第七章-非线性动力学与混沌

合集下载

非线性动力学中的混沌与分岔现象

非线性动力学中的混沌与分岔现象

非线性动力学中的混沌与分岔现象混沌现象的介绍混沌现象是非线性动力学中一个重要的研究课题,它描述了一种似乎随机的、无规律可循的运动状态。

在混沌现象的研究中,人们发现了一些特征,如灵敏依赖于初始条件、无周期运动和封闭轨道等。

混沌现象的研究对于理解自然界中的复杂系统行为具有重要的意义。

混沌现象最早是由美国数学家Edward Lorenz于20世纪60年代发现的。

他在研究气象学中的大气运动方程时,意外地发现了不确定性的现象。

这个发现被称为“蝴蝶效应”,即当一个蝴蝶在巴西振动翅膀时,可能引发一系列的气流变化,最终导致美国得克萨斯州的一个龙卷风的形成。

这个例子说明了混沌现象中初始条件的微小变化可能引起系统运动的巨大变化。

混沌现象的数学表示混沌现象可以用一些非线性动力学方程描述。

这些方程通常包含了一些非线性项,使得系统的演化不再是简单的线性叠加。

一个经典的混沌系统方程是Lorenz方程:\\frac{{dx}}{{dt}} = \\sigma(y - x),\\frac{{dy}}{{dt}} = x(\\rho - z) - y,\\frac{{dz}}{{dt}} = xy - \\beta z其中,x、y和z是系统的状态变量,t是时间。

σ、ρ和β是一些常数,它们决定了系统的性质。

这个方程描述了一个三维空间中的运动,这种运动就是混沌现象。

分岔现象的介绍分岔现象是混沌现象的一个重要特征,它描述了系统参数发生微小变化时,系统行为的剧烈变化。

简单来说,分岔现象就是系统从一个稳定的演化状态变成多个稳定状态的过程。

分岔现象的经典例子是Logistic映射。

Logistic映射是一种常用的非线性映射,它用于描述生物种群的增长。

Logistic映射的公式为:x_{n+1} = r \\cdot x_n \\cdot (1 - x_n)其中,x_n是第n个时刻的种群密度,x_{n+1}是下一个时刻的种群密度,r是系统的参数,它决定了种群的增长速度。

第七章 非线性动力学与混沌 讲义

第七章 非线性动力学与混沌 讲义

2. 线性化方程组的解及其稳定性
12
111 21 1
122 222
试探解:1 Aet ,2 Bet
11
21
12
22
A B
0
ij
( fi x j
)0
11 12 0 21 22
2 T 0
T 11 22
系数矩阵的迹
11 22 12 21 系数行列式的值
特征根
❖ 刘式达,刘式适,《非线性动力学和复杂 现象》,气象出版社,1989
§7.1 引言
一. “非线性动力学”的表观含义
数学上:
f (x) ax b
f
(x)
ax2
bx
c
线性 非线性
定义:力或微分方程含有坐标或速度的非线性项的系 统,称为非线性动力学系统,反之称为线性动力学系统。
例:
mx kx 2x2
1. 定态解 xi 0 i 1,2, , n
x2
平衡点,奇点
x1
2. 发散解
xi 之一或几个随时间无限地偏离初值 x2
爆炸,散射
x1
3. 振荡解
既不趋于无穷大,也不终止于某一点,而是在一定区域内不断变化。
❖ 周期振荡
❖ 准周期振荡
x2 闭合曲线
x1
x2 非闭合曲线
x1
❖ 混沌
相轨迹没有确定的形状周 期、貌似随机的运动。
1,2 T
T 2 4 2
特征矩阵
A1 B1
A2 B2
1 c1 A1e1t c2 A2e2t
2
c1B1e1t
c2 B2e2t
渐进稳定
临界情况 不稳定
1,2 T
T 2 4 2

非线性振动系统的动力学行为

非线性振动系统的动力学行为

非线性振动系统的动力学行为引言振动是物体在固有频率下的周期性运动。

在自然界和工程领域中,非线性振动系统的研究具有重要意义。

非线性振动系统的动力学行为常常具有复杂性和多样性,如混沌、周期倍增等现象。

本文将探讨非线性振动系统的动力学行为,包括混沌、周期倍增和双稳态等方面。

一、混沌现象混沌是非线性振动系统中一种复杂的动力学行为。

与线性振动系统的周期性运动不同,混沌运动是无规律、无周期的。

混沌现象的出现是由于非线性振动系统中各种非线性项的相互作用导致的。

例如,双摆系统中的混沌现象是由于摆角的非线性耦合引起的。

混沌现象的研究对于理解非线性振动系统的行为具有重要意义。

二、周期倍增现象周期倍增是非线性振动系统中的另一种重要动力学行为。

周期倍增是指系统在某一参数变化的过程中,周期解的周期逐渐增加。

周期倍增现象常常出现在非线性振动系统的临界点附近。

例如,当驱动力的频率接近系统的固有频率时,非线性振动系统可能出现周期倍增现象。

周期倍增现象的研究对于预测和控制非线性振动系统的行为具有重要意义。

三、双稳态现象双稳态是非线性振动系统中的一种特殊现象。

双稳态现象是指系统在某一参数范围内存在两个稳定解。

这意味着系统可以在两个不同的状态之间切换。

双稳态现象的出现是由于非线性项的非线性饱和效应引起的。

例如,光纤中的非线性光学效应可以导致双稳态现象的出现。

双稳态现象的研究对于设计和优化非线性振动系统具有重要意义。

结论非线性振动系统的动力学行为具有复杂性和多样性。

混沌、周期倍增和双稳态是非线性振动系统中常见的动力学现象。

混沌现象是非线性振动系统中无规律、无周期的运动,周期倍增现象是系统周期解周期逐渐增加的现象,双稳态现象是系统存在两个稳定解的现象。

研究非线性振动系统的动力学行为对于理解和应用于实际问题具有重要意义。

总之,非线性振动系统的动力学行为是一个复杂而有趣的研究领域。

通过深入研究非线性振动系统的混沌、周期倍增和双稳态等现象,我们可以更好地理解和控制非线性振动系统的行为,为实际应用提供理论基础和指导。

非线性动力系统混沌运动的分析方法

非线性动力系统混沌运动的分析方法

非线性动力系统混沌运动的分析方法摘要混沌是近20多年来由于计算机的发展而新兴起来的学科。

它一出现,就很快在许多领域得到广泛应用,开阔和加深了人们对许多自然现象的认识。

混沌被誉为是继相对论和量子力学问世以来,二十世纪物理学中的第三次革命。

由于混沌是非线性动力学方程解的一种类型,混沌理论自然与非线性动力学理论紧密相关。

本论文在概述非线性系统和混沌运动特性的基础上,总结了混沌运动的研究方法:时程曲线、相平面图、Poincare映射、功率谱图、Lyapunov 指数和分岔。

以Van der Pol方程为数学模型,编制了计算机程序,利用时程曲线、相平面图、功率谱图和分岔的方法,研究了混沌现象在动力系统中的存在,分析了混沌现象演化的过程。

关键词:非线性系统, 混沌, 相平面, Poincare映射Analysis Methods Of Chaotic Motion InNonlinear Dynamic SystemSpecialty: Information and computing scienceStudent: Yang YadiAdvisor: Zhao FengqunABSTRACTChaos is a new and developing subject with the development of computer in recent more than twenty years. Once appears, it has been generally used in lots of fields. It widens and deepens people’s knowledge to many natural phenomena. Chaos is considered to be the third revolution in physics of the 20th century after the Theory of Relativity and quantum mechanics came out. Because chaos is a type of the solution of nonlinear dynamic equation, chaos theory has a close relation with nonlinear dynamic theory naturally.Nonlinear system and the chaotic motive Characteristics are briefly introduced; the research methods of chaotic motion are summed up in this paper: response curve, phase position map, Poincare mapping, power spectrum map, Lyapunov exponents and the bifurcation. Given an example of the Van der Pol equation, the computer programs are presented in this paper. The existence of the chaotic phenomenon in the dynamic system is proved by using the methods of response curve, phase position map, power spectrum map and the bifurcation, and the evolutionary process of the chaotic phenomenon is also analyzed.KEY WORDS: nonlinear system, chaos, phase position, Poincare mapping目录中文摘要 (i)英文摘要 (ii)1. 绪论 (1)1.1非线性系统与混沌 (1)1.2非线性系统与混沌研究的目的和意义 (2)1.3非线性系统与混沌研究的发展情况 (4)2.混沌及其特征 (6)2.1混沌的定义 (6)2.2混沌运动的特征 (6)2.3奇怪吸引子 (7)3.混沌的研究方法 (9)3.1时程曲线 (9)3.2相平面 (9)3.3庞加莱(Poincare)截面 (11)3.4功率谱 (12)3.5 Lyapunov指数 (17)3.6分岔 (20)4.混沌典型实例分析 (28)5. 结论 (31)致谢.................................................................................. 错误!未定义书签。

第七章 混沌—混乱中的秩序

第七章 混沌—混乱中的秩序

伯努瓦· 曼德勃罗
混沌与分形
曼德布洛在1960~70年代研究复杂性时,发展出 碎形几何学。他称之为「分形」乃源自拉丁字 “fractus”,意在彰显这些形状的破碎与不规则。 碎形会展现自相似性。这也就是说,无论如何放大 它们,都长得很相似;一个结构的一小部份,看起 来就像整体一样。 自相似性有两种形式:精确的与统计的。假树 显示的图案,在不同放大尺度下都精确重复(下图 左栏)。真树的图案则不会精确重复,只有统计上 的重复(下图右栏)。几乎所有自然界的图案都遵 守统计上的自相似性,帕洛克的绘画亦然。
混沌的应用

1、混沌与艺术
2、混沌与经济学 3、混沌与学习


1、混沌与艺术
一位画家波洛克(杰克逊· 波洛克 Jackson Pollock ) 的创作
纪录片《他妈的,谁是波洛 克》
1948第五号
32
3.2
你觉得波洛克具 备绘画技巧吗?
《周易· 系辞》云:“形而上者谓之道,形而下者谓之 器。”自先秦以来,把造物活动归属于形而下范畴,在文 化观念上“重道轻器”思想历代并不鲜见,但当下的艺术 教育中“重器轻道”现象却相当普遍。
从科学的角度来看,“蝴蝶效应”反映了混沌运 动的一个重要特征:系统的长期行为对初始条件的 敏感依赖性。
一则西方寓言:
丢失一个钉子,坏了一只蹄铁;
坏了一只蹄铁,折了一匹战马; 折了一匹战马,伤了一位骑士; 伤了一位骑士,输了一场战斗; 输了一场战斗,亡了一个帝国。
马蹄铁上一个钉子是否会丢失,本是初始条件的十分微小 的变化,但其“长期”效应却是一个帝国存与亡的根本差别。 这就是军事和政治领域中的所谓“蝴蝶效应”。
A. 孙宙有序地存在之前的那种状态,无形的物质与无穷的空间都处于无 序之中。 B. 极端的混乱与无序。 C. 深远或无底洞。

非线性动力学混沌理论方法及其意义

非线性动力学混沌理论方法及其意义

非线性动力学混沌理论方法及其意义吴 彤(清华大学 科学技术与社会研究所,北京 100084) 摘 要:本文考察了非线性混沌的各类描述定义,研究了混沌的细致分类,讨论和研究了混沌特性以及判别混沌、寻找混沌征兆的方法,区别了混沌与噪声;对混沌理论的认识论和方法论意义进行了四方面的研究:混沌研究对复杂性研究的非线性方法论的意义,混沌和决定论与可预测性的关系,混沌边缘研究意义,建设和避免混沌的关系。

关键词:非线性;混沌;方法;可预测性中图分类号:F22410 文献标识码:A 文章编号:1000-0062(2000)03—0072-08 如果仔细考察人类在自己的生命演化过程中的关注,似乎有两个问题最重要,第一,如何预测未来,第二,是否能够预测未来,因果关系等问题均在此列。

第一个问题是实用性的,而第二个问题则是理论性的,它关系到一种原则和生活的意义。

20世纪中叶以后,当气象学家洛伦兹提出“蝴蝶效应”时,人们了解到,就是完全确定性的动力学方程,也仍然会出现随机性演化。

那么,如何预测未来呢?预测还可能吗?人们现在更害怕混沌理论打破他们对未来可预测性的幻想。

但是这种幻想实在是一种幻象。

其实,从休谟起,科学哲学对归纳问题本质的揭示已经对单一的决定论因果观念给出了不可能的回答。

有哪一个人知道自己的生命和生命之途将如何走向呢?哪一个生命的道路不是在生命演化过程中逐渐完成的呢?其实,宿命论与线性决定论的联系比与随机论的联系更强。

另一方面,也出现了相反的误读和误解。

人们以为,混沌理论如果正确,那么世界将完全不可预测。

似乎混沌理论助长了悲观主义。

其实,混沌理论的出现,一方面揭示了自然界和社会客观存在混沌,谁都无法避免;另一方面,混沌理论对混沌动力学系统的研究,恰恰帮助人们了解混沌现象,对“混沌”不混沌,才能处事(处世)不惊、不乱。

混沌理论在一定意上更支持了决定论,因为它把原来属于随机性的、偶然性的领域,也纳入到决定论的管辖范围内。

混沌理论在非线性动力学中的应用研究

混沌理论在非线性动力学中的应用研究

混沌理论在非线性动力学中的应用研究在自然界和社会中,不少现象都呈现出难以预测的混沌态。

混沌现象一度被认为是无规则的,无法用科学方法解释和描述,但混沌理论的发展改变了这一观念,使得我们能够更好地理解并预测混沌现象。

如今,混沌理论已经在非线性动力学领域得到广泛应用。

什么是混沌理论?混沌现象是指一种非线性系统在微小因素下引起的复杂、随机的状态转换。

所谓混沌理论,就是指对混沌现象进行研究,找到其规律和特性的理论。

混沌理论的核心是混沌分形思想,即将混沌的非线性系统抽象成一些规则的几何图像,从而表述它们的结构和特性。

混沌理论的发展历程混沌理论的发展源于70年代。

当代生物学家洛伦茨在研究大气环流问题时得到了一组难以理解的计算结果。

洛伦茨发现,当他用一组非常简单的方程模拟空气流动时,该方程随着时间的变化轨迹从不同的起点展开后,结果却相差无几的奇怪现象。

这种结果使洛伦茨推断出,非线性系统的行为比我们一直认为的要复杂得多。

20世纪90年代初,混沌理论得到了进一步的发展。

通过大量的实验和模拟,研究者们发现:几乎任何的非线性系统都拥有某种形式的混沌现象。

此后,混沌理论在非线性动力学领域得到了大量应用。

混沌理论在非线性动力学中的应用研究非线性动力学是指由非线性系统引起的全部动力学研究。

非线性系统与线性系统的最大区别,在于前者的响应不仅取决于输入信号幅值,还取决于输入信号波形,即非线性系统的输出与输入信号之间存在非线性关系。

混沌理论在非线性动力学中具有重要的应用价值。

现在让我们从以下几个方面来说明。

1.混沌生物学混沌生物学是研究生态系统、种群动态、库仑生命现象等问题的一种新兴的生物学分支。

混沌生物学在描述生物种群量和生态系统变化时,采用了非线性动力学模型。

这些模型通过运用混沌理论,成功地描述了生态系统的特性和演化规律。

在生物多样性存亡问题上,混沌生物学研究可以辅助我们阐明生态系统演化的密度依赖和混沌稳定性。

2.混沌流体力学混沌流体力学是一种研究非线性动力学中的流体系统行为的学科。

第七章 非线性动力学与混沌 讲义

第七章 非线性动力学与混沌 讲义

二. 决定性系统与不可预测性
1. 力学决定论及其伟大成就
x m F (x, x, t ) x x 0 , x x 0

t t0

x(t ), x(t )
存在且唯一, 可预测性
1757年,哈雷慧星(Hally comet)按预测回归。 1846年,海王星在预言的位置被发现。 今天,日月蚀的准确预测,宇宙探测器的成功发射与回收。
ij (
f i )0 x j
11 12 0 21 22
T 11 22 系数矩阵的迹 11 22 12 21 系数行列式的值
A1 B 1 A2 B2
T 0
2
特征根
1, 2
T T 2 4 2
xi f i ( x1 , x2 ,, xn )
i 1,2,, n
优点:

四. 相空间(相图)的概念
相空间,也就是状态空间,是由广义坐标和广义动量(速度) 张成的空间,也称相宇。相空间中运动状态的变化轨迹称为相图。
弹簧振子 通解
x 0 x
2 0
x A cos( 0t ) x1 x A0 sin(0t ) x2
设想一位智者在某一瞬间得知激励大自然所有力及组成它的物体 的相互位置,如果这位智者又能对众多的数据进行分析,把宇宙间最 庞大的物体和最轻微的原子的运动凝聚在一个公式中,没有什么事物 是不确定的,将来就像过去一样清晰地展现在眼前。
——拉普拉斯(Laplace,法国数学家,1749-1827)
2. 力学决定论不断受到挑战
x1 x, x2 x
x3 cos t , x4 x3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f i ij ( ) 0 x j
11 12 0 21 22
T 11 22 系数矩阵的迹 11 22 12 21 系数行列式的值
特征矩阵
T 0
2
特征根
T T 2 4 1, 2 2
A1 B 1
t
原点 i 0 是渐进稳定的
参考态
xi 0 也是渐进稳定的。

(2) 两特征根中至少有一个实部为正 原点 i 0 是不稳定的 lim i
t
参考态
xi 0 也是不稳定的。

(3) 两特征根中至少有一个实部为零,另一个实部为负
原点 i 0 是Lyapunov稳定的 参考态 xi 0 处于临界情况。
x
x2
t
时空轨迹 相图
x1
小结
非线性动力学系统
决定性系统与不可预测性(初值敏感性)
一阶自治常微分方程组
相空间
§7.2 运动稳定性分析
一. 非线性方程解的各种形式
i fi ( x1 , x2 ,, xn ) x
1. 定态解
i 1,2,, n i 1,2,, n
x2 x1
代入方程
2 02
当阻尼为正阻尼且很小时 0 0
i , 02 2
x1 x Ae t cos(t ) Ae t [ cos(t ) sin(t )] x2 x 2 2 Ae t sin(t 0 )
x1 x, x2 x
3 x3 cost , x4 x
1 x2 x k 3 F x x x x x3 2 1 1 2 m m m m x 3 x4 2 x x3 4
一阶常微分方程组

数值计算 系统的状态 相空间
例1.
2t x
x0 (0) 1
x0 (0) c 1
1 解: x(t ) 2t t 2 c 2 x(0) x0 (0) c 1
x 0 (t ) 2t
1 2 t 1 2
x(t ) x0 (t ) c 1
x0 (t ) 是Lyapunov稳定的
非线性动力学与混沌
NONLINEAR DYNAMICS AND CHAOS
参考书
林振山,《非线性力学与大气科学》,南京大学
出版社,1993
刘秉正,
《非线性动力学与混沌基础》,东北师 范大学出版社,1994
刘式达,刘式适,《非线性动力学和复杂现象》,
气象出版社,1989
§7.1 引言
一. “非线性动力学”的表观含义
1 x2 x 2 x x1 2 0
2 x12 x2 1 2 2 A ( A0 )
x
x2
t
时空轨迹 相图
x1
阻尼弹簧振子
通解
2x x 0 x
2 0
x Aet
2 0
2 2 0
1 x2 x 2 x 0 x1 2 x2 2
T T 2 4 1, 2 2 3. 奇点的分类 (取非线性方程的奇点为参考态)
(1) 0
T 2 4 0 两根都是实的,且符号相同,此时奇点称为结点。
T 0 不稳定的结点
T 0 稳定的结点
(2) 0 , T 2 4 0, T 0
两根都是复的,此时奇点称为焦点。
lim x(t ) x0 (t ) lim c 2 e t 0
t t
渐进稳定的
三. 线性稳定性分析
1. 线性稳定性定理
i fi ( x1 , x2 ,, xn ) x
i 1,2,, n
设 xi 0 (t ) 为方程的一个解(参考解), 为研究该解的稳定性, 令 xi (t ) xi 0 (t ) i (t ) 为此解附件另一解,称扰动解 。
例2.
解:
tx x
x(t ) t 1 ce
t
x0 (0) 1
x0 (0) 1
c2
x0 (t ) t 1 2et
x(0) x0 (0) 1 c 1 2 c 2
x(t ) x0 (t ) t 1 ce t 1 2e t c 2 e t

1883年,英国流体力学家雷诺(Reynolds)的湍流实验。 (香烟) 1903年,法国数学家昂利•庞伽莱(Henri Poincare)从动力系统 和拓扑学的全局思想出发,指出动力学系统可能存在混沌特征。 1963,美国气象学家洛仑兹(Lorenz)在研究天气预报中大气流 动问题时发现了天气“对初始条件的极端敏感性”,将使长时间 的预测无法进行。后被形象地称为“蝴蝶效应” :一只蝴蝶在巴 西扇一下翅膀,就可能在美国得克萨斯州引起龙卷风。
f ( x, x ) x
2阶,1维
x1 x x 1 x2 x
1 x2 x 2 f ( x1 , x2 ) x
1阶,2维
n+1维自治
(2)非自治的 n维非自治
i 1 xi t , x
Duffing方程
x kx x3 F cost m x
f ( x) x
(1)
x ( x1, x2 ,, xn ) f ( f1, f 2 ,, f n )
设t=t0时方程的解为 x0 (t0 ) ,t时为 x 0 (t ),另一受扰动而偏离它的 解t0时为 x(t0 ) , t时为 x(t )。如果对于任意小的数 0 ,总有一小数 0 存在,使得当 x(t ) x (t ) 时,必有 x(t ) x (t ) , t t 则称解x (t ) 是Lyapunov意义下稳定的,简称Lyapunov稳定的或稳定 0 的。
1. 力学决定论及其伟大成就
F ( x, x , t) x m x 0 x x 0 , x

t t0

(t ) x(t ), x
存在且唯一, 可预测性
1757年,哈雷慧星(Hally comet)按预测回归。 1846年,海王星在预言的位置被发现。

今天,日月蚀的准确预测,宇宙探测器的成功发射与回收。
0 x2 2 0 0 sin x1 2 x2

求定态解
1 0 x 2 0 x
(0,0) 两奇点 ( ,0)

(2k ,0) (2k ,0)
1. 在奇点(0,0)处线性化方程组为
f1 f1 2 2 1 x1 0 x2 0 f 2 f 2 2 1 - 2 2 2 1 2 0 x x 1 0 2 0 1
洛仑兹方程

10x 10 y x 28x y xz y z xy 8 z / 3
初值敏感性

不可预测性,混沌
初值敏感演示
杜芬(Duffing)方程: (带阻尼弹性系统的强迫振动)
x kx x F cost m x
0 0 0 ( x2 y2 ) ( xn yn )
2 2

2 12

两矢量间的距离
(2)
如果解 x 0 (t ) 是稳定的,且 lim x(t ) x 0 (t ) 0 则称此解
t
是渐进稳定的。
(3)
不满足上述条件的解是不稳定的。
设想一位智者在某一瞬间得知激励大自然所有力及组成它的物体 的相互位置,如果这位智者又能对众多的数据进行分析,把宇宙间最 庞大的物体和最轻微的原子的运动凝聚在一个公式中,没有什么事物 是不确定的,将来就像过去一样清晰地展现在眼前。
——拉普拉斯(Laplace,法国数学家,1749-1827)
2. 力学决定论不断受到挑战
3
x10 1,
10 0 x 20 0 x20 1.000001 , x
三. 常微分方程的一般形式
1. 自治方程与非自治方程
F(x, x ) m x F(x, x , t) m x
不显含时间,自治的 显含时间,非自治的
2. 常微分方程一般形式
(1)自治的
T 0
不稳定的焦点
T 0 稳定的焦点
(3) 0, T 0 两根都是纯虚数,解是等幅振荡,此时奇点称为中心。
中心
鞍点
(4)
0
两根都是实数,一正一负,此时奇点称为鞍点。

稳 定 焦 点 不 中稳 心焦 点 鞍点
T 2 4 0
稳定结点
不稳结点
T
T T 2 4 1, 2 2
2. 线性化方程组的解及其稳定性
1 11 1 12 2 2 211 22 2
试探解:1 Aet , 2 Bet
12 A 11 B 0 22 21
i 0 x
平衡点,奇点 2. 发散解
xi 之一或几个随时间无限地偏离初值
爆炸,散射
x2 x1
3. 振荡解
既不趋于无穷大,也不终止于某一点,而是在一定区域内不断变化。

周期振荡
x2

准周期振荡
x2
闭合曲线
x1
非闭合曲线
x1

混沌 相轨迹没有确定的形状周 期、貌似随机的运动。
二. 解的稳定性
Lyapunov稳定性定义:
例: 分析阻尼单摆定态的稳定性
相关文档
最新文档