数值分析期末复习要点总结

合集下载

数值分析 知识点总结

数值分析  知识点总结

数值分析知识点总结一、数值分析的基本概念1. 数值分析的对象数值分析的对象是现实生活中的数字数据和信息。

这些数据和信息可以来自各个领域,包括自然科学、社会科学、技术工程等。

例如,物理实验中测得的实验数据、经济管理中的统计信息、天气观测中的气象数据等,都是数值分析的对象。

2. 数值分析的目的数值分析的主要目的是通过对数值数据和信息的定量分析,发现其中的规律,提取有用的信息,做出科学的预测和决策。

例如,通过对某种药物的临床试验数据进行数值分析,可以得出这种药物的疗效和毒性情况,为临床医生的治疗决策提供依据。

3. 数值分析的方法数值分析采用数学和计算机科学的方法对数值数据和信息进行处理和分析。

它涉及的具体方法包括数值计算、插值与逼近、数值微分和积分、常微分方程数值解、数值线性代数等。

二、数值分析的基本内容1. 数值计算数值计算是数值分析的基本方法之一,它包括离散化、数值稳定性、误差分析等内容。

离散化是将连续问题转化为离散问题,这是数值计算的基本工作方式。

数值稳定性研究的是数值方法对误差的敏感程度,是评价数值方法好坏的重要指标。

误差分析则研究数值计算中产生的误差的成因和大小。

2. 插值与逼近插值与逼近是数值分析的重要内容之一,它研究如何通过已知的数值数据估计未知函数的值。

插值是通过已知的离散数据点构造一个连续函数,使得这个函数通过这些数据点;逼近则是通过已知的离散数据点构造一个近似函数,使得这个函数与原函数的差尽量小。

3. 数值微分和积分数值微分和积分是数值分析的又一重要内容,它研究如何通过已知的函数值计算函数的导数和定积分值。

数值微分是通过函数值计算函数的导数值;数值积分则是通过函数值计算函数的定积分值。

这两项工作在科学计算中有着广泛的应用。

4. 常微分方程数值解常微分方程数值解也是数值分析的重要内容之一,它研究如何通过数值方法计算常微分方程的近似解。

常微分方程是自然界和技术工程中经常出现的数学模型,因此其数值解的研究有着广泛的应用价值。

数值分析复习资料

数值分析复习资料

数值分析复习资料一、重点公式第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x llx x x lαα+-≤---≤-- 定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠ (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。

6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。

数值分析复习要点

数值分析复习要点
v3 10,
3 v3 / v3 (
2 10
,
1 10
,
1 10
,
2 10
)T
u3 v3 6 1 2 2 10 3 6 1 2 2
得到R( A)的标准正交基为{ 1 , 2 , 3 }. 1 1 1 1 T 1 1 1 1 T 1 ( , , , ) , 2 ( , , , ) , 2 2 2 2 2 2 2 2 1 3 ( 2,1, 1, 2)T 10
(1) A为对称阵, 用H阵可将A作相似变换为三对角阵
习题
1. 已知向量x (2,0,2,1) , 试构造Householde r阵H
T
使Hx ke3 , 其中e3 0,0,1,0 , k R .
T
2.已知向量x (1,2,1,2)T , 试构造Householde r阵H 使Hx (1, 2 ,0,0)T .
估计迭代次数
|| x ( k ) || B ||k x* || || x (1) x ( 0) || 103 k ? 1 || B ||
收敛速度 R ln( ( B))
SOR分量形式 : (以二阶方程组为例)
( k 1) (k ) ( ( x1 x1 (b1 a11 x1 k ) a12 x2k ) ) a11 x ( k 1) x ( k ) (b a x ( k 1) a x ( k ) ) 2 2 21 1 22 2 2 a22
i , j 1
n
1 2 2
|| A || p max
|| x|| 0
|| Ax || p || x || p
p 1,2, , || A || (行范数)

期末数值分析重点总结

期末数值分析重点总结

期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。

数值逼近的主要内容包括多项式逼近、插值和最小二乘等。

1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。

通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。

其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。

多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。

2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。

常用的插值方法有拉格朗日插值和牛顿插值。

拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。

牛顿插值则利用差商的概念来构造插值多项式。

插值方法在数值微分和数值积分中有广泛的应用。

3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。

通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。

最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。

第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。

数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。

1. 迭代法迭代法是求解非线性方程组的常用方法之一。

通过不断迭代逼近方程的根,可以得到方程组的数值解。

常用的迭代法有牛顿迭代法和弦截法。

迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。

2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。

常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。

常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。

3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。

数值分析期末复习(整理版)

数值分析期末复习(整理版)

Chapter 1 误差误差限计算、有效数字分析•绝对课差址t洵准确俏”*为工的-个近似偵「称T —工対近似偵.T '的絶村谋差,简厳供邛*可简记为E.|g(T)|=| T —*|兰£(/)数值貞门称为T的11绐对误差限或误差限*l『*、F(x ) x —x E© ) = —=——为近似值/的担zt溟誉可简{己址•有效数字若才作加的近tilt其鲍对误差的绝对值不超过某一位数字的半个单恆,而该位数字到F的第—位非零数字共有斤位關称用F近恤时具有血有效做字'简称丫有畀位有效数字.Chapter 2插值法差值条件(唯一性)1、拉格朗日差值a) 插值基函数b) 差值余项2.2拉格朗曰抽值2.2.1基函数考虑最简单、晟舉本的骼值问起+ 求押次插值家项式『低)…肋,便加滿足播值条伸可知,除斗点外.其余都星”.巧的零点■械可诛< (A) ^.4(X 一%[…(-V址 d 為"* <A -A;)X)=A(X - J- (A- - \_, )(.Y -J)其中M为常數.由&工戶1町得』=-------------------- -----------------(閔円)心7冷K%-咖卜-a -斗)和対讼>:T^V为准确血"为玄的一个近似伉称relativeerror称之为拉厳朗LI垒曲绘都是M次帝项武.. 2.1.2拉榕朗n插佢雾项式利用拉辭朗H皋啦数/态人构造次数不趙过"的雾项式£(巧二必机朗+^( v) + •…I J;/,(.v) = £昭(曰可知其搆足7韩为拉格阴Id插说饕砂式.再由插菽牟嘶的唯亠杵“ 鲁 D I特别地*造时又叫钱件擂僮其几何童又为过两点的直级-当*匸2时又叫拋物<线)掩值•具几何鳶义为过三点的拋物线.滾丘阖淘若取人1).伸伏=札1*…飒由插痕参项式的唯一性有£址工)# =x\ k= 0」厂』特别当k-OfiL就得到£佃-1□则铉格朗U的丄抚抽值雾项式为V)= j^(j(X> + I'Jj (x> + j/2(.v) * MQO=(2)弓…仗扣讪—协-町H^)xll(A + l)(r-JX^ 4}+3x —(x H)(x-LXx-3) 8 15■裁1M T-3X V-4)+^X HX A-1M A4)+ l(.v+lX.v-lXr-3)+ 3)a 1已知$ =五,耳=4眄=S.用皴件插值f即一次插惟藝坝如历的近似值.解片=2・曲=3•菇函数付别为:t-9 1 x-4 I4(J)=——=—(x-9j, Zjx)=——= -{x -4)砂14-9 5尸门9-4 5播債孝项式为V)-片fj.i) +」'占(巧-2x^(.v 夕”:(* 4)---(.V 4 J -4)(- (X + fr))所以乔金厶⑺二空R点5使2求过啟-1,-毎川』人(乱-创*(4」)的抛物线播值(即三次插値务项式).蔦-U 斗=-t t A|二L x2=3»A3- 4以为苗点加墓函.数分别为:厶何」匸迪住1±J (.r +lXA -3}(x-4)1(1 ► 1)(1-3)(1- 4J 12心)」:十汽-1年¥二Uw心一ncz (34-1X3-1X3-4) K=⑴】心-叭7= *十叫讣7】(4 + IX4-1X4-3) 152.23極値肇项M tt'r滾^Ji n(x)=f(x)兀糾也称为"次1川甘"叱插伯赛境式的余坝。

数值分析期末知识点总结

数值分析期末知识点总结

数值分析期末知识点总结一、引言数值分析是一门研究如何使用计算机提高数学模型数值计算精度和效率的学科。

它是计算数学的一个重要分支,涉及到数值计算、数值逼近和误差分析等一系列内容。

在数值分析课程中,我们将学习到数值解微分方程、线性代数问题的求解、插值与拟合、积分等一系列内容。

本文将对数值分析期末知识点进行总结,以便帮助大家复习。

二、常见数值计算方法1. 插值与拟合插值与拟合是数值分析中重要的内容,它们用于在给定数据点集上构造一个函数,以便在其他点上进行求值。

插值是通过一些已知数据点来求得一个函数,使得这个函数能够通过这些点,而拟合则是通过已知数据点来求得一个函数,使得这个函数在这些点附近能够比较好地拟合数据。

常见的插值方法包括线性插值、拉格朗日插值、牛顿插值等;而拟合方法包括最小二乘法拟合、多项式拟合等。

2. 数值解微分方程数值解微分方程是数值分析的一个重要内容,它讨论如何使用计算机对微分方程进行数值求解。

微分方程是自然界中描述变化的数学方程,它们在物理学、化学、生物学等领域都有着重要的应用。

数值解微分方程的方法包括欧拉法、中点法、四阶龙格-库塔法等。

3. 数值线性代数数值线性代数是数值分析领域的另一个重要内容,它讨论如何使用数值方法解决线性代数问题。

原始的线性代数问题可能非常大或者非常复杂,因此我们常常需要使用计算机进行数值计算。

数值线性代数的方法包括高斯消元法、LU分解、Jacobi迭代法、Gauss-Seidel 迭代法等。

4. 数值积分数值积分是数值分析的一个重要内容,它讨论如何使用数值方法对积分进行数值求解。

在实际问题中,有很多积分问题是无法解析求解的,因此我们需要使用数值方法进行近似求解。

数值积分的方法包括复合辛普森法、复合梯形法、龙贝格积分法等。

三、数值分析的误差分析在数值计算过程中,我们会遇到误差的问题。

这些误差可能来自于测量、舍入、截断等各种原因。

因此,误差分析是数值分析中一个非常重要的内容。

(整理)《数值分析》期末复习纲要.

(整理)《数值分析》期末复习纲要.

《数值分析》期末复习纲要 第一章 数值计算中的误差分析主要内容(一)误差分析 1、误差的基本概念:(1)绝对误差:设x 是精确值, *x 是其近似值,则称()E x x x*=-是近似值*x 的绝对误差,简称误差。

特点:可正可负,带量纲。

(2)相对误差:称()r x x E x x *-=是近似值*x 的相对误差,若精确值x 未知,则定义()r x x E x x **-=。

注: 由四舍五入得到的近似值,误差不超过最末位的半个单位(准确到最末位)。

2、有效数字的概念:P6;3、算法的数值稳定性:数值稳定的算法:初始数据所带有的误差在计算的过程中能得到有效控制,不至于因误差的过度增长影响计算结果的精度。

数值不稳定的算法:初始数据所带有的误差在计算的过程中得不到有效控制,以至于因误差的过度增长而使计算结果的精度大大降低。

P11:例子(二)算法设计的基本准则P11-15 应用实例:课堂练习,作业基本要求1、掌握误差、有效数字等基本概念2、熟记算法设计准则,并能依据算法设计准则构造或选择计算公式。

(参见课堂练习、作业)第二章 线性代数方程组的数值解法直接法:不计初始数据的误差和计算过程中的舍入误差,经过有限步四则运算求得方程组的精确解。

迭代法:先给出方程组解的某一初始值,然后按照一定的迭代法则(公式)进行迭代,经过有限次迭代,求得满足精度要求的方程组的近似解。

主要内容(一)直接法的基本模式:高斯顺序消去法基本思想:按照各方程的自然排列顺序(不交换方程),通过按列消去各未知元,将方程组化为同解的三角形方程组来求解求解过程:⎩⎨⎧回代过程消元过程应用实例:课堂例题;练习 (二)高斯列主元消去法基本思想:按列消元,但每次按列消元之前,先选取参与消元的 方程首列系数,选取绝对值最大者,通过交换方程,使之成为主元,再进行消元。

(每一步消元之前先按列选取主元) 应用实例:课堂例题,作业(三)迭代法基本原理:(1)将原方程组b Ax =改写成如下等价形式:f Bx x += (2)构造相应的迭代公式:f Bx x m m +=-)1()((3)任取一初始向量)0(x代入上述迭代公式,经迭代得到向量序列{}Tm n m m m x x x x ),,,()()(2)(1)( =,如果该向量序列{})(m x 收敛于某一向量Tn x x x x ),,,(21****= ,即),,2,1(lim )(n i x x i m i m ==*∞→Tn x x x x ),,,(21****= 即为原方程组的解。

数值分析期末复习

数值分析期末复习

《数值分析》期末复习提纲第一章数值分析中的误差(一) 考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

误差的定性分析(二)复习要求1. 知道产生误差的主要来源。

2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。

3. 知道四则运算中的误差传播公式。

4. 避免误差危害的若干原则第二章插值法(一) 考核知识点插值函数,插值多项式,被插值函数,节点;拉格朗日插值多项式:插值基函数;均差及其性质,牛顿插值多项式;分段线性插值、线性插值基函数。

(二)复习要求1. 了解插值函数,插值节点等概念。

2. 熟练掌握拉格朗日插值多项式的公式,知道拉格朗日插值多项式余项。

3. 掌握牛顿插值多项式的公式,了解均差概念和性质,掌握均差表的计算,知道牛顿插值多项式的余项。

4. 掌握分段线性插值的方法和线性插值基函数的构造。

第三章函数逼近(一) 考核知识点函数逼近的基本概念,内积,范数,勒让德与切比雪夫正交多项式,最佳一次一致逼近,最佳平方逼近,曲线拟合的最小二乘法(二)复习要求1. 熟练掌握内积,范数等基本概念。

2. 熟练掌握勒让德与切比雪夫正交多项式的性质。

3. 掌握用多项式做最佳平方逼近的方法。

4. 最小二乘法及其计算方法。

第四章数值积分与数值微分(一) 考核知识点数值求积公式,求积节点,求积系数,代数精度;插值型求积公式,牛顿―科特斯求积公式,牛顿―科特斯系数及其性质,(复合)梯形求积公式,(复合)Simpson求积公式;高斯型求积公式,高斯点,(二点、三点)高斯―勒让德求积公式;(二) 复习要求1. 熟练掌握数值积分和代数精度等基本概念。

2. 熟练掌握牛顿−科特斯求积公式和科特斯系数的性质。

熟练掌握并推导(复合)梯形求积公式和(复合)Simpson求积公式。

3. 知道高斯求积公式和高斯点概念。

会用高斯−勒让德求积公式求定积分的近似值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 x x 10 mn 2 则称近似值 x * 有n位有效数字.
*
(1-6)
例如
x 1.414 0.1414 10 . 1 1 3 2 1.414 10 1014 2 2
* 1
*
6
故 x 1.414 有4位有效数字.
6
绝对误差、相对误差和有效数字
x 的绝对误差,简称误差.
*
e( x ) x x
* *
(1-2)

x * 的绝对误差限,简称误差限. 为近似值
设x
*
称绝对误差与 为准确值 x 的近似值,
准确值之比为近似值

ex * x x * er x* x x
x
*
er ( x* ) 记为 的相对误差,
(1-3)
0.8 -0.2231
试估计线性插值和抛物线插值计算 ln 0.54 的误差
x0=0.5, x1=0.6, (0.5, 0.6)
R1 (0.54) 2(0.54 0.5)(0.54 0.6) 0.0048
Newton 插值
为什么 Newton 插值
Lagrange 插值简单易用,但若要增加一个节点时,全部基函 数 lk(x) 都需重新计算,不太方便。
定理1.1 若x的近似值
x 0.a1a2 an 10 ,
* m
1 10 n 1 为其相对 则 (a1 0) 有n位有效数字, 2a1
误差限. 反之,若 x 的相对误差 r 满足
*
1 n 1 r 10 2a1 1
则 x 至少具有n位有效数字.
*
7
7
x x0 x x1 L1 ( x ) y0 y1 0.1823 x 1.6046 x0 x1 x1 x0
将 x=0.54 代入可得: ln 0.54 L (0.54) =-0.6202 1
18
抛物线插值:取 x0=0.4, x1=0.5, x2=0.6, 可得 ln 0.54 L2(0.54) =-0.6153
设 z0(x), z1(x), ... , zn(x) 构成 Zn(x) 的一组基,则插值多项式
P(x) = a0z0(x) + a1z1(x) + · · anzn(x) ·+
通过基函数来构造插值多项式的方法就称为基函数插值法
基函数法基本步骤
① 寻找合适的基函数 ② 确定插值多项式在这组基下的表示系数
( 2 x 1 2 x 1)( 2 x 1 2 x 1) 2x 1 2x 1
2 2x 1 2x 1
12
12
第二章插值
插值区间
已知函数 y = f(x) 在 [a, b] 上有定义,且已经测得在点
a x0 < x 1 < · < xn b · · 处的函数值为 y0 = f(x0),… ,yn = f(xn)

设近似数 a 1.557 是某真值 x 经四舍五入
所得, 试求其绝对误差限和相对误差限.
解 由于a经四舍五入得到,故
e (a ) 1 103 2
e (a ) a
er (a )
1 10 3 2 1.577
3.170577 104
9
9
数值计算中误差的传播
6 的近似值的相对误差限小于0.1%,应取 例2: 要使 取几位有效数字
j 1, j k

n
x xj xk x j
性质 注意
l0(x) , l1(x) , … , ln(x) 构成 Zn(x) 的一组基 l0(x) , l1(x) , … , ln(x) 与插值节点有关, 但与函数 f(x) 无关
20
误差估计
如何估计误差
定理
Rn ( x ) f ( x ) Ln ( x )
f [ xi , x j , xk ]
f [ x j , xk ] f [ xi , x j ] xk xi
f(x) 关于点 xi , xj , xk 的 二阶差商
差商的一般定义
f [ x1 , , xk ] f [ x0 , , xk 1 ] f [ x0 , x1 , , xk ] xk x0
解决办法
设计一个可以逐次生成插值多项式的算法,即 n 次插值多项式 可以通过 n-1 次插值多项式生成 —— Newton 插值法
24
什么是差商
设函数 f(x),节点 x0 , … , xn
f [ xi , x j ]
f ( x j ) f ( xi ) x j xi
f(x) 关于点 xi , xj 的一阶差商
x* 1.4142136 1 2 1.4142136 107 2
1.414有4位有效数字. 1.4142136有8位有效数字.
5
绝对误差、相对误差和有效数字
x * 的规格化形式为 一般地,如果近似值
x * 0.a1 a 2 a n 10 m
如果
(1-5)
a 其中m为整数, 1 0, ai i 1,2, 为0到9之间的整数.
数值分析
期末复习要点总结
1
第一章 误差
一. 误差的来源: 1.模型误差
2.观测误差
3.截断误差 4.舍入误差 二. 绝对误差、相对误差和有效数字
2
第一章 误差
2
绝对误差、相对误差和有效数字
定义1 设 x 为准确值x的一个近似值,称
*
e( x ) x x
*
*
(1-1)
为近似值 若 通常称 定义2
n n
N n ( x ) a0 a1 ( x x0 ) a2 ( x x0 )( x x1 ) an ( x xi )
i 1
n1
其中
a0 f ( x0 ), ai f [ x0 , , xi ], i 1, 2, , n
17 抛物线插值多项式(二次插值多项式)
例:已知函数 y = lnx 的函数值如下
x lnx
0.4 -0.9163 0.5 -0.6931 0.6 -0.5108 0.7 -0.3567 0.8 -0.2231
试分别用线性插值和抛物线插值计算 ln 0.54 的近似值
解: 为了减小截断误差,通常选取插值点 x 邻接的插值节点 线性插值:取 x0=0.5, x1=0.6 得
22
插值误差举例
例:已知函数 y = lnx 的函数值如下 x lnx 解 线性插值
f ( 2) ( ) R1 ( x ) ( x x0 )( x x1 ) 2
f ( 2) ( ) 2 4
23
0.4 -0.9163
0.5 -0.6931
0.6 -0.5108
0.7 -0.3567
11
数值计算中的一些原则 1.避免两个相近的数相减
2.避免大数“吃”小数的现象
3.避免除数的绝对值远小于被除数的绝对值 4.要简化计算,减少运算次数,提高效率 5. 要有数值稳定性,即能控制舍入误差的传播 例如 为提高数值计算精度, 当正数x充分大时,应将 2 2 x 1 2 x 1 改写为 2x 1 2x 1
有效数字
x * 的误差限是 1 10 n 则称* x 如果近似值 2
准确到小数点后第n位,并从第一个非零数字到 这一位的所有数字均称为有效数字.
x 例如, 2 1.414213562 , 取前四位数得
x* 1.414. 取前八位数得近似值
1 2 1.414 103 , 2
25 k 阶差商
差商的性质
k 阶差商与 k 阶导数之间的关系:若 f (x) 在 [a,b] 上 具有 k 阶导数,则至少存在一点 (a, b),使得
f ( k ) ( ) f [ x0 , x1 , , xk ] k!
26
如何巧妙地计算差商
差商表
xi ƒ(xi) 一阶 差商
x0 x1 x2 x3 xn
ln 0.54 的精确值为:-0.616186·· ·
可见,抛物线插值的精度比线性插值要高 Lagrange插值多项式简单方便,只要取定节点就可写 出基函数,进而得到插值多项式,易于计算机实现。
19
Lagrange插值
lk(x) 的表达式
由构造法可得
( x x0 ) ( x xk 1 )( x xk 1 ) ( x xn ) lk ( x ) ( xk x0 ) ( xk xk 1 )( xk xk 1 ) ( xk xn )
21
插值余项
几点说明
余项公式只有当 f(x) 的高阶导数存在时才能使用 x 与 x 有关,通常无法确定, 实际使用中通常是估计其上界 如果 f
( n 1)
( x ) M n 1
M n1 n ,则 Rn ( x ) x xi ( n 1)! i 0
计算插值点 x 上的近似值时,应选取与 x 相近插值节点
两种特殊情形
n=1
x x0 x x1 L1 ( x ) y0 l0 ( x ) y1l1 ( x ) y0 y1 x0 x1 x1 x0
线性插值多项式(一次插 ) ( x x0 )( x x1 ) ( x x1 )( x x2 ) L2 ( x ) y0 y1 y2 ( x0 x1 )( x0 x2 ) ( x1 x0 )( x1 x2 ) ( x2 x0 )( x2 x1 )
15
Lagrange插值
Lagrange插值基函数
设 lk(x) 是 n 次多项式,在插值节点 x0 , x1 , … , xn 上满足
相关文档
最新文档