基于ANSYS的梁结构静力学分析中常见问题研究

基于ANSYS的梁结构静力学分析中常见问题研究
基于ANSYS的梁结构静力学分析中常见问题研究

基于ANSYS的梁结构静力学分析中常见问题研究

————————————————————————————————作者:————————————————————————————————日期:

基于ANSYS的梁结构静力学分析中常见问题研究-机电论

基于ANSYS的梁结构静力学分析中常见问题研究

羊有道陆惠兴

(南京莱斯信息技术股份有限公司,江苏南京210014)

摘要:简要介绍了基于ANSYS的梁结构静力分析的基本流程,重点讲述了载荷施加、自定义截面轴惯性矩求解等常见问题的解决方法,为用户运用该软件进行受力分析提供了参考素材。

关键词:梁结构;载荷;自定义截面;轴惯性矩

0引言

ANSYS软件是一款功能强大的通用有限元分析软件,目前市面上介绍ANSYS 软件的书籍很多,但关于梁结构静力分析这部分内容大都千篇一律,书中所举实例基本仅侧重分析流程,对工程中经常遇到的实际情况如何处理没有作详细介绍,非常不利于用户解决实际工程问题。针对上述情况,本文通过具体实例对梁结构静力分析过程中遇到的常见问题作了具体分析,并给出了解决方法;最后给出了所举实例的理论计算结果,以便对软件分析结果的正确性和精确性进行验证和评估。

1梁结构静力学分析基本步骤

静力学分析过程一般包括以下三个步骤:(1)建立模型;(2)加载求解;(3)结果后处理。在梁结构静力学分析过程中,最主要会遇到以下两个问题:(1)如何求自定义截面的轴惯性矩?(2)如何正确加载集中力、均布载荷?本文将结合具体实例来说明怎样解决这些问题。

2梁结构静力学分析中常见问题的解决方法

2.1自定义梁截面的轴惯性矩软件求解方法

在工程设计中经常会使用一些自定义截面的梁结构,例如现有一截面尺寸如图1所示的梁结构截面,我们先利用ANSYS软件求解其轴惯性矩,再通过理论计算进行结果对比。

软件计算步骤如下:(1)通过Modeling选项建立截面形状,如图1所示;(2)通过Sections Beam customsections WriteFromAreas选项,然后选择pickall,定义截面名称;(3)通过ReadSectMesh选项,选取已定义截面;(4)通过PlotSection选项,求得截面的惯性矩。求解结果如下:关于Y轴的轴惯性矩为IYY=0.244E+08mm4;关于Z轴的轴惯性矩为IZZ=0.29E+08mm4。

理论计算该梁截面的各轴惯性矩:

Iy=2440×104mm4

Iz=2903×104mm4

其结果与软件计算结果一致,说明上述软件操作步骤完全正确。

2.2集中力、均布载荷的施加方法

在工程实际问题中,构件经常会受到组合载荷的作用,例如如图2所示的20a 号工字钢悬臂梁受集度为q=7.44kN/m的均布载荷和集中力P=qa2作用,现

利用ANSYS分析该悬臂梁的应力状态。

首先按照梁结构静力学分析的基本步骤进行建模,这里不作赘述。我们关注的重点是如何确保所施加载荷方向及位置的正确性。为便于施加载荷,将外载荷P 分解为Py和Pz。由图3可以看出,显示单元三维模型是保证施加外载荷方向正确与否的关键。点击PlotCtrls Style SizeandShape,在弹出的对话框中点击“Displayofelement”开关。显示出单元三维模型后,可以准确地对该悬臂梁施加集中力Py和Pz。在给梁施加均布载荷时必须先选定相应的梁单元,操作步骤参考图4。至此,所有载荷施加完毕。

软件求解结果显示,最大应力值为133MPa。理论计算该梁截面的最大应力,该梁的最大拉伸应力在固定端

A截面的棱角处,其结果如下:

理论计算结果与软件求解结果之间误差产生的原因是:在进行有限元分析时对工字钢作了简化处理,致使梁的抗弯截面系数变为Wz=38.2×10-6m3,Wy=235×10-6m3。

3结语

梁结构是工程中最常见的结构形式,梁结构静力学分析是工程实践中需要解决的最常见问题,本文通过具体实例说明如何解决梁结构静力学分析过程中遇到的最常见的两个问题,为用户运用ANSYS软件进行受力分析提供了有益参考。[参考文献]

[1]丁毓峰.12.0ANSYS有限元分析完全手册[M].北京:电子工业出版社,2011.

[2]谢龙汉,刘新让,刘文超.ANSYS结构及动力学分析[M].北京:电子工业出版社,2012.

[3]孙训芳.材料力学[M].北京:高等教育出版社,1994.

收稿日期:20150930

作者简介:羊有道(1977—),男,江苏靖江人,硕士研究生,工程师,主要

从事道路交通产品的结构设计工作。

箱梁的结构与受力特点

(二)箱形截面的配筋 箱形截面的预应力混凝土结构一般配 有预应力钢筋和非预应力向普通钢筋。 1、纵向预应力钢筋:结构的主要受力 钢筋,根据正负弯矩的需要一般布置在顶板 和底板内。这些预应力钢束部分上弯或下弯 而锚于助板,以产生预剪力。近年来,由于 大吨位预应力束的采用,使在大跨径桥梁设 计中,无需单纯为了布置众多的预应力束而 增大顶板或底板面积,使结构设计简洁,而 又便于施工。 2、横向预应力钢筋:当箱梁肋板间距 厚的桥面板。的上、下两层钢筋网间,锚固于悬臂板端。 3时,可布置竖向预应力钢筋,面桥梁都采用三向预应力。 4 钢筋网。必须指出,因此必须精心设计,做到既安全又经济。 第二节 箱形梁的受力特点 作用在箱形梁上的主要荷载是恒载与活载。恒载 一般是对称作用的,活载可以是对称作用,但更多的 情况是偏心作用的,因此,作用于箱形梁的外力可综 合表达为偏心荷载来进行结构分析; 在偏心荷载作用下,箱形梁将产生纵向弯曲、扭 转、畸变及横向挠曲四种基本变形状态。详见图2-4。 1、纵向弯曲 产生竖向变位w ,在横截面上起纵向正应力M σ及剪应力M τ。对于肋距不大的箱形梁,M σ按初等梁 理论计算,当肋距较大时,会出现所谓“剪力滞效应”。 即翼板中的M σ分布不均匀,近肋翼板处产生应力高 βα+= 刚性扭转 横向挠曲 图2-4 箱形梁在偏心荷载 作用下的变形状态

峰,而远肋翼板处则产生应力低谷,这称为“正剪力滞”;反之,如果近肋翼板处产生应力低谷,而远肋翼板处则产生应力高峰,则为“负剪力滞”。对于肋距较大的宽箱梁,这种应力高峰可达相当大比例,必须引起重视。 2、刚性扭转 刚性扭转即受扭时箱形的周边不变形。扭转产生扭转角θ。分自由扭转与约束扭转。 (1)自由扭转:箱形梁受扭时,截面各纤维的纵向变形是自由的,杆件端面虽出现凹凸,但纵向纵维无伸长缩短,能自由翘曲,因而不产生纵向正应力,只产生自由扭转剪应力K τ。 (2)约束扭转:受扭时纵向纤维变形不自由,受到拉伸或压缩,截面不能自由翘曲。约束扭转在截面上产生翘曲正应力w σ和约束扭转剪应力w τ。 产生约束扭转的原因:支承条件的约束,如固端支承约束纵向纤维变形;受扭时截面形状及其沿梁纵向的变化,使截面各点纤维变形不协调也将产生约束扭转。如等厚壁的矩形箱梁、变截面梁、设横隔板的箱梁等,即使不受支承约束,也将产生约束扭转。 3、畸变(即受扭时截面周边变形) 畸变的主要变形特征是畸变角γ。薄壁宽箱的矩形截面受扭变形后,无法保持截面的投影仍为矩形。畸变产生翘曲正应力dw σ和畸变剪应力dw τ。 4、横向弯曲:畸变还会引起箱形截面各板的横向弯曲,在板内产生横向弯曲应力dt σ (纵截面上)。 5、局部荷载的影响:箱形梁承受偏心荷载作用,除了按弯扭杆件进行整体分析外,还应考虑局部荷载的影响。车辆荷载作用于顶板,除直接受荷载部分产生横向弯曲外,由于整个截面形成超静定结构,因而引起其它各部分也产生横向弯曲。图2-5表示箱形截面在顶板上作用车辆荷载,在各板中产生横向弯矩图。这些弯矩在各板的纵截面上产生横向弯曲正应力c σ及剪应力。 综合箱形梁在偏心荷载作用下产生的应力有: 在横截面上:纵向正应力:dw w M z σσσσ++= 剪应力:dw w M K τττττ+++= 在纵截面上;横向弯曲正应力:c dt s σσσ+= 在预应力混凝土梁中,跨径越大,恒载占总荷载比例就越大。一般地,由于恒载产生的对称弯曲应力是主要的,而由于活载偏心所产生的扭转应力是次要的。如果箱壁较厚,或沿梁的纵向布置一定数量的横隔板,限制箱形梁的畸变,则畸变应力也是不大的。但对于少设或不设横隔板的宽箱薄壁梁,畸变应力不可忽视。板的横向应力对于顶板、肋板及底板的配筋具有重要意义,必须引起重视。 图2-5 局部荷载作用下 横向弯矩图

Ansys受力分析例程

三维托架实体受力分析例程(题目) ANSYS软件是融结构、流体、电磁场、声场和耦合场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS公司开发,它能与多数CAD软件接口,实现数据的共享和交换,如PRO/E、UG、I-DEAS、CADDS及AutoCAD等,是现代产品设计中的高级CAD工具之一。 题目:1、三维托架实体受力分析:托架顶面承受50psi的均匀分布载荷。 托架通过有孔的表面固定在墙上,托架是钢制的,弹性模量E=29×106psi,泊松比v=0.3.试通过ANSYS输出其变形图及其托架的von Mises应力分布。 题目1的分析。先进行建模,此建模的难点在对V3的构建(既图中的红色部分)。要想构建V3,首先应将A15做出来,然后执行Main Menu>Preprocessor>Modeling>Operate>Booleans>Add>V olumes命令,将所有的实体合并为一个整体。建模后,就对模型进行网格的划分,实行Main Menu>Preprocessor>Meshing>MeshTool,先对网格尺寸进行编辑,选0.1,然后点Meshing,Pick all进行网格划分,所得结果如图1。划分网格后,就可以对模型施加约束并进行加载求解了。施加约束时要注意,由于三维托架只是通过两个孔进行固定,故施加约束应该只是针对两孔的内表面,执行Main Menu>Solution>Define Loads>Apply>Structrual>Displacement>Symmetry B.C>On Areas命令,然后拾取两孔的内表面,单击OK就行了。施加约束后,就可以对实体进行加载求解了,载荷是施加在三维托架的最顶上的表面的,加载后求解运算,托架的变形图如图2。

梁结构应力分布ANSYS分析汇总

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062 2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,

ANSYS悬臂梁的自由端受力的有限元计算[1]

悬臂梁自由端受力的有限元计算 任柳杰10110290005 一、计算目的 1、掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。 2、熟悉有限元建模、求解及结果分析步骤和方法。 3、利用ANSYS软件对梁结构进行有限元计算。 4、梁的变形、挠曲线等情况的分析。 5、一维梁单元,二维壳单元,三维实体单元对计算结果的影响。 6、载荷施加在不同的节点上对结果的影响。 二、计算设备 PC,ANSYS软件(版本为11.0) 三、计算内容 悬臂梁受力模型 如上图所示,一段长100[mm]的梁,一端固定,另一段受到平行于梁截面的集中力F的作用,F=100[N]。梁的截面为正方形,边长为10[mm]。梁所用的材料:弹性模量E=2.0 105[MPa],泊松比0.3。 四、计算步骤(以梁单元为例) 1、分析问题。 分析该物理模型可知,截面边长/梁长度=0.1是一个较小的值,我们可以用梁单元来分析这样的模型。当然,建立合适的壳单元模型和实体单元模型也是可以的。故拟采用这三种不同的 方式建立模型。以下主要阐述采用梁单元的模型的计算步骤。 2、建立有限元模型。 a)创建工作文件夹并添加标题; 在个人的工作目录下创建一个文件夹,命名为beam,用于保存分析过程中生成的各种文件。 启动ANSYS后,使用菜单“File”——“Change Directory…”将工作目录指向beam 文件夹;使用/FILNAME,BEAM命令将文件名改为BEAM,这样分析过程中生成的文件均 以BEAM为前缀。 偏好设定为结构分析,操作如下: GUI: Main Menu > Preferences > Structural b)选择单元; 进入单元类型库,操作如下: GUI: Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add… 对话框左侧选择Beam选项,在右侧列表中选择2D elastic 3选项,然后单击OK按钮。

ansys切削加工受力分析

1绪论 金属切削是机械制造行业中的一类重要的加工手段。美国和日本每年花费在切削加工方面的费用分别高达1000 亿美元和10000亿日元。中国目前拥有各类金属切削机床超过300 万台, 各类高速钢刀具年产量达3.9 亿件, 每年用于制造刀具的硬质合金超过5000吨。可见切削加工仍然是目前国际上加工制造精密金属零件的主要办法。19世纪中期, 人们开始对金属切削过程的研究, 到现在已经有一百多年历史。由于金属切削本身具有非常复杂的机理, 对其研究一直是国内外研究的重点和难点。过去通常采用实验法, 它具有跟踪观测困难、观测设备昂贵、实验周期长、人力消耗大、综合成本高等不利因素。本文利用材料变形的弹塑性理论, 建立工件材料的模型,借助大型商业有限元软件ANSYS, 通过输入材料性能参数、建立有限元模型、施加约束及载荷、计算, 对正交金属切削的受力情况进行了分析。以前角10°、后角8°的YT 类硬质合金刀具切削45号钢为实例进行计算。切削厚度为2 mm时形成带状切屑。提取不同阶段应力场分布云图, 分析了切削区应力的变化过程。这种方法比传统实验法快捷、有效, 为金属切削过程的研究开辟了一条新的道路。 2设计要求 根据有限元分析理论,根据ANSYS的求解步骤,建立切削加工的三维模型。对该模型进行网格划分并施加约束边界条件,最后进行求解得出应力分布云图,并以此云图分析得出结论。 3金属切削简介[3] 金属切削过程,从实质讲,就是产生切屑和形成已加工表面的过程。产生切屑和形成已加王表面是金属切削时密切相关的两个方面。 3.1切削方式 切削时,当工件材料一定,所产生切屑的形态和形成已加工表面的特性,在很大程度上决定于切削方式。切削方式是由刀具切削刃和工件间的运动所决定,可分为:直角切削、斜角切削和普通切削三种方式。 3.2切屑的基本形态 金属切削时,由于工件材料、刀具几何形状和切削用量不同,会出现各种不同形态的切屑。但从变形观点出发,可归纳为四种基本形态。 1.带状切屑切屑呈连续状、与前刀面接触的底层光滑、背面呈毛葺状。

梁结构的受力分析

南昌航空大学实验报告 课程名称:CAD/CAE 软件应用 实验名称:梁结构的受力分析 指导老师评定: 签名: (一)实验目的: 掌握对梁结构进行有限元分析的方法。 (二)实验要求: 1.要求对梁结构进行有限元分析,了解梁单元的使用方法。 2.要求把有限元结果与理论计算结果进行对比。 (三)实验内容: ① /prep7 et,1,beam3 MP,EX,1,200E9 R,1,3E-4,2.5E-9,0.01 N,1,0,0 N,2,1,0 N,3,2,0 N,4,3,0 N,5,4,0 E,1,2 E,2,3 E,3,4 E,4,5 FINISH /SOLU D,1,ALL,0 F,3,FY,-2 SFBEAM,3,1,PRES,0.05 SFBEAM,4,1,PRES,0.05 SOLVE FINISH /POST1 SET,1,1 PLDISP FINISH /TITLE,肖曾12061210 ② /prep7 et,1,188 mp,ex,1,2e6 mp,nuxy,1,0.3 mp,dens,1,7800 sectype,1,beam,i,beam secdata,6.535,6.535,8,06,0.465,0.465,0.285 sectype,2,beam,i,column secdata,12,12,12.12,0.605,0.605,0.39 sectype,3,beam,hrec,peak secdata,6,6,0.25,0.25,0.25,0.25 k,1,-90,0,60 k,2,90,0,60 k,3,90,0,-60 k,4,-90,0,-60 kgen,2,all,,,,120 k,9,0,180,0 k,101,90 k,102,-90 k,103,-90,200,60 k,104,90,200,60 k,105,90,200,-60 k,106,-90,200,-60 L,1,5 L,2,6 L,3,7 L,4,8 L,5,6 L,6,7 L,7,8 L,8,5 L,9,5 L,9,6 L,9,7 L,9,8 lsel,,loc,y,0,119 cm,lvert,line lsel,,loc,y,120 cm,lhoriz,line lsel,,loc,y,121,180 cm,lslope,line lsel,all cmsel,,lslope lsel,s,loc,x,-90,0 lsel,a,loc,z,0,60 latt,1,,1,,103,,3 cmsel,,lslope lsel,s,loc,x,0,90 lsel,a,loc,z,0,60 latt,1,,1,,104,,3 cmsel,,lslope lsel,s,loc,x,0,900 lsel,a,loc,z,-60,0 latt,1,,1,,105,,3 cmsel,,lslope lsel,s,loc,x,-90,0 lsel,a,loc,z,-60,0 latt,1,,1,,106,,3 cmsel,,lvert lsel,r,loc,x,-90 latt,1,,1,,102,,2 cmsel,,lvert lsel,r,loc,x,90 latt,1,,1,,101,,2 cmsel,,lhoriz lsel,u,loc,z,-60 lsel,u,loc,x,90

ansys三维梁结构分析

课程分析 COURSE ANALYSIS 题目:三维梁结构分析 系别:机械工程系 专业:机械设计制造及自动化 学制:四年 姓名: 学号: 导师: 20 14 年6 月8 日

分析1:三维梁结构分析 姓名: 班级: 学号: 一、概述 此次分析的模型为三维梁结构,梁结构如图所示,最上端(红色)为m R 4.0=圆截面,其余横截面积为m m 5.05.0?矩形。此模型的弹性模量为GPa E 150=,泊松比为25.0,材料密度为32600m Kg =ρ。 模型的约束情况为底部四个支撑点完全约束,其所受载荷作用在顶端两点,力的方向在YZ 平面,与Y 成?30角,且模型自重不可忽略。据此条件求梁的最大应力及最大变形。(可采用188Beam 单元模拟) 二、模型及约束情况 下面介绍模型的创建及约束的施加。 1、模型创建

通过观察模型的结构特征,可以现创建两个m 4? 5 ?的长方体 m5 m 叠加,再将第二个长方体沿m 5?面内的对角线分割,并删除上半部 m5 分,然后对这两个体求和,再分别将体单元和面单元删除。这样就只剩下线单元。最后再将剩下的线补充加上。如下图所示。 2、材料定义 模型创建完成后,再定义材料的单元类型、弹性模量、泊松比及密度。通过tion sec分别定义m =圆截面及m R4.0 5.0?矩形截面。定 m5.0 义完之后,分别将这两个截面应用到相应的梁上。 3、网格划分 通过meshtool工具设置网格划分尺寸及网格划分命令。打开形状因子,结果如下图所示。

4、约束及载荷施加 按照要求在模型底部四个支撑点施加完全约束,在顶部两个点施加N F N F y z 3031,1750-=-=的载荷,在Z 方向施加重力加速度28.9s m kg g ?=。结果如下图所示。 5、模型求解 完成上述定义之后,即可进行模型求解。

ansys有限元受力分析

起重机桁架结构的受力分析 摘要:本文利用ansys14.5平台研究货物起重机的受力情况,通过对起重机架的建模和求解,进一步熟悉了ansys的分析过程,并求出了起重机架的变形,位移和应力等方面的力学量,为起重机架结构和材料的改进提供了依据。 1 引言 如下图所示的货物起重机,由两个桁架结构组成,它们通过交叉支撑结合在一起。每个桁架结构的两个主要构件是箱型钢架。每个桁架结构通过内部支撑来加固,内部支承焊接在方框钢架上。连接两个桁架的交叉支承销接在桁架结构上。所有构件材料都是中强度钢,EX=200E9Pa,EY=300E9Pa,μ=0.25,G=80E9。它在端部承受10KN沿Y轴负方向的载荷时,用有限元软件求出最大受力点及应力和位移情况。

内部支承及交叉支承梁截面桁架结构主要构件梁截面 2 计算模型 2.1 设置工作环境 启动Mechanical APDL Product Launcher 14.5,弹出Mechanical APDL Pr oduct Launcher 14.5窗口。设置参数、工作目录、工作名称,单击Run进入AN SYS 14.5 GUI界面。在主菜单元中选择Preferences命令,选择分析类型为Stru ctural,单击OK按钮,完成分析环境设置,如图2.1所示。 图2.1

2.2 定义单元与材料属性 在GUI界面中选择Main Menu>Preprocessor>Element Type> Add/Edit/ Delete命令,弹出图2.2所示的Element Type对话框,选择单元类型为LINK1 80,单击OK按钮。 图2.2 在GUI界面中选择Main Menu>Preprocessor>Material Props>Material M odels命令,弹出图2.3所示的Define Material Model Behavior对话框,选择材料模型为结构、线性、弹性、各向异性,然后输入EX=2E11,EY=3E11,P RXY=0.25,GXY=8E10,输入密度7800,单击OK按钮完成。 图2.3 下面定义截面特性,在GUI中选择Main Menu→Preprocessor→Real Con stants→Add/Edit/Delete命令,弹出Real Constants对话框,单击Add按钮选择LINK180,输入实常号1,截面积0.0014,单击Apply按钮,设置常数编号2,截面积0.0011,单击OK按钮完成,此时Real Constants对话框中列出了已定义的两个不同的实常数,完成单元及材料属性的定义,如图2.4和图2.5所示。

Ansys受力分析

三维托架实体受力分析 ANSYS软件是融结构、流体、电磁场、声场和耦合场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS公司开发,它能与多数CAD软件接口,实现数据的共享和交换,如PRO/E、UG、I-DEAS、CADDS及AutoCAD等,是现代产品设计中的高级CAD工具之一。 题目:1、三维托架实体受力分析:托架顶面承受50psi的均匀分布载荷。托架通过有孔的表面固定在墙上,托架是钢制的,弹性模量E=29×106psi,泊松比v=.试通过ANSYS输出其变形图及其托架的von Mises应力分布。 题目1的分析。先进行建模,此建模的难点在对V3的构建(既图中的红色部分)。要想构建V3,首先应将A15做出来,然后执行Main Menu>Preprocessor>Modeling>Operate>Booleans>Add>Volumes命令,将所有的实体合并为一个整体。建模后,就对模型进行网格的划分,实行Main Menu>Preprocessor>Meshing>MeshTool,先对网格尺寸进行编辑,选,然后点Meshing,Pick all进行网格划分,所得结果如图1。划分网格后,就可以对模型

施加约束并进行加载求解了。施加约束时要注意,由于三维托架只是通过两个孔进行固定,故施加约束应该只是针对两孔的内表面,执行Main Menu>Solution>Define Loads>Apply>Structrual>Displacement>Symmetry >On Areas 命令,然后拾取两孔的内表面,单击OK就行了。施加约束后,就可以对实体进行加载求解了,载荷是施加在三维托架的最顶上的表面的,加载后求解运算,托架的变形图如图2。 图1、托架网格图 图2输出的是原型托架和施加载荷后托架变形图的对比,虚线部分即为托架的原型,从图2可看出,由于载荷的作用,托架上面板明显变形了,变形最严重的就是红色部分,这是因为其离托板就远,没有任何物体与其分担载荷,故其较容易变形甚至折断。这是我们在应用托架的时候应当注意的。

ansys梁结构受力分析

梁结构受力分析 肖杰20065528 /prep7 k,1,-90,0,60 k,2,90,0,60 k,3,90,0,-60 k,4,-90,0,-60 kgen,2,all,,,,120 k,9,0,180,0 k,100,0,200,0 k,101,90 k,102,-90 l,1,5 l,2,6

l,3,7 l,4,8 l,5,6

l,6,7 l,7,8 l,8,5 l,9,5 l,9,6 l,9,7 l,9,8

lsel,,loc,y,0,119 cm,lvert,line lsel,,loc,y,120 cm,lhoriz,line lsel,,loc,y,121,180 cm,lslope,line lsel,all et,1,188 mp,ex,1,2e6 mp,nuxy,1,0.3 mp,dens,1,7800 sectype,1,beam,i,beam secdata,6.535,6.535,8.06,.465,.465,.285 sectype,2,beam,i,column secdata,12,12,12.12,.605,.605,.39 sectype,3,beam,hrec,peak secdata,6,6,.25,.25,.25,.25 save,frame,db cmsel,,lslope latt,1,,1,,100,,3 cmsel,,lvert lsel,r,loc,x,-90 latt,1,,1,,102,,2

cmsel,,lvert lsel,r,loc,x,90 latt,1,,1,,101,,2 cmsel,,lhoriz lsel,u,loc,z,-60 lsel,u,loc,x,90 latt,1,,1,,1,,1 cmsel,,lhoriz lsel,u,loc,z,60 lsel,u,loc,x,-90 latt,1,,1,,3,,1 lsel,all lesize,all,20 lmesh,all

Ansys梁分析实例

工程介绍: 某露天大型玻璃平面舞台的钢结构如图1所示,每个分格(图2中每个最小的矩形即为一个分格)x方向尺寸为1m,y方向尺寸为1m;分格的列数(x向分格)=8,分格的行数(y向分格)=5。 钢结构的主梁(图1中黄色标记单元)为高140宽120厚14的方钢管,其空间摆放形式如图3所示;次梁(图1中紫色标记单元)为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间(如不是正处于X方向正中间,偏X坐标小处布置)的次梁的两端,如图2中标记为 U R处。主梁和次梁之间是固接的。 xyz xyz 玻璃采用四点支撑与钢结构连接(采用四点支撑表明垂直作用于玻璃平面的面载荷将传递作用于玻璃所在钢结构分格四周的节点处,表现为点载荷;试对在垂直于玻璃平面方向的42 KN m的面载荷(包括玻璃自重、钢结构自重、活载 / 荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析。(每分格面载荷对于每一支撑点的载荷可等效于1KN的点载荷)。 作业提交的内容至少应包括下面几项: (1)屏幕截图显示该结构的平面布置结构,图形中应反映所使用软件的部分界面,如图2; (2)该结构每个支座的支座反力; (3)该结构节点的最大位移及其所在位置; (4)对该结构中最危险单元(杆件)进行强度校核。 图1

图2 图3 本操作中选用的单位为:(N,mm,MPa)。具体操作及分析求解: 1.更该工作文件和标题。如图1.1-1.5所示

图1.1 图1.2

图1.3 图1.4 图1.5

图1.6 2.选择单元类型。 根据题目要求,选择单元类型为beam-3D-2node-188单元。 执行Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add ,选择beam-3D-2node-188。如图2.1所示。 图2.1 3.定义材料属性 该钢结构材料为碳素结构钢Q235,则将弹性模量设置为200GPa,泊松比设置为0.3。执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2.05e,在PRXY框中输入0.3。操作步骤为如图3.1;3.2所示。

3静定结构的受力分析-梁结构力学

1 结构力学多媒体课件

◆几何特性:无多余约束的几何不变体系 ◆静力特征:仅由静力平衡条件可求全部反力和内力 ◆常见静定结构:梁、刚架、三铰拱、桁架和组合结构。 ◆静定结构受力分析的内容:反力和内力的计算,内力图的绘制和受力性能分析。 ◆静定结构受力分析的基本方法:选取脱离体,建立平衡方程。 ◆注意静力分析(拆)与构造分析(搭)的联系 ◆学习中应注意的问题:多思考,勤动手。本章是后面 学习的基础,十分重要,要熟练掌握!

容易产生的错误认识: “静定结构内力分析无非就是选取隔离体,建立平衡方程,以前早就学过了,没有新东西”

一、反力的计算 4kN 1kN/m D C B A 2m 2m 4m C B A 20kN/m 4m 4m 2m 6m D C B A (1)上部结构与基础的联系为3个时, 对整体利用3个平衡方程,就可求得反力。 (2)上部结构与基础的联系多于三个时,不仅要对 整体建立平衡方程,而且必须把结构打开, 取隔离体补充方程。

1、内力分量及正负规定 轴力F N :截面上应力沿杆轴法线方向的合力。 以拉力为正,压力为负。 剪力F Q :截面上应力沿杆轴切线方向的合力。 以绕隔离体顺时针转为正,反之为负。 弯矩M :截面应力对截面中性轴的力矩。 不规定正负,但弯矩图画在受拉侧。在水平杆中, 当弯矩使杆件下部纤维受拉时为正。 A 端 B 端 杆端内力 F Q AB F N AB M AB 正 F N BA F Q BA M BA 正

2、内力的计算方法 K 截面法:截开、代替、平衡。 内力的直接算式(截面内力代数和法) =截面一边所有外力沿截面法线方向投影的代数和。 轴力F N 外力背离截面投影取正,反之取负。 剪力F =截面一边所有外力沿截面切线方向投影代数和。 Q 外力绕截面形心顺时针转动,投影取正,反之取负。 弯矩M =截面一边所有外力对截面形心的外力矩之和。 外力矩和弯矩使杆同侧受拉时取正,反之取负。

ANSYS结构力分析实例

基于图形界面的桁架桥梁结构分析(step by step) 下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。背景素材选自位于密执安的"Old North Park Bridge" (1904 - 1988),见图3-22。该桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3 种不同型号的型钢,结构参数见表3-6。桥长L=32m,桥高H=5.5m。桥身由8 段桁架组成,每段长4m。该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1 ,P2 和P3 ,其中P1= P3=5000 N, P2=10000N,见图3-23。 图3-22 位于密执安的"Old North Park Bridge" (1904 - 1988) 图3-23 桥梁的简化平面模型(取桥梁的一半) 表3-6 桥梁结构中各种构件的几何性能参数 解答以下为基于ANSYS 图形界面(Graphic User Interface , GUI)的菜单操作流程。 (1) 进入ANSYS(设定工作目录和工作文件)

程序→ANSYS →ANSYS Interactive →Working directory(设置工作目录)→Initial jobname (设置工作文件名):TrussBridge →Run →OK (2) 设置计算类型 ANSYS Main Menu:Preferences… →Structural →OK (3) 定义单元类型 ANSYS Main Menu:Preprocessor →Element Type →Add/Edit/Delete... →Add…→Beam: 2d elastic 3 →OK(返回到Element Types窗口)→Close (4) 定义实常数以确定梁单元的截面参数 ANSYS Main Menu: Preprocessor →Real Constants…→Add/Edit/Delete →Add…→select Type 1 Beam 3 →OK →input Real Constants Set No. : 1 , AREA: 2.19E-3,Izz: 3.83e-6(1号实常数用于顶梁和侧梁) →Apply →input Real Constants Set No. : 2 , AREA: 1.185E-3,Izz: 1.87E-6 (2号实常数用于弦杆) →Apply →input Real Constants Set No. : 3, AREA: 3.031E-3,Izz: 8.47E-6 (3号实常数用于底梁) →OK (back to Real Constants window) →Close (the Real Constants window) (5) 定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX: 2.1e11, PRXY: 0.3(定义泊松比及弹性模量) →OK →Density (定义材料密度) →input DENS: 7800, →OK →Close(关闭材料定义窗口) (6) 构造桁架桥模型 生成桥体几何模型 ANSYS Main Menu:Preprocessor →Modeling →Create →Keypoints →In Active CS →NPT Keypoint number:1,X,Y,Z Location in active CS:0,0 →Apply →同样输入其余15个特征点坐标(最左端为起始点,坐标分别为(4,0), (8,0), (12,0), (16,0), (20,0), (24,0), (28,0), (32,0), (4,5.5), (8,5.5), (12,5.5), (16.5.5), (20,5.5), (24,5.5), (28,5.5))→Lines →Lines →Straight Line →依次分别连接特征点→OK 网格划分 ANSYS Main Menu: Preprocessor →Meshing →Mesh Attributes →Picked Lines →选择桥顶梁及侧梁→OK →select REAL: 1, TYPE: 1 →Apply →选择桥体弦杆→OK →select REAL: 2, TYPE: 1 →Apply →选择桥底梁→OK →select REAL: 3, TYPE:1 →OK →ANSYS Main Menu:Preprocessor →Meshing →MeshTool →位于Size Controls下的Lines:Set →Element Size on Picked →Pick all →Apply →NDIV:1 →OK →Mesh →Lines →Pick all →OK (划分网格) (7) 模型加约束 ANSYS Main Menu: Solution →Define Loads →Apply →Structural→Displacement →On Nodes →选取桥身左端节点→OK →select Lab2: All DOF(施加全部约束) →Apply →选取桥身右端节点→OK →select Lab2: UY(施加Y方向约束) →OK (8) 施加载荷 ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Force/Moment →On Keypoints →选取底梁上卡车两侧关键点(X坐标为12及20)→OK →select Lab: FY,Value: -5000 →Apply →选取底梁上卡车中部关键点(X坐标为16)→OK →select Lab: FY,Value: -10000 →OK →ANSYS Utility Menu:→Select →Everything (9) 计算分析 ANSYS Main Menu:Solution →Solve →Current LS →OK (10) 结果显示 ANSYS Main Menu:General Postproc →Plot Results →Deformed shape →Def shape only →OK(返回到Plot Results)→Contour Plot →Nodal Solu →DOF Solution, Y-Component of Displacement →OK(显示Y方向位移UY)(见图3-24(a))

ANSYS结构分析教程篇

ANSYS结构分析基础篇 一、总体介绍 进行有限元分析的基本流程: 1.分析前的思考 1)采用哪种分析(静态,模态,动态...) 2)模型是零件还是装配件(零件可以form a part形成装配件,有时为了划分六 面体网格采用零件,但零件间需定义bond接触) 3)单元类型选择(线单元,面单元还是实体单元) 4)是否可以简化模型(如镜像对称,轴对称) 2.预处理 1)建立模型 2)定义材料 3)划分网格 4)施加载荷及边界条件 3.求解 4.后处理 1)查看结果(位移,应力,应变,支反力) 2)根据标准规范评估结构的可靠性 3)优化结构设计 高阶篇: 一、结构的离散化 将结构或弹性体人为地划分成由有限个单元,并通过有限个节点相互连接的离散系统。 这一步要解决以下几个方面的问题: 1、选择一个适当的参考系,既要考虑到工程设计习惯,又要照顾到建立模型的方便。 2、根据结构的特点,选择不同类型的单元。对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。 3、根据计算分析的精度、周期及费用等方面的要求,合理确定单元的尺寸和阶次。 4、根据工程需要,确定分析类型和计算工况。要考虑参数区间及确定最危险工况等问题。 5、根据结构的实际支撑情况及受载状态,确定各工况的边界约束和有效计算载荷。 二、选择位移插值函数 1、位移插值函数的要求 在有限元法中通常选择多项式函数作为单元位移插值函数,并利用节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式。 位移插值函数需要满足相容(协调)条件,采用多项式形式的位移插值函数,这一条件始终可以满足。

基于ANSYS的梁结构静力学分析中常见问题研究

基于ANSYS的梁结构静力学分析中常见问题研究

————————————————————————————————作者:————————————————————————————————日期:

基于ANSYS的梁结构静力学分析中常见问题研究-机电论 文 基于ANSYS的梁结构静力学分析中常见问题研究 羊有道陆惠兴 (南京莱斯信息技术股份有限公司,江苏南京210014) 摘要:简要介绍了基于ANSYS的梁结构静力分析的基本流程,重点讲述了载荷施加、自定义截面轴惯性矩求解等常见问题的解决方法,为用户运用该软件进行受力分析提供了参考素材。 关键词:梁结构;载荷;自定义截面;轴惯性矩 0引言 ANSYS软件是一款功能强大的通用有限元分析软件,目前市面上介绍ANSYS 软件的书籍很多,但关于梁结构静力分析这部分内容大都千篇一律,书中所举实例基本仅侧重分析流程,对工程中经常遇到的实际情况如何处理没有作详细介绍,非常不利于用户解决实际工程问题。针对上述情况,本文通过具体实例对梁结构静力分析过程中遇到的常见问题作了具体分析,并给出了解决方法;最后给出了所举实例的理论计算结果,以便对软件分析结果的正确性和精确性进行验证和评估。 1梁结构静力学分析基本步骤 静力学分析过程一般包括以下三个步骤:(1)建立模型;(2)加载求解;(3)结果后处理。在梁结构静力学分析过程中,最主要会遇到以下两个问题:(1)如何求自定义截面的轴惯性矩?(2)如何正确加载集中力、均布载荷?本文将结合具体实例来说明怎样解决这些问题。

2梁结构静力学分析中常见问题的解决方法 2.1自定义梁截面的轴惯性矩软件求解方法 在工程设计中经常会使用一些自定义截面的梁结构,例如现有一截面尺寸如图1所示的梁结构截面,我们先利用ANSYS软件求解其轴惯性矩,再通过理论计算进行结果对比。 软件计算步骤如下:(1)通过Modeling选项建立截面形状,如图1所示;(2)通过Sections Beam customsections WriteFromAreas选项,然后选择pickall,定义截面名称;(3)通过ReadSectMesh选项,选取已定义截面;(4)通过PlotSection选项,求得截面的惯性矩。求解结果如下:关于Y轴的轴惯性矩为IYY=0.244E+08mm4;关于Z轴的轴惯性矩为IZZ=0.29E+08mm4。 理论计算该梁截面的各轴惯性矩: Iy=2440×104mm4 Iz=2903×104mm4 其结果与软件计算结果一致,说明上述软件操作步骤完全正确。 2.2集中力、均布载荷的施加方法 在工程实际问题中,构件经常会受到组合载荷的作用,例如如图2所示的20a 号工字钢悬臂梁受集度为q=7.44kN/m的均布载荷和集中力P=qa2作用,现

地梁受力与顶板梁受力分析

地梁受力与顶板梁受力相反是吗地梁受力与顶板梁受力相反是吗地梁受力与顶板梁受力相反是吗地梁受力与顶板梁受力相反是吗,,,,板梁是下部筋受力下部钢筋大板梁是下部筋受力下部钢筋大板梁是下部筋受力下部钢筋大板梁是下部筋受力下部钢筋大,,,,地梁受力与顶板梁受力相反是吗,板梁是下部筋受力下部钢筋大,而上部主要是支座筋,而地梁相反正确,地梁(基础梁)受力与普通梁正好相反,所以受力筋与支座筋位置也正好相反。地梁受力与框架梁梁受力相反,支座负筋位置也相反是的。有梁式筏板基础中的梁(JZL、JCL)与楼层框架梁(KL)及屋面框架梁(WKL)的受力方向是相反的。好像是倒盖楼。但有区别:当承受地震横向作用时,柱是第一道防线,楼盖梁是耗能构件,所以要做到”强柱弱梁“”强剪弱弯“,梁要考虑箍筋加密区、塑性铰等问题;但筏形基础的基础梁通常不考虑参与抵抗地震作用计算 是的。有梁式筏板基础中的梁(JZL、JCL)与楼层框架梁(KL)及屋面框架梁(WKL)的受力方向是相反的。好像是倒盖楼。但有区别:当承受地震横向作用时,柱是第一道防线,楼盖梁是耗能构件,所以要做到”强柱弱梁“”强剪弱弯“,梁要考虑箍筋加密区、塑性铰等问题;但筏形基础的基础梁通常不考虑参与抵抗地震作用计算。是不同的,因为他们的受力是相反的地梁承受基础的反作用力,荷载是向上的,而板顶梁承受的是向下的荷载,两者受力是相反的地梁承受地基反力方向向上,顶梁承受荷载向下,所以受力相反,至于钢筋上部大或下部大那就不一定,要作受力分析. 基础梁是基础的一种型式,是结构的一部份,用于承受上部负荷及调整各基础内力,使各基础处于轴心受压或小偏心受压,改善基础受力的连续基础,它一般与桩基、条基、筏基共同受力,单一的基础梁受力已很少见。条基、筏基中的梁应该叫肋梁,肋梁和条基翼板或筏基板共同组成条基或筏基。基础拉梁是为了减少不均匀沉降,防止形变的拉压杆传力构件,它把水平荷载均匀地传给各个基础,有时充当上部墙体的基础。拉梁顾名思义是连接和协调了两端的独基、承台或基础梁,许多拉梁共同起作用,把整个建筑物基础联合成刚度协调、变形一致的基础。基础梁的作用:1.提高结构整体性;2.抵抗柱底弯矩及剪力;3.调节沉降;4.承受底层填充墙荷载等。基础梁分为:柱下条形基础梁、筏形基础梁和纯基础梁(没有基础底板);承台间基础拉梁和墙下基础梁, 柱下基础梁一般设置在基础底部,有的设计沿一个方向布置(主要用于排架结构),但更多是沿XY双向布置的十字条基,它虽然受地基反力,人们也往往把它所看成是倒框架结构,其实它是作为柱的支座,而框架梁则是以柱为支座,正好相反。所以基础梁不应视为正置弹性地基梁。其箍筋沿基础梁满布(交叉处可只一个方向)这与框架梁有区别。主筋也不存在锚固而是封边。承台间基础拉梁情况较复杂,如果基础拉梁与承台共同作用共同受力是一个受力整体且承台体积较小时抵抗柱底弯矩及剪力主要由桩承台起作用,那么拉梁可接通;如果承台是主要受力且体积较大而拉梁次要受力那么拉梁锚入承台即可,主筋伸入承台一个锚固。卧梁主要是抵抗横向地震作用,加强楼盖体系整体性的构件。墙下混凝土条形基础,为增加基础抵抗不均匀沉降的能力,沿纵向可加设肋梁,并按构造配筋。可以理解为卧梁的作用是增加条形基础沿长方向抵抗变形的承受力。卧梁是条形基础的一部分,属于条形基础范畴。不能简单的理解为地基梁或者是拉梁。一般来说,当独立基础埋置不深,或者埋置虽深但采用了短柱方案时,由于地基不良或柱子荷载差别较大,为了调节不均匀沉降等,为了减小底层柱的计算长度和底层的位移,设计者往往在±0.00以下适当位置设置基础梁,或根据抗震要求,可沿两个主轴方向设置构造基础梁。有时把基础梁设计得比较强大,以便用梁平衡柱底弯矩。这时,梁正弯矩钢筋应全部拉通,负弯矩钢筋至少应在1/2跨拉通。梁正负弯矩在框架柱内的锚固、梁箍筋的加密及有关抗震构造要求与上部框架梁完全相同。此时基础梁宜设置在基础顶部,不宜设置在基础底面之上。梁代号为JKL,梁又在承台上面,凭这两点,这个梁应该是基础框架梁,那它就应该“悬空”,避免承受地基反力。但你又说,它下面带板(钢筋砼底板?),还有100厚的垫层,这样听起来又像是基础梁了,基

相关文档
最新文档