ansys超弹性分析练习十四解析
弹性力学ansys分析

图1为一个承受内压的薄板,在其中心位置有一个小圆孔,相关的结构尺寸参考图1所示。
材料属性:弹性模量E=2e11Pa,泊松比为0.3。
拉伸载荷为:q=3000Pa。
平板的厚度为:t=0.01mm。
通过简单力学分析,该问题属于平面应力问题,又因为平板结构的对称性,所以只要分析其中的1/4即可,如图2所示。
图1 板的结构示意图图2 有限元分析见图一、前处理(1)定义工作文件名:Utility Menu>File>Change Jobname,弹出如图3所示的Change Jobname对话框,在Enter new Jobname后面的输入栏中输入Plate,并将New Log and error files复选框选为yes,单击OK。
图3 定义工作文件名对话框(2)定义工作标题:Utility Menu>File>Change Title,在出现的对话框中输入The Analysis of Plate Stress with small Circle,单击OK。
图4 定义工作标题对话框(3)重新显示:Utility Menu>Plot>Replot。
(4)关闭三角坐标符号:Utility Menu>PlotCtrls>Window Controls>Window options,弹出一个对话框,在Location of triad 后面的下拉式选择框中,选择Not Shown,单击OK。
(5)选择单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete,弹出Element Type对话框,单击Add按钮,又弹出如图5所示的Library of Element Types对话框,在选择框中分别选择Structural Solid和Quad 8node 82,单击OK,然后单击Close。
ANSYS14.0workbench modal讲义

Release 14.0
B. 几何模型
模态分析支持各种类型的几何体: • 实体,面体和线体。 • 可以使用质量点point mass:
– 质量点只增加结构质量,并不会改变其刚度,因此降低了结构的固有 频率 (K/M)。 • 材料属性: 需要定义杨氏模量,泊松比和密度。 在自由模态分析中不能施加结构荷载和热荷载 : •如果当前没有约束(或者只有部分约束),在0Hz或其附近将出现刚体模 态。 •边界条件的选择将影响到零件的振型和频率。因此需要仔细考虑模型的 约束情况。
下图是模态分析过程的项目管理图表。稍后将会介绍预应力模态分析的 操作过程。
3
© 2011 ANSYS, Inc.
September 30, 2013
Release 14.0
…模态分析基础
对于模态分析,固有频率wi和振型fi 根据下面的方程计算得出 :
K w M f 0
2 i i
© 2011 ANSYS, Inc.
September 30, 2013
Release 14.0
. . . 预应力模态分析
• 通过改变结构的刚度而改变结构的应力状态会影响模态的求解。
K xo F
进行线性静态分析
o S
基于结构分析的应力状态,计 算出应力刚度矩阵
第六章
模态分析
பைடு நூலகம்
14. 0 Release
Introduction to ANSYS Mechanical Part 1
1 © 2011 ANSYS, Inc. September 30, 2013 Release 14.0
简介
在这一章中,将介绍自由模态分析和预应力模态 分析。 本章内容:
ANSYS14.0-理论解析与工程应用实例

ANSYS14.0理论解析与工程应用实例 机械工业出版社 2013.1出版 作者:张洪才本书是针对现有的ANSYS 图书,实例单一,工程背景不强,重操作,少原理的现状,特以ANSYS14.0为平台撰写的一部理论与工程应用相结合的自学和提高教程。
全面介绍有限元方法、单元、模型的建立、网格划分、加载、求解、后处理、线弹性静力学分析、梁结构分析、壳结构分析、非线性结构分析,屈曲分析,接触分析,装配体分析,阻尼,模态分析,瞬态动力学分析,谐响应分析,谱分析,热分析,断裂力学分析,裂纹扩展模拟和转子动力学等内容。
围绕ANSYS 软件的功能讲解,书中给出了大量具有工程背景的实例。
本书具有以下特点,语言通俗易懂,逻辑严密,深入浅出,理论与软件操作有机结合,让用户不但知道如何操作还让用户明白为什么这样操作。
切实从读者学习和使用的实际出发,安排章节顺序和内容。
图文并茂。
讲述过程中结合大量分析实例,力求易于理解并方便学习和实践过程中的使用。
本书配套光盘提供了实例的视频教程和ANSYS 实例文件。
1 轴承座的静力学分析图8-9 轴承座的位移等效云图 图8-10 轴承座的等效应力云图2梁框架结构分析图9-20 梁框架结构绕Z轴的弯矩云图图9-21 梁框架结构的轴力云图3变厚度壳体结构分析图10-7 变截面壳体X方向的横向剪切力云图图10-8 变截面壳体X方向的弯矩云图4悬臂板的大变形分析图11-46 悬臂板的转动位移云图图11-47 悬臂板X方向的应力云图5钓鱼竿的非线性分析6 压力容器的弹塑性分析图11-58 85%载荷作用时压力容器的等效塑性应变图11-59 弹性应变能密度云图7 循环载荷作用的力学响应分析图11-64 加载110s时悬臂梁的等效塑性应变云图图11-65 加载170s时悬臂梁的等效塑性应变云图图11-66 加载端Y方向的位移与时间的关系图11-67 距固定端0.04m处等效塑性应变与时间的关系7 螺栓的应力松弛分析图11-69 螺栓右端轴向应力与时间的关系 图11-70 螺栓右端轴向蠕变与时间的关系8 超长杆的特征值屈曲分析 9薄壁圆筒的特征值屈曲分析 10 铰接薄壳的后屈曲分析 11过盈装配分析图13-28 轴的过盈装配等效应力云图 图13-29 盘的过盈装配等效应力云图图13-30 接触单元的接触压力云图 图13-31 接触单元的摩擦应力云图12滚压成型分析图13-33 第一个载荷步的等效应力云图图13-34 第40个载荷步的等效应力云图13橡胶圆筒的大变形接触分析图13-50 50.75%位移载荷的接触压力云图图13-51 100%位移载荷的接触压力云图14平面拉弯成型分析图13-59 成型过程中的接触压力云图图13-60 成型后的接触压力云图15圆柱滚子轴承的接触分析图13-62 轴承的位移云图图13-63 轴承的等效应力云图16球体与平面的接触分析图13-67 球-面接触的位移云图图13-68 球-面接触的等效应力云图17橡胶密封圈分析图13-76 第二载荷步的接触压力云图图13-77 第二载荷步的接触摩擦应力云图18螺栓连接有限元分析图13-81 第二载荷步作用后的位移云图图13-82 第二载荷作用后的螺栓位移云图19 轴-支撑结构装配体分析图14-12 轴-支撑结构的位移云图图14-13 轴支撑结构的等效应力云图20 壳体-实体装配体分析图14-15 壳体-实体装配体位移云图图14-16 壳体-实体装配体等效应力云图21 齿轮装配体模态分析图16-10 第1阶模态振型云图 图16-11 第2阶模态振型云图22多材料的复模态分析23 旋转叶片的预应力模态分析 24 破碎锤的瞬态动力学分析图17-19 撞击初始时等效应力云图 图17-20 撞击过程中的等效应力云图25冲击载荷作用悬臂梁的阻尼振动分析图17-31 加载端Y 方向位移与时间关系 图17-32 加载端Y 方向速度与时间关系图17-33 加载端Z方向弯矩与时间关系图17-34 约束端Z方向弯矩与时间关系26滑动摩擦接触分析图17-37 0.5E-3s时刻等效应力云图图17-38 0.05s时刻等效应力云图图17-39 0.5E-3s时刻接触压力云图图17-40 0.05s时刻接触压力云图27 碟片弹簧的谐响应分析图18-12 4077.8激励频率作用时位移响应云图图18-13 4077.8激励频率作用是等效应力响应云图图18-13 加载端Y方向位移与激励频率的关系图18-14 加载端相位角与激励频率的关系28 扭杆的谐响应分析(振型迭代法)图18-18 49号节点转动位移与激励频率的关系图18-19 18号节点转动位移与激励频率的关系29 楔形梁的谐响应分析(振型迭代法)图18-21 38号节点Y方向位移与激励频率关系图18-22 92号节点Y方向位移与激励频率关系30 简支梁的的随机振动分析31 框架结构的单点响应谱分析32 多材料热接触的传热分析33 液-固体相变分析34薄板边裂纹的应力强度因子计算图21-8 裂纹尖端位移云图图21-9 裂纹尖端应力场云图图21-10 裂纹尖端I型应力强度因子计算结果列表图21-11 裂纹尖端II型应力强度因子计算结果列表35冲击载荷作用下的动态应力强度因子计算图21-14 0.2E-4s时刻的等效应力云图图21-15 0.1E-3s时刻的等效应力云图图21-16 0.2E-3s时刻等效应力云图图21-17 0.3E-3s时刻等效应力云图图21-18 A点裂纹尖端等效应力与时间关系图21-19 A点裂纹尖端I型应力强度因子36 三维应力强度因子的计算图21-21 三维裂纹位移云图图21-22 三维裂纹尖端应力场云图图21-23 裂纹尖端I型应力强度因子计算结果列表37界面裂纹能量释放率的计算图21-25 界面裂纹位移云图图21-26 界面裂纹等效应力云图图21-27 A点能量释放率计算结果列表图21-18 B点能量释放率计算结果列表38 热应力作用下的断裂力学分析图21-20 温度场云图图21-21 热应力作用下的裂纹尖端等效应力云图图21-22 热应力作用下I型应力强度因子计算列表图21-23 热应力作用下II型应力强度因子计算列表39 双悬臂梁的裂纹扩展模拟40单盘转子的临界转速分析41转子系统不平衡激励的谐响应分析图23-13 转盘1的Y方向位移与激励频率的关系图23-14 转盘2的Y方向位移与激励频率的关系图23-15 激励频率1Hz时转子系统的轨迹图图23-16 激励频率300Hz时转子系统的轨迹图42转子系统启动时的瞬态动力学分析图23-18 转盘中心的运动轨迹图23-19 轴承1的X反力与时间的关系43冲击载荷作用下的转子系统响应分析。
ANSYS14.0基础讲义_M10_求解

缺省是“程序选择”求解器 [eqslv,-1], 通常是稀疏矩阵直接求解器。
© 2015 Pera Corporation Ltd. All rights reserved.
8
B. 解释
什么是 载荷步 和 载荷子步 ?
载荷步 1
载荷步 2
载荷步 3
Force
载荷步 4
载荷步 5
25
20
Force (lbs)
© 2015 Pera Corporation Ltd. All rights reserved.
2
A. 求解器
ANSYS 中可以使用的求解器分为三类
– 直接消去求解器 • • – • • • • – 波前求解器 稀疏求解器 (缺省) PCG (预置条件共轭梯度求解器) ICCG (不完全乔利斯基共轭梯度求解器) JCG (雅可比共轭求解器) AMG(代数多栅求解器,仅在公用存储器上分布式矩阵法求解)
迭代求解
需要先处理 [Q] 再求解方程 [Q][K]{x} = [Q]{F}. 假设 [Q] =
[K]-1. 本例子中, [I]{x} = [K]-1{F}.然而,预置条件不是通常的 [K]-1. [Q] 接近 [K]-1, 是更好的预置条件. 因此,预置条件不是通常的 [K]-1.这个过程是 反复的过程,因此称为迭代求解器 – 迭代求解器执行矩阵相乘(不是分解),如果完全在内存RAM中,它比矩阵求逆要 快得多.只要迭代次数不是很多(对情况良好的矩阵).迭代求解器比稀疏求解器 更有效 – ANSYS的迭代求解器— PCG, JCG, ICCG —的主要不同点是所用的预置条件 种类不同
© 2015 Pera Corporation Ltd. All rights reserved.
ANSYS14.0培训教程课件PPT

入门
目录
2. 有限元分析和 ANSYS 3. ANSYS 基础 4. 应力分析 5. 预先的考虑 6. 热分析 7.热应力分析 8. 输入模型 9.实体建模
10. 网格划分 11. 选择逻辑 12. APDL 基础 13. 加载和求解 14. 后处理 15. 专题
培训手册
January 30, 2006
• 静力分析 – 用于静态荷载. – 可以考虑结构的线性及非线性行为,例如:大变形、大应 变、应力刚化、接触、塑性、超弹及蠕变等.
超弹密封
January 30, 2006
有限元分析与 ANSYS - 关于 ANSYS
…结构分析
培训手册
• 动力分析 – 包括质量和阻尼效应。 – 模态分析,用于计算固有频率和振型。
• 热和质量的传输 – 在两点之间质量传输(如在一个管子中)产生的热量计算 由一个一维单元完成
January 30, 2006
有限元分析与 ANSYS - 关于 ANSYS
耦合场分析
培训手册
• 耦合场分析考虑两个或多个物理场之间的相互作用。因为 两个物理场之间相互影响,所以单独求解一个物理场是不
可能的。因此你需要一个能够将两个物理场组合到一起求 解的分析软件。
• 可模拟三种热传递方式:热传导、热对流、热辐射。
• 稳态分析 – 忽略时间效应
• 瞬态分析 – 确定以时间为函数的温度值等。 – 可模拟相变(熔化及凝固)
January 30, 2006
有限元分析与 ANSYS - 关于 ANSYS
电磁分析
• 电磁分析用于计算电磁装置中的磁场
• 静态磁场及低频电磁场分析 – 模拟由直流电源,低频交流电 或低频瞬时信号引起的磁场。 – 例如:螺线管制动器、电动 机、变压器 – 磁场分析中考虑的物理量是: 磁通量密度、磁场密度、磁 力和磁力矩、阻抗、电感、 涡流、能耗及磁通量泄漏等。
ANSYS— 弹性平面问题、振动模态分析

ANSYS ——有限元分析弹性平面问题、振动模态分析1、弹性平面问题1、1.题目一:(见图一所示)图1已知条件:1.5a m =,0.4c m =,0.5d m =,6/q kN m =,5F kN =;1、1.1解题的总体思路由于单元体是一个300×140的,为了方便计算,采用直接建模法,先创建一个30×14的单元体结构,在挖去15×4的单元,建立如下模型(见图二所示)图2并且对模型进行加载和约束,左边为固定端约束,右下角为端约束。
荷载分别为均布荷载和一个集中力荷载。
1、1.2运行结果此节只显示运行的结果和简单的解释,详细的命令见1、1.3节命令流中各个命令的注解。
1、各个节点的位移和扭矩主要列举了具有代表意义的节点,由于节点有15×31个,所以只列出约束处的节点的位移和扭矩。
只列出了31节点的位移,其他约束处的位移都为0 结果显示出:Ux=0.017236mm Uy=0mm2、受力后与受力前变形图(放大)【见图3所示】图33、X方向的变形图【见图4所示】图44、Y方向的变形图【见图5所示】图55、内力图【见图6所示】图6结论:节点31处是最容易收到破坏的,因此再设计时应注意此处的设计。
1、1.3命令流/PREP7N,1,0,0!确定第一个节点N,31,300,0!确定第31个节点FILL,1,31!在1到31节点中插入节点NGEN,15,31,1,31,1,0,10!复制上述节点15行,每行间距为10ET,1,PLANE42!常量的设置MP,EX,1,200E9MP,NUXY,1,0.3E,1,2,33,32 !创建第一个单元EGEN,30,1,1 !复制1到31个单元的建立EGEN,14,31,1,30 !所有的单元创建EDELE,151,165 !下面都是挖去中间的面EDELE,181,195EDELE,211,225EDELE,241,255NDELE,187,201NDELE,218,232NDELE,249,263FINISH!退出预处理/SOLU !求解ANTYPE,STATICOUTPR,BASIC,ALLD,1,ALL,0 !右端面的约束D,32,ALL,0D,63,ALL,0D,94,ALL,0D,125,ALL,0D,156,ALL,0D,280,ALL,0D,311,ALL,0D,342,ALL,0D,373,ALL,0D,404,ALL,0D,435,ALL,0D,31,UY,0 !右下角的节点31约束SFE,406,3,PRES,,6000,6000!均布荷载的加载SFE,407,3,PRES,,6000,6000SFE,408,3,PRES,,6000,6000SFE,409,3,PRES,,6000,6000SFE,410,3,PRES,,6000,6000SFE,411,3,PRES,,6000,6000SFE,412,3,PRES,,6000,6000SFE,413,3,PRES,,6000,6000SFE,414,3,PRES,,6000,6000SFE,415,3,PRES,,6000,6000SFE,416,3,PRES,,6000,6000SFE,417,3,PRES,,6000,6000SFE,418,3,PRES,,6000,6000SFE,419,3,PRES,,6000,6000SFE,420,3,PRES,,6000,6000F,248,FX,5000!集中力的加载SOLVE !求解FINISH/POST1 !进入后处理PRDISP !得出各个节点的位移PLDISP,1!受理前后的变形图的比较PLNSOL,U,X !x方向的变形图PLNSOL,U,Y !Y方向的变形图PLESOL,S,EQV!内力图FINISH注:黑体字为注解。
ansys超弹性练习十四

– TBFT,EADD,1,BIAX,NR_23C_EB_SCL_1_SEG38
– TBFT,EADD,1,SHEA,NR_23C_PT_SCL_1_SEG38
提示: 平衡轴向拉伸和平面拉伸(剪切)以相同的方式指定。这 些文本文件也是针对具体的变形模式关于工程应变-工 程应力的。本例中,未使用体积实验数据并假定为不 可压缩。
练习 8B: 超弹性曲线拟合
…简单拉伸实验
使用GUI菜单方法:
• 在对话框中输入 “Solve for the following Function,” 选择“Hyperelastic > Yeoh > 3rd Order” 。这不是非线性曲线拟合,所以没有需要初 始化的数据。需要首先使用规范化错误标准。
或命令输入方法:
– /PREP7 – TBFT,EADD,1,UNIA,NR_23C_ST_SCL_1_SEG38
提示: 首先需要设置的实验数据是单轴拉伸数据。这以工程 应变-工程应力格式存放在空格或列表-分界文本文件中 。
练习 8B: 超弹性曲线拟合
…简单拉伸实验
使用GUI菜单方法:
• 在“Biaxial test data for Material 1”,选“Read From File”,并选择文件 “NR_23C_EB_SCL_1_SEG38”,点击“Open”。
Image courtesy of Axel Products, Inc.
练习 8B: 超弹性曲线拟合
…简单拉伸实验
1. 读入输入文件“ASNL_W08B_Tension.inp”
使用GUI菜单方法:
– Utility Menu > File > Read Input From… • 选择“ASNL_W08B_Tension.inp” • 点击 [OK]
ansys高级非线性分析-第六章_超弹性解读

September 30, 2001 Inventory #001491 6-7
超弹性
... 延伸率的定义
Training Manual
Advanced Structural Nonlinearities 6.0
• 举例说明主延伸率的定义, 考虑一个薄正方形橡胶薄板进行双向拉 伸,主延伸率 l1 和 l2 描述了平面内变形特征,另一方面, l3 定义 厚度变化 (t/to),另外, 若材料假设为完全不可压缩, 则 l3 等于l-2.
Training Manual
Advanced Structural Nonlinearities 6.0
• 由于材料的不可压缩性, 把应变能函数分解为偏差项(下标d 或‘bar’ )和体积项(下标b),结果, 体积项仅为体积比J 的函数。
W Wd I1 , I 2 Wb J
W Wd l1 , l2 , l3 Wb J
– 与塑性不同, 超弹性不定义为速率公式
D :
– 相反, 总应力与总应变的关系由应变能势 (W)来定义。
September 30, 2001 Inventory #001491 6-6
超弹性
... 延伸率的定义
详细讨论应变能势的不同形式之前,先定义一些术语: • 延伸率(或只是‘延伸’) 定义为:
l2 l L L o
l3 t t l2 o
l1 l L L o
September 30, 2001 Inventory #001491 6-8
超弹性
... 应变不变量的定义
• 三个应变不变量一般用于定义应变能密度函数。
2 2 I1 l1 l2 l 2 3 2 2 2 2 2 I 2 l1 l2 l2 l l 2 3 3 l1 2 2 2 I 3 l1 l2 l3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
February 25, 2005 Inventory #002206 W8B-4
练习 8B: 超弹性曲线拟合
…简单拉伸实验
2. 进行Yeoh模型的拟合曲线数据
使用GUI菜单方法:
Workshop Supplement
Advanced Structural Nonlinearities
练习 14
简单拉伸
REFERENCE: Training Manual Hyperelasticity (8-80)
练习 8B: 超弹性曲线拟合
…简单拉伸实验
目的 • 模拟橡皮试样的简单拉伸实验
Workshop Supplement
Advanced Structural Nonlinearities
• •
•
或命令输入方法:
– –
TBFT,EADD,1,BIAX,NR_23C_EB_SCL_1_SEG38 TBFT,EADD,1,SHEA,NR_23C_PT_SCL_1_SEG38
提示:
平衡轴向拉伸和平面拉伸(剪切)以相同的方式指定。这 些文本文件也是针对具体的变形模式关于工程应变-工 程应力的。本例中,未使用体积实验数据并假定为不 可压缩。
• – –
或命令输入方法:
/PREP7 TBFT,EADD,1,UNIA,NR_23C_ST_SCL_1_SEG38
提示: 首先需要设置的实验数据是单轴拉伸数据。这以工程 应变-工程应力格式存放在空格或列表-分界文本文件中 。
February 25, 2005 Inventory #002206 W8B-5
目标 • • 橡皮数据的曲线拟合 熟悉求解超弹性问题
模型描述 • 三维SOLID185单元
•
•
1/8对称
单位:mm, 应力:MPa
Image courtesy of Axel Products, Inc. /
February 25, 2005 Inventory #002206 W8B-2
或命令输入方法:
–
/INPUT,ASNL_W08B_Tension,inp
提示: 这将读入一个输入文件, 产生当前练习的几何体、载荷 和边界条件,得到一个由SOLID185单元组成的三维模 型。
当前数据库将被删除。
图形和其它设置将与这些幻灯片一致。
February 25, 2005 Inventory #002206 W8B-3
•
•
或命令输入方法:
练习 8B: 超弹性曲线拟合
…简单拉伸实验
继续该练习前, 也可检查模型的网格和边界条件, 以便更熟悉它。
Workshop Supplement
Advanced Structural Nonlinearities
仅在顶面施加UX位移
对称边界条件(1/8 对称)
模型是真实模型的1/8,所以法向约束施加在靠近对称三平面的表面。 在端部顶面施加位移19.14mm以模拟试样端部受牵引。
练习 8B: 超弹性曲线拟合
…简单拉伸实验
1. 读入输入文件“ASNL_W08B_Tension.inp”
使用GUI菜单方法:
Workshop Supplement
Advanced Structural Nonlinearities
–
Utility Menu > File > Read Input From… • 选择“ASNL_W08B_Tension.inp” • 点击 [OK]
实验数据(courtesy of Axel Products, Inc.) 以用作曲线拟合为目的。will be used for curve-fitting purposes. 所用数据存放在文件 “NR_23C_ST_SCL_1_SEG38” (单轴), “NR_23C_EB_SCL_1_SEG38” (轴对称), 和 “NR_23C_PT_SCL_1_SEG38” (平面)中。 本例中没有使用体积实验数据。(假定 完全不可压缩)。
练习 8B: 超弹性曲线拟合
…简单拉伸实验
使用GUI菜单方法:
Workshop Supplement
Advanced Structural Nonlinearities
•
在“Biaxial test data for Material 1”,选“Read From File”,并选择文件 “NR_23C_EB_SCL_1_SEG38”,点击“Open”。 数据内容将显示在对话框,点击“Next”继续。 对于 “Shear test data for Material 1”重复该过程 ,使用“NR_23C_PT_SCL_1_SEG38”作为数据读 入的文件。 对于“Volumetric test data for Material 1,” 为数 据保留空格并点击“Next”。
–
Main Menu > Preprocessor > Material Props > Material Models • • 选择“Structural > Nonlinear > Elastic > Hyperelastic > Curve Fitting” 在“Uniaxial test data for Material 1”中,选择 “Read From File”,并选择文件 “NR_23C_ST_SCL_1_SEG38”,点击“Open” 数据内容将显示在对话框,点击“Next”继续
February 25, Inventory #002206 W8B-6
练习 8B: 超弹性曲线拟合
…简单拉伸实验
使用GUI菜单方法:
Workshop Supplement
Advanced Structural Nonlinearities
•
在对话框中输入 “Solve for the following Function,” 选择“Hyperelastic > Yeoh > 3rd Order” 。这不是非线性曲线拟合,所以没有需要初 始化的数据。需要首先使用规范化错误标准。 点击“Solve”。显示确认“Solution is Completed”的对话框,并且解得的系数和残数也出 现。 点击“Plot” 以观察拟合曲线