汽车设计课设-驱动桥设计

合集下载

驱动桥设计毕业设计

驱动桥设计毕业设计

毕业设计任务书设计题目:比亚迪速锐驱动桥设计专业:交通10-1学号: ********* *名:***指导教师:***毕业设计开题报告目录摘要 (1)Abstract (1)第一章绪论 (2)1.1 本设计的目的与意义 (2)1.2 驱动桥国内外发展现状 (3)1.3 本设计的主要内容 (3)1.4 本次设计的其他数据 (3)第二章驱动桥的选型 (4)2.1 驱动桥的选型 (4)2.1.1 方案(一):非断开式驱动桥 (5)2.1.2 方案(二):断开式驱动桥 (6)2.1.3 方案(三):多桥驱动的布置 (7)第三章驱动半轴的设计 (9)3.1 半轴的结构形式分析 (9)3.2 半轴的强度计算 (10)半浮式半轴计算载荷的确定 (11)a 半轴在纵向力最大时 (11)b 半轴在侧向力最大时 (11)c 半轴在垂向力最大时 (13)3.3 半轴的强度计算 (13)a 纵向力最大时, (13)b 侧向力最大时 (14)c 垂向力最大时 (14)3.4 半轴花键的设计 (14)3.5 半轴的材料及热处理半轴的材料及热处理 (16)3.5.1 半轴的工作条件和性能要求 (16)3.5.2 处理技术要求 (16)3.5.3 选择用钢 (16)3.5.4 半轴的工艺路线 (17)3.5.5 热处理工艺分析 (17)第四章驱动桥壳的设计 (18)4.1 驱动桥壳结构方案选择 (18)a 可分式桥壳 (18)b 整体式桥壳 (18)c 组合式桥壳 (19)4.2 驱动桥壳强度计算 (20)4.2.1 桥壳的静弯曲应力计算 (20)4.2.2 在不平路面冲击载荷作用下的桥壳强度计算 (21)4.2.3 汽车以最大牵引力行驶时的桥壳强度计算 (22)4.2.4 紧急制动时的桥壳强度计算 (23)4.2.5 汽车受最大侧向力时的桥壳强度计算 (24)第五章轮胎的选取 (26)5.1 轮胎与车轮应满足的基本要求 (26)5.2 轮胎的特点与选用 (26)5.3 轮胎的选型及尺寸参数 (26)第六章CAD进行建模装配 (28)6.1 CAD的介绍 (28)6.2 CAD建模过程 (28)6.2.1 车桥的建模 (28)6.2.2 半轴的建模 (31)6.2.3 轴承和螺栓的建模 (31)6.2.4 车轮的建模 (33)6.3实体装配 (34)总结 .............................................................................................................................. 错误!未定义书签。

课程设计驱动桥设计

课程设计驱动桥设计

课程设计驱动桥设计一、教学目标本课程旨在让学生掌握驱动桥的设计原理和方法,理解其在工作过程中的作用和重要性。

知识目标包括:了解驱动桥的基本结构、工作原理和设计要求;掌握驱动桥的设计方法和步骤;了解驱动桥的设计标准和规范。

技能目标包括:能够运用所学知识进行驱动桥的设计;能够对驱动桥的设计方案进行评价和优化。

情感态度价值观目标包括:培养学生的创新意识和团队合作精神;增强学生对工程实践的兴趣和责任感。

二、教学内容本课程的教学内容主要包括驱动桥的基本原理、结构设计、传动设计、强度计算和实验等方面。

具体安排如下:1.驱动桥的基本原理:介绍驱动桥的工作原理、分类和性能要求。

2.结构设计:讲解驱动桥的主要组成部分,包括齿轮、轴承、轴等的结构设计和选材。

3.传动设计:介绍驱动桥的传动系统设计,包括齿轮传动、蜗轮传动等的设计方法和计算。

4.强度计算:讲解驱动桥的强度计算方法,包括接触强度、弯曲强度、齿面硬度等。

5.实验:进行驱动桥的设计实验,验证设计方案的可行性和性能。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式。

包括:1.讲授法:讲解驱动桥的基本原理、设计方法和步骤。

2.讨论法:学生进行驱动桥设计方案的讨论和评价。

3.案例分析法:分析典型的驱动桥设计案例,引导学生运用所学知识解决问题。

4.实验法:进行驱动桥的设计实验,培养学生的实践能力和创新精神。

四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选择合适的教材,提供学生系统学习的基础知识。

2.参考书:提供相关的参考书籍,丰富学生的知识体系。

3.多媒体资料:制作课件、视频等多媒体资料,生动展示驱动桥的设计原理和实例。

4.实验设备:准备实验所需的设备,为学生提供实践操作的机会。

五、教学评估本课程的评估方式将包括平时表现、作业、考试等多个方面,以全面、客观、公正地评价学生的学习成果。

具体安排如下:1.平时表现:通过课堂参与、提问、小组讨论等方式评估学生的学习态度和积极性。

轿车驱动桥设计精选全文

轿车驱动桥设计精选全文
1、毕业实习(3月3号—3月14号);2、开题报告、文献综述(3月15号—4月5号);3、中期检查答辩(4月6号—5月1号);4、完成设计图纸、撰写设计说明书(5月2号—6月5号);5、修改图纸、计算及设计说明书(6月5号—6月10号);6、毕业答辩(6月10号)
五、主要参考资料
[1].刘惟信.汽车设计.北京:清华大学出版社,2001
2技术要求(研究方法)
要求将汽车构造、汽车设计、机械制图、计算机软件等相关知识有机结合、熟练运用;
要求熟练运用CAD软件。
三、设计(论文)完成后应提交的成果
1、完成设计说明书一份(1万字以上)。
2、绘制总装配图和主要零件图,图量折合A0图纸3张以上,手工图A2一张。
3、设计资料的电子稿件一份。四、设计(论文 Nhomakorabea进度安排
[2].陈家瑞.汽车构造.北京:机械工业出版社,2003
[3].汽车工程手册编辑委员会.汽车工程手册(设计篇).北京:人民交通出版,2001
[4].汽车工程手册编辑委员会.汽车工程手册(基础篇).北京:人民交通出版社,2001
[5].余志生,汽车理论,北京:机械工业出版社,1990
[6].莫易敏,邱穆红,巫绍宁,高勇,周浩.微型汽车驱动桥半轴轴承的减摩设计,2014,4:1-4
[7].冈本纯三,球轴承的设计计算[M],黄志强,译.北京:机械工业出版社,2003
[8].Stribeck R. Ball Bearing for Vaious Loads.Transaction of ASME,1907,29:420-463
[9].包洁,刘佐民.高温场对滚动轴承游隙的影响,轴承,2007,10:10-13
排量/mL
1399
发动机最大功率/kw及转速/rpm

汽车驱动桥的设计

汽车驱动桥的设计

汽车驱动桥的设计汽车驱动桥是将发动机的动力传递到车轮上的重要部件,它承载着扭矩的传递、转向力和悬挂的载荷,直接影响到汽车的动力性能、行驶稳定性和操控性能。

本文将从结构设计、功能和类型分类、工作原理和配套系统等方面进行阐述。

一、结构设计汽车驱动桥主要由差速器、后桥壳、半轴、主减速齿轮和齿轮箱等部件组成。

差速器通常位于驱动轴两半轴之间,起到分配扭矩和使驱动轮各自具有不同转速的作用。

后桥壳是驱动桥的承载结构,负责支撑和固定驱动桥的各个部件。

二、功能和类型分类汽车驱动桥的主要功能是将发动机的动力转化为车轮的动力,并且通过差速器的作用,使两个驱动轮以不同的转速旋转。

根据驱动轮的数量不同,可以将汽车驱动桥分为前驱动桥、后驱动桥和四驱动桥。

其中,前驱动桥一般布置在驾驶员座位后面,主要用于小型轿车和城市SUV;后驱动桥布置在车辆的后部,主要用于大型SUV和商用车;四驱动桥则将动力传递到四个车轮上,提供更强的通过性和驾驶稳定性。

三、工作原理汽车驱动桥的工作原理主要包括力的传递、扭矩的分配和转速的差异化。

当发动机输出扭矩传递到差速器时,差速器将扭矩通过齿轮传递到后桥壳,由主减速齿轮将扭矩分配到左右两个半轴上。

同时,差速器还可以使驱动轮各自具有不同的转速,以适应车辆转弯和路面状态的变化。

四、配套系统汽车驱动桥还有一些配套系统,用于提升驾驶性能。

其中,差速器锁定功能可以让两个驱动轮以相同的转速旋转,提供更强的通过性能;牵引力控制系统可以通过降低驱动轮的滑动,提供更好的牵引力,提高车辆的爬坡能力;加速差速器可以通过改变齿轮的传动比,提供更快的加速性能。

总之,汽车驱动桥作为汽车动力传递的核心部件,其设计要满足高强度、高刚度和轻量化的要求。

同时,根据不同的车型和用途,还要考虑到其功能需求和工作环境,以提供更好的驾驶性能和操控性能。

第五章汽车驱动桥设计

第五章汽车驱动桥设计

样。
2.按驱动轮打滑转矩确定从动锥齿轮计算转矩Tcs
后桥动力传递 1 5 2
TCS
G 2 m rr
' 2
i m m
(5-5)
3
4
6
7
将此式与P126表4-1的式比较,
Tss1
G 2 m 2 rr i0 im m
8 9 前桥动力传递
在分母上少了一个i0,是因为从驱动轮传来的扭矩没有经过主减速器, 而直接施加于从动锥齿轮上。
O′
A′ A′
r2 r1
(4)双曲面齿轮传动比 令:r1 ,r2:主、从动齿轮的平均分度圆半径 F1、F2分别为主、从动锥齿轮的圆周 力 在A点(图5-5)啮合的法向力相等:
O′
A′ A′
F2 COS 2

F1 F2

F1 COS 1
(5-1)
COS 1 CO没有公约数,否则总是固 定的齿啮合,不利 于磨损。
(2)为得理想的齿面重合度和高的轮齿 弯曲强度,主、从动齿轮齿数和不少于40
为了使齿轮传动连续,必须保证 前一对轮齿尚未脱离啮合时,后一对 轮齿就应进入啮合。为了满足连续传 动要求,前一对轮齿齿廓到达啮合终 点B1时,尚未脱离啮合,后一对轮 齿至少必须开始在B2点啮合,此时线段B1B2恰好等于基圆齿距Pb 。 所以,连续传动的条件: B1B2 ≥Pb 用重合度ε表示,连续传动条件为: ε=B1B2/Pb≥1 ε表示了同时参与 啮合齿轮的对数, ε越大,同时参与啮合齿轮的对数越多,传动越平稳。 而齿轮齿和数大,则ε大。同时参与啮合的齿数多,则降低单齿的啮合 力。
第五章、驱动桥设计 本章主要学习 1.驱动桥结构方案分析 2.主减速器设计 3.车轮传动装置设计 4.驱动桥壳设计

毕业设计汽车驱动桥设计

毕业设计汽车驱动桥设计

YC1090货车驱动桥的设计目录中文摘要英文摘要1 前言2 总体方案的布置3 驱动桥零部件的设计3.1 主减速器设计3.2 差速器设计3.3 半轴的设计3.4 驱动桥壳设计4 CRUISE软件的分析5 优化设计6 结论参考文献附件清单致谢盐城工学院本科生毕业设计说明书20071 前言本设计课题是改进CA7204型汽车驱动桥的设计。

故本说明书将以“驱动桥设计”内容对驱动桥及其主要零部件的结构型式、设计计算及性能分析作一一介绍。

汽车驱动桥位于传动系的末端,其基本功用是增大由传动轴或直接从变速器传来的转矩,将转矩合理的分配给左、右驱动车轮具有汽车行驶运动学所要求的差速功能。

驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构型式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构型式、设计计算方法与性能分析。

汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。

汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。

另外,汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分总成等的品种最多的大总成。

例如,驱动桥包含主减速器、差速器、半轴、桥壳和各种齿轮。

由上述可见,汽车驱动桥设计涉及的机械零部件及元件的品种极为广泛,对这些零部件、元件及总成的制造也几乎要设计到所有的现代机械制造工艺。

因此,通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能。

他有以下两大难题,一是将发动机输出扭矩通过变速箱将动力传递到差速器上,达到更好的车轮牵引力与转向力的有效发挥,从而提高汽车的行驶能力。

二是差速器向两边半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。

车驱动桥设计课程设计

车驱动桥设计课程设计

车驱动桥设计课程设计一、课程目标知识目标:1. 让学生理解车驱动桥的基本结构及其在设计中的作用;2. 掌握车驱动桥设计的基本原理和关键参数;3. 了解车驱动桥设计过程中涉及的材料选择和制造工艺。

技能目标:1. 培养学生运用CAD软件进行车驱动桥三维模型设计的能力;2. 提高学生运用相关公式和规范进行车驱动桥参数计算和优化的技能;3. 培养学生分析车驱动桥设计问题并提出解决方案的能力。

情感态度价值观目标:1. 培养学生对汽车工程领域的兴趣和热情,激发其探索精神;2. 培养学生的团队协作意识,使其学会在团队中分享观点、交流思想;3. 引导学生关注车驱动桥设计在环保、节能方面的意义,树立社会责任感。

课程性质分析:本课程为汽车工程专业高年级课程,旨在帮助学生将理论知识与实践相结合,提高学生在车驱动桥设计方面的专业素养。

学生特点分析:学生具备一定的汽车工程基础知识,具有较强的学习能力和实践操作能力,但缺乏实际设计经验。

教学要求:结合学生特点和课程性质,以实际设计项目为导向,注重理论与实践相结合,提高学生在车驱动桥设计方面的综合能力。

通过本课程的学习,使学生能够达到上述课程目标,并为后续相关课程和实践打下坚实基础。

二、教学内容1. 车驱动桥概述- 了解车驱动桥的发展历程、分类及其在汽车中的作用;- 熟悉车驱动桥的基本结构、工作原理及性能要求。

2. 车驱动桥设计原理- 学习车驱动桥设计的基本原则、设计流程和方法;- 掌握车驱动桥主要参数的计算与优化方法。

3. 车驱动桥结构设计- 研究车驱动桥主要零部件的结构设计;- 学习车驱动桥的装配工艺和密封设计。

4. 车驱动桥材料选择与制造工艺- 了解车驱动桥常用材料及其性能特点;- 掌握车驱动桥制造过程中的关键工艺。

5. 车驱动桥设计实例分析- 分析典型车驱动桥设计案例,总结设计经验;- 学习运用CAD软件进行车驱动桥三维模型设计。

6. 车驱动桥设计实践- 按照教学要求,完成车驱动桥设计项目;- 针对设计过程中出现的问题,进行讨论、分析并优化。

前驱汽车驱动桥课程设计

前驱汽车驱动桥课程设计

前驱汽车驱动桥课程设计一、教学目标本课程旨在让学生了解前驱汽车驱动桥的基本原理、结构及其在汽车中的应用;掌握驱动桥的设计和计算方法,以及故障诊断和维修技巧;培养学生的实际操作能力和创新意识,使他们在汽车维修、制造等领域具有竞争力。

具体目标如下:1.知识目标:(1)了解前驱汽车驱动桥的分类、工作原理和结构特点;(2)掌握驱动桥的设计和计算方法;(3)熟悉驱动桥故障诊断和维修技巧;(4)了解驱动桥在汽车运行中的作用和重要性。

2.技能目标:(1)能够分析驱动桥的结构和工作原理;(2)具备驱动桥设计和计算能力;(3)掌握驱动桥故障诊断和维修方法;(4)能够对驱动桥进行维护和保养。

3.情感态度价值观目标:(1)培养学生对汽车行业的兴趣和热情;(2)增强学生的创新意识和团队协作精神;(3)培养学生认真负责、精益求精的职业素养;(4)提高学生对驱动桥安全性和可靠性的认识。

二、教学内容本课程的教学内容主要包括以下几个部分:1.前驱汽车驱动桥的基本原理和结构;2.驱动桥的分类和工作原理;3.驱动桥的设计和计算方法;4.驱动桥故障诊断和维修技巧;5.驱动桥在汽车运行中的作用和重要性。

教学进度安排如下:(1)第1-2课时:介绍前驱汽车驱动桥的基本原理和结构;(2)第3-4课时:讲解驱动桥的分类和工作原理;(3)第5-6课时:教授驱动桥的设计和计算方法;(4)第7-8课时:传授驱动桥故障诊断和维修技巧;(5)第9-10课时:讨论驱动桥在汽车运行中的作用和重要性。

三、教学方法为了提高教学效果,本课程将采用以下教学方法:1.讲授法:讲解驱动桥的基本原理、结构和故障诊断方法;2.讨论法:引导学生探讨驱动桥的设计和计算技巧;3.案例分析法:分析实际案例,让学生掌握驱动桥维修技巧;4.实验法:安排实验室实践,让学生亲自动手操作,增强实际操作能力。

四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:《前驱汽车驱动桥技术与应用》;2.参考书:国内外相关论文和书籍;3.多媒体资料:PPT、视频、图片等;4.实验设备:驱动桥实验台、检测仪器等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车设计课程设计说明书
题目:BJ130驱动桥部分设计验算与校核
姓名:
学号:
专业名称:车辆工程
指导教师:
日期:目录
一、课程设计任务书 (1)
二、总体结构设计 (2)
三、主减速器部分设计 (2)
1、主减速器齿轮计算载荷的确定 (2)
2、锥齿轮主要参数选择 (4)
3、主减速器强度计算 (5)
四、差速器部分设计 (6)
1、差速器主参数选择 (6)
2、差速器齿轮强度计算 (7)
五、半轴部分设计 (8)
1、半轴计算转矩Tφ及杆部直径 (8)
2、受最大牵引力时强度计算 (9)
3、制动时强度计算 (9)
4、半轴花键计算 (9)
六、驱动桥壳设计 (10)
1、桥壳的静弯曲应力计算 (10)
2、在不平路面冲击载荷作用下的桥壳强度计算 (11)
3、汽车以最大牵引力行驶时的桥壳强度计算 (11)
4、汽车紧急制动时的桥壳强度计算 (12)
5、汽车受最大侧向力时的桥壳强度计算 (12)
七、参考书目 (14)
八、课程设计感想 (15)
一、课程设计任务书
1、题目
《BJ130驱动桥部分设计验算与校核》
2、设计内容及要求
(1)主减速器部分包括:主减速器齿轮的受载情况;锥齿轮主要参数选择;主减速器强度计算;齿轮的弯曲强度、接触强度计算。

(2)差速器:齿轮的主要参数;差速器齿轮强度的校核;行星齿轮齿数和半轴齿轮齿数的确定。

(3)半轴部分强度计算:当受最大牵引力时的强度;制动时强度计算。

(4)驱动桥强度计算:①桥壳的静弯曲应力
②不平路载下的桥壳强度
③最大牵引力时的桥壳强度
④紧急制动时的桥壳强度
⑤最大侧向力时的桥壳强度
3、主要技术参数
轴距L=2800mm
轴荷分配:满载时前后轴载1340/2735(kg)
发动机最大功率:80ps n:3800-4000n/min
发动机最大转矩﹒m n:2200-2500n/min
传动比:i1=; i0=
轮毂总成和制动器总成的总重:g k=274kg
六、驱动桥壳设计
1、桥壳的静弯曲应力计算 桥壳犹如一空心横梁,两端经轮毂轴承支承于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左右轮胎的中心线,地面给轮胎以反力G 2/2(双胎时则沿双胎之中心),桥壳则承受此力与车轮重力g w 之差值,即(G 2/2-g w ),计算简图如右图所示。

桥壳按静载荷计算时,在其两钢板弹簧座之间的弯矩M 为
2M (
)22w G B s g -=-
式中:G 2——汽车满载静止于水平路面时驱动桥给地面的载荷,G 2=27350N
g w ——车轮(包括轮毂、制动器等)的重力,g w =2740N B ——驱动车轮轮距,查资料得B=
s ——驱动桥壳上两钢板弹簧座中心间的距离,查资料得s= 计算得:M=2421Nm
由弯矩图得危险截面在钢板弹簧座附近。

静弯曲应力σwj 为
310wj v
M
W σ=

式中:M ——两钢板弹簧座之间的弯矩,M=2421Nm
Wv ——危险断面处(钢板弹簧座附近)桥壳的垂向弯曲截面系数。

采用圆管断面,
则W v =1/32πD 3(1-d 4/D 4),d 取38mm,D 取70mm ,则W v =30734mm 3
计算得:σwj =,[σwj ]=500MPa ,σwj <[σwj ],满足设计要求。

2、在不平路面冲击载荷作用下的桥壳强度计算
当汽车在不平路面上高速行驶时,桥壳除承受静载荷外,还承受附加的冲击载荷。

在这两种载荷总的作用下,桥壳所产生的弯曲应力为 m=2mm z=19 D=40mm d=35mm B=4mm
τs =72MPa , τs <[τs ],故满足设计要求。

σc =116 MPa , σc <[σc ],故满足设计要求。

如上图所示,A-A 、B-B 处为危险断面。

半轴套管的在危险断面A-A 处的垂向弯矩M A-A
121(0.5)()
g
A A r h M G r a B
ϕϕ-=+
-
φ1——轮胎与地面间的侧向附着系数,计算时取φ1=1
φ1h g /B ——φ1h g /B=时,Z 2L =0,Z 2R =G 2,此时驱动桥的全部载荷由侧滑方向一侧的驱动车轮
承担,这种极端情况对驱动桥的强度极为不利,应避免这种情况产生。

a ——BJ130 a=38mm 计算得:M A-A =8478Nm 弯曲应力σWA-A
3
3
4410(1)32A A
wA A M D d D
σπ--=
⨯-
计算得σWA-A =276MPa ,[σWA-A ]=500MPa ,σWA-A <[σWA-A ],满足设计要求。

假设汽车向右侧滑,地面给右车轮的侧向反作用力为Y 2R
2212R R R Y Z Z ϕ==
Z 2R 为右驱动车轮支承反力,当h g φ1/B=时,
σ∑=144MPa , σz <[σz ],满足设计要求。

M v =1791Nm
M h =2319 Nm T=807Nm
σ∑=99MPa , σ∑<[σ∑],
所以满足设计要求。

相关文档
最新文档