厚度的硬化壳;5.熔蜡制壳:将带有硬壳的蜡模组加热,使蜡熔化后从浇口中流出,形成铸型空腔;6.熔炼浇注:将液态金属浇入模壳,形成铸件毛坯;7.清理型壳:待浇注后的产品充分冷却后,使用人工锤击或振动脱壳机使模壳从铸件上分离。
最后,利用切割的方法分离出模组上的铸件产品,得到所需铸件。
2.模料2.1. 模料要求制模材料的性能不单应保证方便地制得尺寸精确和表面光洁度高,强度好,重量轻的熔模,它还应为型壳的制造和获得良好铸件创造条件。
模料一般用蜡料、天然树脂和塑料(合成树脂)配制。
凡主要用蜡料配制的模料称为蜡基模料,它们的熔点较低,为60~70℃;凡主要用天然树脂配制的模料称为树脂基模料,熔点稍高,约70~120℃。
熔模铸造对模料的要求:1.热物理性能①熔点:模料的熔点及凝固温度区间应适中,熔点一般在50~80 ℃范围为宜,模料的凝固温度一般选择在5~10 ℃,以便配制模料、制模及脱蜡工艺的进行。
②热稳定性:热稳定性是指当温度升高时,模料抗软化变形的能力。
蜡基模料的热稳定性常以软点来表示,它是以标准悬臂试样加热保温2 h的变形量(挠度)达2 mm时的温度作为软化点,模料软化点一般应比制模车间的温度高10 ℃以上为宜。
熔模精密铸造技术

熔模精密铸造技术
语句要求正确
熔模精密铸造技术是一种采用模具来进行熔铸制备复杂形状的金属零件的工艺制造手段。
它将机械学、材料学和冶金学的原理完美结合起来,是较为精确的铸件制造技术。
熔模精密铸造技术具有诸多优点,如制造成本低、模具可循环使用、尺寸精确表达准确、表面光洁度好、平面度精确等优点。
1.熔体准备:熔体的准备是该技术制造过程的前提,需要按照设计要求以及所选铸件材料,采用冶金的方法进行熔体的准备,即熔炼生产,并达到铸件熔炼状态。
2.模具组装:采用计算机坐标测量机对模具的尺寸精确测量,按正确方法安装模具,保证模具内外尺寸的精确度以及模具的可靠性。
3.表面处理:在铸造过程中,可以采用表面处理设备施加物理和化学处理,将表面处理后的模具放入熔体中熔解,使其具有理想的表面性能。
4.组装装配:将精密铸件安装在模具内后,将其加热至熔炼温度,然后将熔体倒入模具,冷却后取出模具,分离组装部件,将精密铸件完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
熔模精密铸造工艺简介
熔模精密精密铸造(Investment Casting)又脱蜡铸造或失蜡铸造(Lost-wax Casting),这种铸造工艺可以生产出精密复杂、接近于产品最后形状,可不加工或很少加工就可直接使用的金属零件或精美工艺品,是一种近净形的金属液态成形工艺,应用非常广泛。
熔模铸造是以最终产品为摹本的批量复制技术,先要制做金属模具,在射蜡机上用金属模具压制出蜡模,将单个的蜡模组合到浇注系统上形成一棵棵蜡树,在蜡树上涂敷多层耐火材料,干燥硬化后形成型壳,然后将型壳内的蜡熔化使之流出,再将型壳焙烧使之坚固,最后再将熔化的液态金属浇注入型壳中,液态金属在型壳中冷却凝固后即成为所需要的铸件。
熔模精密铸造是在古代蜡模精密铸造的基础上发展起来的。
作为文明古国,中国是使用这一技术较早的国家之一,远在公元前数百年,我国古代劳动人民就创造了这种失蜡精密铸造技术,用来精密铸造带有各种精细花纹和文字的钟鼎及器皿等制品。
现代熔模精密铸造方法在工业生产中得到实际应用是在二十世纪四十年代。
当时航空喷气发动机的发展,要求制造象叶片、叶轮、喷嘴等形状复杂,尺寸精确以及表面光洁的耐热合金零件。
由于耐热合金材料难于机械加工,零件形状复杂,以致不能或难于用其它方法制造,因此,需要寻找一种新的精密的成型工艺,于是借鉴古代流传下来的失蜡精密铸造,经过对材料和工艺的改进,现代熔模精密铸造方法在古代工艺的基础上获得重要的发展。
我国是上世纪五、六十年代开始将熔模精密铸造应用于工业生产。
其后这种先进的精密铸造工艺得到巨大的发展,相继在航空、汽车、机床、船舶、内燃机、气轮机、电讯仪器、武器、医疗器械以及刀具等制造工业中被广泛采用,同时也用于工艺美术品的制造。
早期的熔模铸造工艺是采用石蜡硬脂酸模料、水玻璃粘接剂制壳。
九十年代开始发展铸造专用中温模料、硅溶胶制壳、中频快速熔炼技术,铸件尺寸精度和表面光洁度有了很大的改善,成为当今生产出口精密铸件的主流工艺。
熔模铸件尺寸精度较高,铸钢件一般可达GB/T6414之CT5-7(砂型精密铸造为CT10~13),小型铸件甚至可以达到CT4。
当然由于熔模精密铸造的工艺过程复杂,影响铸件尺寸精度的因素较多,例如模料的收缩、熔模的变形、型壳在加热和冷却过程中的线量变化、合金的收缩率以及在凝固过程中铸件的变形等,所以普通熔模铸件的尺寸精度虽然较高,但与机械加工相比仍有差距。
压制蜡模时,采用型腔表面光洁度高的压型,因此,熔模的表面光洁度也比较高。
此外,与熔融金属直接接触的型腔内表面由极细的耐火涂料涂挂在熔模上而制成。
所以,熔模铸件的表面光洁度比普通铸造件的高,表面粗糙度一般在Ra.3.2~6.3μm之间,更好的可以到Ra1.6以下。
熔模铸造采用热壳浇注,充型能力强,可以生产出薄壁铸件和细微的文字图案(如商标、规格型号等),铸件的最小壁厚已经可以做到2毫米以下。
熔模精密铸造最大的优点就是由于熔模铸件有着比较高的尺寸精度和表面光洁度,所以可减少机械加工工作,只是在零件上要求较高的部位留少许加工余量即可,甚至某些铸件只留打磨、抛光余量,不必机械加工即可使用。
熔模铸造还可以把一些焊接组合件铸成一体,省去组合与焊接工作。
由此可见,采用熔模
精密铸造方法可大量节省机床设备和加工工时,大幅度节约金属原材料。
熔模精密铸造方法的另一优点是材质选用灵活,它可以铸造各种合金的复杂铸件,特别是铸造耐热钢、高温合金等特殊材质铸件。
如喷气式发动机的叶片,其流线型外廓与冷却用内腔,用机械加工工艺几乎无法形成。
用熔模精密铸造工艺生产不仅可以做到批量生产,保证了铸件的一致性,而且避免了机械加工后残留刀纹的应力集中。
与其它铸造方法相比,熔模铸造的工序多,生产流程复杂,需要消耗较多的辅助材料、燃料和动力,生产成本比较高。
熔模铸造的制壳干燥时间比较长,生产周期也比较长。