高三数学文科二轮复习:寒假作业(九) 平面向量(注意解题的速度)

合集下载

高考文科数学二轮专项训练专题:06 平面向量

高考文科数学二轮专项训练专题:06 平面向量


2【解析】由题意 a b 0 ,所以 2 3 3 m 0 ,即 m 2 .
21.在△ABC 中, A 60 ,AB=3,AC=2.若 BD 2DC , AE AC AB ( R ),且
AD AE 4 ,则 的值为

3
【解析】 AB AC
3 2 cos 600
A.4
B.3
C.2
D.0
B【解析】 a (2a b) 2a2 a b 2 (1) 3 ,故选 B
3.(2018 天津)在如图的平面图形中,已知 OM 1 , ON 2 , MON 120 , BM 2MA ,
CN 2NA ,则 BC·OM 的值为
A N
M
O
C
B
A. 15
ED
DB
1
AD
1
CB
1
1
( AB
AC)
1
( AB
AC)
2 2 22
2
3
AB
1
AC
.故选
A.
44
优解
EB
AB
AE
AB
1
AD
AB
1
1
( AB
AC)
B
2
22
3
AB
1
AC
.故选
A.
44
A
E
D
C
2.(2018 全国卷Ⅱ)已知向量 a , b 满足| a | 1 , a b 1 ,则 a (2a b)
BA BC
1 2
3 2
31 2 2
3 ,所以 ABC 30 ,故选
| BA | | BC |
11
2
A.
8.(2018 浙江)已知 a , b , e 是平面向量, e 是单位向量.若非零向量 a 与 e 的夹角为 ,向量 b 满足

高中数学:复习课(三) 平面向量 Word版含答案

高中数学:复习课(三) 平面向量 Word版含答案

复习课(三)平面向量平面向量的概念及线性运算1.题型为选择题和填空题.主要考查向量的线性运算及对向量有关概念的理解,常与向量共线和平面向量基本定理及数量积运算交汇命题.2.向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算,向量的加减法满足交换律、结合律,数乘运算满足结合律、分配律.实数运算中的去括号、移项、合并同类项等变形方向在向量的线性运算中都可以使用.[典例] (北京高考)在△ABC中,点M,N满足u u u u rAM=2u u u u rMC,u u u rBN=u u u rNC.若u u u u rMN=x u u u rAB+yu u u rAC,则x=________;y=________.[解析]∵u u u u rAM=2u u u u rMC,∴u u u u rAM=23u u u rAC.∵u u u rBN=u u u rNC,∴u u u u rAN=12(u u u rAB+u u u rAC),∴u u u u rMN=u u u u rAN-u u u u rAM=12(u u u rAB+u u u rAC)-23u u u rAC=12u u u rAB-16u u u rAC.又u u u u rMN=xu u u rAB+yu u u rAC,∴x=12,y=-16.[★答案★]12-16[类题通法]向量线性运算的基本原则向量的加法、减法和数乘运算统称为向量的线性运算.向量的线性运算的结果仍是一个向量,因此,对它们的运算法则、运算律的理解和运用要注意向量的大小和方向两个方面.[题组训练]1.若A(3,-6),B(-5,2),C(6,y)三点共线,则y=()A.13B.-13C.9 D.-9解析:选D u u u rAB=(-8,8),u u u rAC=(3,y+6).∵u u u rAB∥u u u rAC,∴-8(y+6)-24=0.∴y =-9.2.设点M 是线段BC 的中点,点A 在直线BC 外, |u u u r BC |2=16,|u u u r AB +u u u r AC |=|u u u rAB -u u u r AC |,则|u u u u rAM |=( )A .8B .4C .2D .1解析:选C 由|u u u r BC |2=16,得|u u u rBC |=4.∵|u u u r AB +u u u r AC |=|u u u r AB -u u u rAC |=|u u u r BC |=4, |u u u r AB +u u u r AC |=2|u u u u r AM |, ∴|u u u u rAM |=2.3.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且uuu r OP =3uuu r OA -uuu rOB2,则( )A .点P 在线段AB 上B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上解析:选B 由于2uuu r OP =3uuu r OA -uuu rOB ,∴2uuu r OP -2uuu r OA =uuu r OA -uuu r OB ,即2u u u r AP =u u u r BA , ∴u u u r AP =12u u u rBA ,则点P 在线段AB 的反向延长线上.平面向量的数量积1.题型既有选择题、填空题,又有解答题,主要考查数量积运算、向量的垂直等问题,常与平面几何、三角函数、解析几何等知识交汇命题.2.解决此类问题要掌握平面向量数量积的两种求法:一是根据数量积的定义,即a ·b =|a ||b |cos θ,二是利用坐标运算,即a ·b =x 1x 2+y 1y 2;同时还要掌握利用数量积求向量的夹角、求向量的长度和判断两个向量垂直的方法.[典例] (1)(福建高考)设a =(1,2),b =(1,1),c =a +kb .若b ⊥c ,则实数k 的值等于( ) A .-32B .-53C.53D.32(2)(四川高考)设四边形ABCD 为平行四边形,|u u u r AB |=6,|u u u r AD |=4.若点M ,N 满足u u u u rBM =3u u u u r MC ,u u u u r DN =2u u u r NC ,则u u u u r AM ·u u u u rNM =( )A .20B .15C .9D .6[解析] (1)c =a +kb =(1+k,2+k ), 又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得 k =-32.(2)如图所示,由题设知:u u u u r AM =u u u r AB +u u u u r BM =u u ur AB +34u u u r AD , u u u u r NM =u u u r NC -u u u ur MC =13u u u r AB -14u u u r AD ,∴u u u u r AM ·u u u u r NM =⎝⎛⎭⎫u u u r AB +34 u u u r AD ·⎝⎛⎭⎫13 u u u r AB -14 u u u r AD =13|u u u r AB |2-316|u u u r AD |2+14u u u r AB ·u u u r AD -14u u u r AB ·u u u r AD =13×36-316×16=9. [★答案★] (1)A (2)C [类题通法](1)数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义; (2)可以利用数量积求向量的模和夹角,向量要分解成题中已知向量的模和夹角进行 计算.[题组训练]1.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 的夹角为( ) A .30° B .45° C .60°D .以上都不对解析:选C ∵a +b +c =0,∴c =-(a +b ), ∴c 2=(a +b )2,即|c |2=|a |2+|b |2+2|a ||b |cos 〈a ,b 〉, ∴19=4+9+12cos 〈a ,b 〉, ∴cos 〈a ,b 〉=12.又∵0°≤〈a ,b 〉≤180°,∴〈a ,b 〉=60°.2.在△ABC 中,AB =4,∠ABC =30°,D 是边BC 上的一点,且u u u r AD ·u u u r AB =u u u r AD ·u u u rAC ,则u u u r AD ·u u u rAB 的值为( )A .0B .-4C .8D .4解析:选D 由u u u r AD ·u u u r AB =u u u r AD ·u u u r AC ,得u u u r AD ·(u u u r AB -u u u r AC )=0,即u u u r AD ·uuur CB =0,所以u u u r AD ⊥uuur CB ,即AD ⊥CB .又AB =4,∠ABC =30°,所以AD =AB sin 30°=2,∠BAD=60°,所以u u u r AD ·u u u r AB =AD ·AB ·cos ∠BAD =2×4×12=4.3.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________.解析:∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1. ★答案★:14.在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若u u u r AC ·u u u rBE =1,则AB 的长为________.解析:设|u u u r AB |=x ,x >0,则u u u r AB ·u u u r AD =12x .又u u u r AC ·u u u r BE =(u u u r AD +u u u r AB )·⎝⎛⎭⎫u u u r AD -12 u u u r AB =1-12x 2+14x =1,解得x =12,即AB 的长为12. ★答案★:12平面向量与三角函数的综合问题1.题目以解答题为主.主要包括向量与三角函数化简、求值与证明的结合,向量与三角函数的图象与性质的结合等几个方面.此类题目所涉及向量的知识往往是数量积的运算,所研究的问题主要是讨论三角函数的图象与性质.2.解决此类问题,首先要根据向量的运算性质将向量问题转化为三角函数问题,然后利用三角公式进行恒等变换,转化为题目中所要求的问题.[典例] (广东高考)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.[解] (1)若m ⊥n ,则m ·n =0. 由向量数量积的坐标公式得22sin x -22cos x =0, ∴tan x =1.(2)∵m 与n 的夹角为π3,∴m ·n =|m |·|n |cos π3,即22sin x -22cos x =12, ∴sin ⎝⎛⎭⎫x -π4=12. 又∵x ∈⎝⎛⎭⎫0,π2, ∴x -π4∈⎝⎛⎭⎫-π4,π4, ∴x -π4=π6,即x =5π12.[类题通法]在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题,在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.[题组训练]1.设a =(sin x,1),b =⎝⎛⎭⎫12,cos x ,且a ∥b ,则锐角x 为( ) A.π3 B.π4 C.π6D.π12解析:选B 因为a ∥b ,所以sin x cos x -12=0,所以sin 2x =1,又x 为锐角,所以0<2x <π, 所以2x =π2,x =π4,故选B.2.设向量a =(sin x ,cos x ),b =(cos x ,cos x ),x ∈R ,函数ƒ(x )=a ·(a +b ). (1)求函数ƒ(x )的最大值与最小正周期; (2)求使不等式ƒ(x )≥32成立的x 的取值范围.解:(1)∵ƒ(x )=a ·(a +b )=a ·a +a ·b =sin 2x +cos 2x +sin x cos x +cos 2x =1+12sin 2x +12(cos 2x +1)=32+22sin ⎝⎛⎭⎫2x +π4, ∴ƒ(x )的最大值为32+22,最小正周期T =2π2=π.(2)由(1)知ƒ(x )≥32⇔32+22sin ⎝⎛⎭⎫2x +π4≥32⇔sin ⎝⎛⎭⎫2x +π4≥0⇔2k π≤2x +π4≤2k π+π⇔k π-π8≤x ≤k π+3π8(k ∈Z ). ∴使ƒ(x )≥32成立的x 的取值范围是⎩⎨⎧⎭⎬⎫x ⎪⎪k π-π8≤x ≤k π+3π8,k ∈Z .1.设P ,Q 是线段AB 的三等分点,若uuu r OA =a ,uuu r OB =b ,则uuu r OP +uuu rOQ =( )A .a +bB .a -bC .2(a +b ) D.13(a +b ) 解析:选A 如图,uuu r OP =uuu r OA +u u u r AP ,uuu r OQ =uuu r OB +uuu r BQ , ∵u u u r AP =-uuu r BQ , ∴uuu r OP +uuu r OQ =uuur OA +uuu r OB =a +b .2.已知向量a ,b 满足a ·b =0,|a |=1,|b |=2,则|a -b |=( ) A .0 B .1 C .2D. 5解析:选D 因为|a -b |2=a 2-2a ·b +b 2=1-0+22=5,所以|a -b |=5,故选D. 3.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( ) A .(3,-6) B .(-3,6) C .(6,-3)D .(-6,3)解析:选A 由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则λ2+4λ2=35,所以λ=-3,b =(3,-6).4.已知|a |=1,|b |=2,且a ⊥(a -b ),则向量a 与向量b 的夹角为( ) A.π6 B.π4 C.π3D.2π3解析:选B ∵a ⊥(a -b ),∴a ·(a -b )=a 2-a ·b =0,∴a ·b =a 2,∵|a |=1,|b |=2,∴cos 〈a ,b 〉=a ·b |a ||b |=a 2|a ||b |=22,∴向量a 与向量b 的夹角为π4,故选B.5.在△ABC 中,(u u u r BC +u u u r BA )·u u u rAC =|u u u r AC |2,则△ABC 的形状一定是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形解析:选C 由(u u u r BC +u u u r BA )·u u u r AC =|u u u r AC |2,得u u u r AC ·(u u u r BC +u u u r BA -u u u rAC )=0,即u u u r AC ·(u u u r BC +u u u r BA +u u u r CA )=0,∴2u u u r AC ·u u u r BA =0,∴u u u r AC ⊥u u u r BA ,∴A =90°.故选C.6.已知平面向量a ,b ,c 满足|a |=1,|b |=2,|c |=3,且a ,b ,c 两两所成的角相等,则|a +b +c |等于( )A .6或 3B .6或 2 C. 2D .6解析:选A ∵a ,b ,c 两两所成的角相等, ∴这个角为0°或120°.当夹角为0°时,|a +b +c |=|a |+|b |+|c |=1+2+3=6,排除C ;当夹角为120°时,a ·b =|a ||b |cos 120°=1×2×⎝⎛⎭⎫-12=-1,b ·c =|b ||c |·cos 120°=2×3×⎝⎛⎭⎫-12=-3,c ·a =|c ||a |cos 120°=3×1×⎝⎛⎭⎫-12=-32, ∴|a +b +c |2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =12+22+32+2⎝⎛⎭⎫-1-3-32=3, ∴|a +b +c |= 3. ∴|a +b +c |=6或 3.7.已知向量a =(-1,3),b =(1,t ),若(a -2b )⊥a ,则|b |=________.解析:∵a =(-1,3),b =(1,t ),∴a -2b =(-3,3-2t ).∵(a -2b )⊥a ,∴(a -2b )·a =0,即(-1)×(-3)+3(3-2t )=0,即t =2,∴b =(1,2),∴|b |=12+22= 5.★答案★: 58.已知平面向量a 与b 的夹角等于2π3,如果|a |=2,|b |=3,那么|2a -3b |=________.解析:|2a -3b |2=(2a -3b )2=4a 2-12a ·b +9b 2=4×22-12×2×3×cos 2π3+9×32=133,∴|2a -3b |=133.★答案★:1339.已知|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则a 与b 的夹角的取值范围是________.解析:由于|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则|a |2-4a ·b ≥0.设向量a 与b 的夹角为θ,则cos θ=a ·b |a ||b |≤14|a |212|a |2=12,∴θ∈⎣⎡⎦⎤π3,π. ★答案★:⎣⎡⎦⎤π3,π10.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |.解:(1)∵(2a -3b )·(2a +b )=61, ∴4a 2-4a ·b -3b 2=61, 即64-4a ·b -27=61. ∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12,∴θ=120°.(2)|a +b |=a 2+2a ·b +b 2=16+2×(-6)+9=13. 11.已知向量a =(-3,2),b =(2,1),c =(3,-1),t ∈R . (1)求|a +tb |的最小值及相应的t 值; (2)若a -tb 与c 共线,求实数t . 解:(1)∵a =(-3,2),b =(2,1),∴a +tb =(-3,2)+t (2,1)=(-3+2t,2+t ), ∴|a +tb |=(-3+2t )2+(2+t )2 =5t 2-8t +13=5⎝⎛⎭⎫t -452+495≥495=755, 当且仅当t =45时取等号,即|a +tb |的最小值为755,此时t =45.(2)∵a -tb =(-3,2)-t (2,1)=(-3-2t,2-t ), 又a -tb 与c 共线,c =(3,-1), ∴(-3-2t )×(-1)-(2-t )×3=0. 解得t =35.12.已知向量m =(1,1),向量n 与向量m 的夹角为3π4,且m ·n =-1.(1)求向量n ;(2)设向量a =(1,0),向量b =(cos x ,sin x ),其中x ∈R ,若n ·a =0,试求|n +b |的取值 范围.解:(1)令n =(x ,y ),则⎩⎪⎨⎪⎧x +y =-1,2·x 2+y 2cos 3π4=-1,∴⎩⎪⎨⎪⎧ x =-1,y =0或⎩⎪⎨⎪⎧x =0,y =-1.∴n =(-1,0)或n =(0,-1). (2)∵a =(1,0),n ·a =0,∴n =(0,-1).∴n +b =(cos x ,sin x -1).∴|n +b |=cos 2x +(sin x -1 )2=2-2sin x =2(1-sin x ). ∵-1≤sin x ≤1,∴0≤|n +b |≤2.(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.tan 8π3的值为( ) A.33B .-33C. 3D .- 3解析:选D tan8π3=tan ⎝⎛⎭⎫2π+2π3=tan 2π3=- 3. 2.下列函数中最值是12,周期是6π的三角函数的解析式是( )A .y =12sin ⎝⎛⎭⎫x 3+π6 B .y =12sin ⎝⎛⎭⎫3x +π6 C .y =2sin ⎝⎛⎭⎫x 3-π6D .y =12sin ⎝⎛⎭⎫x +π6 解析:选A 由题意得,A =12,2πω=6π,ω=13,故选A.3.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则uuu r OA +uuu r OB +u u u r OC +u u u rOD 等于 ( )A .u u u u r OMB .2u u u u r OMC .3u u u u r OMD .4u u u u r OM解析:选D 依题意知,点M 是线段AC 的中点,也是线段BD 的中点,所以uuu r OA +u u u r OC =2u u u u r OM ,uuu r OB +u u u r OD =2u u u u r OM ,所以uuu r OA +u u u r OC +uuu r OB +u u u rOD =4u u u u r OM ,故选D.4.若点(sin α,sin 2α)在第四象限,则角α在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B ∵点(sin α,sin 2α)在第四象限,∴⎩⎪⎨⎪⎧ sin α>0,sin 2α<0,∴⎩⎪⎨⎪⎧sin α>0,2sin αcos α<0.即⎩⎪⎨⎪⎧sin α>0,cos α<0.∴α在第二象限. 5.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-5,-10) B .(-4,-8) C .(-3,-6)D .(-2,-4)解析:选B ∵a =(1,2),b =(-2,m ), ∴1×m -2×(-2)=0, ∴m =-4.∴2a +3b =(2,4)+(-6,-12)=(-4,-8).6.若α∈⎝⎛⎭⎫π2,π,且sin α=45,则sin ⎝⎛⎭⎫α+π4-22cos(π-α)的值为( ) A.225B .-25 C.25D .-225解析:选B sin ⎝⎛⎭⎫α+π4-22cos(π-α) =22sin α+22cos α+22cos α =22sin α+2cos α. ∵sin α=45,α∈⎝⎛⎭⎫π2,π, ∴cos α=-35.∴22sin α+2cos α=22×45-2×35=-25. 7.已知向量a =(1,2),b =(-2,-4),|c |=5,若(c -b )·a =152,则a 与c 的夹角为( ) A .30° B .60° C .120°D .150°解析:选C a ·b =-10,则(c -b )·a =c ·a -b ·a =c ·a +10=152,所以c ·a =-52,设a 与c 的夹角为θ,则cos θ=a ·c |a |·|c |=-525×5=-12,又0°<θ<180°,所以θ=120°.8.将函数y =sin ⎝⎛⎭⎫2x +π3的图象经怎样的平移后所得的图象关于点⎝⎛⎭⎫-π12,0成中心对称( )A .向左平移π12个单位长度B .向左平移π6个单位长度C .向右平移π12个单位长度D .向右平移π6个单位长度解析:选C 函数y =sin ⎝⎛⎭⎫2x +π3的对称中心为⎝⎛⎭⎫k π2-π6,0,其中离⎝⎛⎭⎫-π12,0最近的对称中心为⎝⎛⎭⎫-π6,0,故函数图象只需向右平移π12个单位长度即可. 9.函数ƒ(x )=A sin(ωx +φ)(A >0,ω>0,x ≥0)的部分图象如图2所示,则ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(11)的值等于( )A .2B .2+ 2C .2+2 2D .-2-2 2解析:选C 由图象可知,函数的振幅为2,初相为0,周期为8,则A =2,φ=0,2πω=8,从而ƒ(x )=2sin π4x .∴ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(11)=ƒ(1)+ƒ(2)+ƒ(3)=2sin π4+2sin π2+2sin 3π4=2+2 2.10.已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ·(b +c )=( ) A .0 B .-35C.35D .-45解析:选B 由3a +4b +5c =0,得向量3a,4b,5c 能组成三角形,又|a |=|b |=|c |=1,所以三角形的三边长分别是3,4,5,故三角形为直角三角形,且a ⊥b ,所以a ·(b +c )=a ·c =-35. 11.如图,在四边形ABCD 中,|u u u r AB |+|u u u r BD |+|u u u r DC |=4,|u u u r AB |·|u u u rBD |+|u u u r BD |·|u u u r DC |=4,u u u r AB ·u u u r BD =u u u r BD ·u u u r DC =0,则(u u u r AB +u u u r DC )·u u u rAC 的值为( )A .4B .2C .4 2D .2 2解析:选A ∵u u u r AC =u u u r AB +u u u r BD +u u u r DC ,u u u r AB ·u u u r BD =u u u r BD ·u u u rDC =0,∴(u u u r AB +u u u r DC )·u u u r AC=(u u u r AB +u u u r DC )·(u u u r AB +u u u r BD +u u u r DC )=u u u r AB 2+u u u r AB ·u u u r BD +u u u r AB ·u u u r DC +u u u r DC ·u u u rAB +u u u r DC ·u u u r BD +u u u r DC 2=u u u r AB 2+2u u u r AB ·u u u r DC +u u u rDC 2.∵u u u r AB ·u u u r BD =0,u u u r BD ·u u u r DC =0, ∴u u u r AB ⊥u u u r BD ,u u u r DC ⊥u u u r BD ,∴u u u r AB ∥u u u r DC , ∴u u u r AB ·u u u r DC =|u u u r AB ||u u u rDC |, ∴原式=(|u u u rAB |+|u u u r DC |)2.设|u u u r AB |+|u u u r DC |=x ,则|u u u r BD |=4-x ,|u u u rBD |·x =4,∴x 2-4x +4=0,∴x =2,∴原式=4,故选A.12.已知函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,其图象与直线y =2的交点的横坐标为x 1,x 2,若|x 1-x 2|的最小值为π,则( )A .ω=2,θ=π2B .ω=12,θ=π2C .ω=12,θ=π4D .ω=2,θ=π4解析:选A ∵函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,∴θ=π2,∴y =2cos ωx ,排除C 、D ;y =2cos ωx ∈[-2,2],结合题意可知T =π,∴2πω=π,ω=2,排除B ,选A.二、填空题(本大题共4个小题,每小题5分,共20分.把★答案★填在题中的横线上)13.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若u u u r AC =λu u u r AE +μu u u rAF ,其中λ,μ∈R ,则λ+μ=________.解析:设u u u r AB =a ,u u u rAD =b ,则u u u r AF =a +12b ,u u u r AE =12a +b ,u u u r AC =a +b ,代入条件得λ=μ=23,∴λ+μ=43.★答案★:4314.在平面直角坐标系 xOy 中,已知uuu r OA =(-1,t ),uuu rOB =(2,2).若∠ABO =90°,则实数t 的值为________.解析:∵∠ABO =90°,∴u u u r AB ⊥uuu r OB ,∴uuu r OB ·u u u rAB =0.又u u u r AB =uuur OB -uuu r OA =(2,2)-(-1,t )=(3,2-t ),∴(2,2)·(3,2-t )=6+2(2-t )=0. ∴t =5. ★答案★:515.已知ƒ(x )=sin ⎝⎛⎭⎫x +π6,若cos α=35⎝⎛⎭⎫0<α<π2,则ƒ⎝⎛⎭⎫α+π12=________. 解析:因为cos α=35⎝⎛⎭⎫0<α<π2,所以sin α=45; ƒ⎝⎛⎭⎫α+π12=sin ⎝⎛⎭⎫α+π12+π6=sin ⎝⎛⎭⎫α+π4 =22(sin α+cos α)=7210. ★答案★:721016.有下列四个命题:①若α,β均为第一象限角,且α>β,则sin α>sin β; ②若函数y =2cos ⎝⎛⎭⎫ax -π3的最小正周期是4π,则a =12; ③函数y =sin 2x -sin xsin x -1是奇函数;④函数y =sin ⎝⎛⎭⎫x -π2在[0,π]上是增函数. 其中正确命题的序号为________.解析:α=390°>30°=β,但sin α=sin β,所以①不正确; 函数y =2cos ⎝⎛⎭⎫ax -π3的最小正周期为T =2π|a |=4π, 所以|a |=12,a =±12,因此②不正确;③中函数定义域是⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠2k π+π2,k ∈Z ,显然不关于原点对称,所以③不正确; 由于函数y =sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,它在(0,π)上单调递增,因此④正确. ★答案★:④三、解答题(本大题共6个小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知|a |=1,|b |=2,a 与b 的夹角为θ. (1)若a ∥b ,求a ·b ; (2)若a -b 与a 垂直,求θ.解:(1)∵a ∥b ,∴θ=0°或180°, ∴a ·b =|a ||b |cos θ=±2.(2)∵a -b 与a 垂直,∴(a -b )·a =0, 即|a |2-a ·b =1-2cos θ=0, ∴cos θ=22. 又0°≤θ≤180°,∴θ=45°.18.(本小题满分12分)已知tan α=12,求1+2sin (π-α)cos (-2π-α)sin 2(-α)-sin 2⎝⎛⎭⎫5π2-α的值.解:原式=1+2sin αcos αsin 2α-cos 2α=sin 2α+cos 2α +2sin αcos αsin 2α-cos 2α=(sin α+cos α)2(sin α-cos α )(sin α+cos α ) =sin α+cos αsin α-cos α =tan α+1tan α-1,又∵tan α=12,∴原式=12+112-1=-3.19.(本小题满分12分)已知a =(cos 2α,sin α),b =(1,2sin α-1),α∈π2,π,a ·b =25,求52sin 2α-4cos ⎝⎛⎭⎫α+π42cos 2α2.解:∵a ·b =cos 2α+sin α(2sin α-1) =cos 2α+2sin 2α-sin α =1-sin α=25,∴sin α=35.∵α∈⎝⎛⎭⎫π2,π,∴cos α=-45, ∴sin 2α=2sin αcos α=-2425,∴52sin 2α-4cos ⎝⎛⎭⎫α+π42cos 2α2=52sin 2α-22(cos α-sin α)1+cos α=52×⎝⎛⎭⎫-2425-22⎝⎛⎭⎫-45-351-45=-10 2.20.(本小题满分12分)已知函数ƒ(x )=2cos x ·sin ⎝⎛⎭⎫x +π3-3sin 2x +sin x cos x . (1)当x ∈⎣⎡⎦⎤0,π2时,求ƒ(x )的值域; (2)用五点法在下图中作出y =ƒ(x )在闭区间⎣⎡⎦⎤-π6,5π6上的简图;解:ƒ(x )=2cos x ·sin ⎝⎛⎭⎫x +π3-3sin 2x +sin x cos x =2cos x ⎝⎛⎭⎫sin x cos π3+cos x sin π3-3sin 2x +sin x cos x =sin 2x +3cos 2x =2sin ⎝⎛⎭⎫2x +π3. (1)∵x ∈⎣⎡⎦⎤0,π2,∴π3≤2x +π3≤4π3, ∴-32≤sin ⎝⎛⎭⎫2x +π3≤1,∴当x ∈⎣⎡⎦⎤0,π2时,ƒ(x )的值域为[-3,2]. (2)由T =2π2,得T =π,列表: x -π6 π12 π3 7π12 5π6 2x +π30 π2 π 3π2 2π 2sin ⎝⎛⎭⎫2x +π3 02-221.(本小题满分12分)已知f (x )=sin x +2sin π4+x2·cos ⎝⎛⎭⎫π4+x 2. (1)若f (α)=22,α∈⎝⎛⎭⎫-π2,0,求α的值; (2)若sin x 2=45,x ∈⎝⎛⎭⎫π2,π,求f (x )的值. 解:f (x )=sin x +2sin ⎝⎛⎭⎫π4+x 2cos ⎝⎛⎭⎫π4+x 2=sin x +sin ⎝⎛⎭⎫x +π2=sin x +cos x =2sin ⎝⎛⎭⎫x +π4. (1)由f (α)=22,得2sin ⎝⎛⎭⎫α+π4=22, ∴sin ⎝⎛⎭⎫α+π4=12. ∵α∈⎝⎛⎭⎫-π2,0,∴α+π4∈⎝⎛⎭⎫-π4,π4. ∴α+π4=π6,∴α=-π12.(2)∵x ∈⎝⎛⎭⎫π2,π,∴x 2∈⎝⎛⎭⎫π4,π2. 又∵sin x 2=45,∴cos x 2=35.∴sin x =2sin x 2cos x 2=2425,cos x =-1-sin 2x =-725. ∴f (x )=sin x +cos x =2425-725=1725.22.(本小题满分12分)已知函数ƒ(x )=A sin(ωx +φ)ω>0,0<φ<π2的部分图象如图所示.(1)求ƒ(x )的解析式;(2)将函数y =ƒ(x )的图象上所有点的纵坐标不变,横坐标缩短为原来的12倍,再将所得函数图象向右平移π6个单位,得到函数y =g (x )的图象,求g (x )的单调递增区间;(3)当x ∈⎣⎡⎦⎤-π2,5π12时,求函数y =ƒ⎝⎛⎭⎫x +π12-2ƒ⎝⎛⎭⎫x +π3的最值. 解:(1)由图得34T =11π6-π3=9π6=3π2,∴T =2π,∴ω=2πT =1.又ƒ⎝⎛⎭⎫11π6=0,得A sin ⎝⎛⎭⎫11π6+φ=0, ∴11π6+φ=2k π,k ∈Z ,φ=2k π-11π6,k ∈Z. ∵0<φ<π2,∴当k =1时,φ=π6.又由ƒ(0)=2,得A sin π6=2,∴A =4,∴ƒ(x )=4sin ⎝⎛⎭⎫x +π6. (2)将ƒ(x )=4sin ⎝⎛⎭⎫x +π6的图象上所有点的横坐标缩短为原来的12倍,纵坐标不变得到y =4sin ⎝⎛⎭⎫2x +π6,再将图象向右平移π6个单位得到g (x )= 4sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π6=4sin ⎝⎛⎭⎫2x -π6, 由2k π-π2≤2x -π6≤2k π+π2(k ∈Z)得k π-π6≤x ≤k π+π3(k ∈Z),∴g (x )的单调递增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z). (3)y =ƒ⎝⎛⎭⎫x +π12-2ƒ⎝⎛⎭⎫x +π3 =4sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π12+π6-2×4sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π3+π6 =4sin ⎝⎛⎭⎫x +π4-42sin ⎝⎛⎭⎫x +π2 =4⎝⎛⎭⎫sin x ·cos π4+cos x ·sin π4-42cos x =22sin x +22cos x -42cos x=22sin x -22cos x =4sin ⎝⎛⎭⎫x -π4. ∵x ∈⎣⎡⎦⎤-π2,5π12,x -π4∈⎣⎡⎦⎤-3π4,π6, ∴sin ⎝⎛⎭⎫x -π4∈⎣⎡⎦⎤-1,12, ∴函数的最小值为-4,最大值为2.。

高考数学二轮复习数学平面向量多选题试题及答案

高考数学二轮复习数学平面向量多选题试题及答案
3.已知向量 , ,则下列命题正确的是()
A.若 ,则
B.若 在 上的投影为 ,则向量 与 的夹角为
C.存在 ,使得
D. 的最大值为
【答案】BCD
【分析】
若 ,则 ,故A错误;
若 在 上的投影为 ,且 ,则 ,故B正确;
若 在 上的投影为 ,且 ,故当 , ,故C正确;
, 的最大值为 ,故D正确.
【详解】
【详解】
在直线PA,PB,PC上分别取点M,N,G,使得| |=| |=| |=1,
以PM,PN为邻边作平行四边形PMQN,则 ,
∵ ,即 ,即 ,
∴P,G,Q三点共线且PQ=1,故△PMQ和△PNQ均为等边三角形,
∴∠APB=∠BPC=∠APC=120°,故A、B正确;
∵AB ,BC=1,∠ABC=90°,
, ,所以 ,A正确.
由向量加法的平行四边形法则可知B不正确.
,无法判断与0的大小关系,而 , ,
同理 ,所以C正确,D不正确.
故选:AC.
【点睛】
本题考查向量共线定理和向量的数量积,考查逻辑推理能力、运算求解能力.
6.下列关于平面向量的说法中正确的是()
A.已知A、B、C是平面中三点,若 不能构成该平面的基底,则A、B、C共线
故选:ABCD.
【点睛】
关键点点睛:根据已知条件及向量的数量关系确定P为Rt△ABC的费马点,结合相似三角形及费马点的性质判断各项的正误.
2.在平行四边形 中, , , , 交 于F且 ,则下列说法正确的有()
A. B.
C. D.
【答案】BCD
【分析】
根据向量的线性运算,以及向量的夹角公式,逐一判断四个选项的正误即可得正确选项.

高三数学二轮复习专题 平面向量共线,极化恒等式,奔驰定理,轨迹等问题(解析版)

高三数学二轮复习专题 平面向量共线,极化恒等式,奔驰定理,轨迹等问题(解析版)

平面向量综合问题参考答案与试题解析一.试题(共38小题)1.如图,在ABC ∆中,13AN NC =,P 是BN 上的一点,若211AP mAB AC =+,则实数m的值为( )A .911B .511C .211D .311【分析】由已知中ABC ∆中,13AN NC =,P 是BN 上的一点,设BP BN λ=后,我们易将AP表示为(1)4AB AC λλ-+的形式,根据平面向量的基本定理我们易构造关于λ,m 的方程组,解方程组后即可得到m 的值 【解答】解:P 是BN 上的一点,设BP BN λ=,由13AN NC =,则AP AB BP =+AB BN λ=+()AB AN AB λ=+-(1)AB AN λλ=-+(1)4AB AC λλ=-+211mAB AC =+1m λ∴=-,2411λ=解得811λ=,311m =故选:D .【点评】本题考查的知识点是面向量的基本定理及其意义,其中根据面向量的基本定理构造关于λ,m 的方程组,是解答本题的关键.2.在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点,DE 交AF 于H ,记AB 、BC 分别为a 、b ,则(AH = )A .2455a b -B .2455a b +C .2455a b -+D .2455a b --【分析】欲求出向量则AH ,关键是求出向量则AH 与向量AF 的线性.关系过点F 作BC 的平行线交DE 于G ,则G 是DE 的中点,利用相似三角形有知识即可得出它们的线性关系,从而解决问题. 【解答】解:过点F 作BC 的平行线交DE 于G , 则G 是DE 的中点,且1124GF EC BC ==14GF AD ∴=,则AHD GHF ∆∆∽ 从而14FH AH =,∴45AH AF =又12AF AD DF b a =+=+ ∴4124()5255AH b a a b =+=+ 故选:B .【点评】本题主要考查了向量加减混合运算及其几何意义、平行四边形的几何性质,属于基础题.3.如图所示,在凸四边形ABCD 中,对边BC ,AD 的延长线交于点E ,对边AB ,DC 的延长线交于点F ,若BC CE λ=,ED DA μ=,3(,0)AB BF λμ=>,则( )A .3144EB EF EA =+B .14λμ=C .11λμ+的最大值为1 D .49EC AD EB EA⋅-⋅ 【解答】解:对于A ,因为3AB BF =,所以3()EB EA EF EB -=-,整理得3144EB EF EA =+,故A 正确;对于B ,过点B 作//BG FD ,交AE 于点G ,则AF AD BF DG =,BC DG CE DE =,所以1AF BC ED AD DG ED BF CE DA DG DE DA⋅⋅=⋅⋅=,因为BC CE λ=,ED DA μ=,3AB BF =,所以4AF BF =,BCCEλ=,ED DA μ=, 所以41λμ=,所以14λμ=,故B 正确; 对于C ,由B 知,114()84λμλμλμ+=+=,当且仅当12λμ==时等号成立, 所以11λμ+的最小值为4,故C 错误;对于D ,因为BC CE λ=,ED DA μ=,所以(1)EB EC λ=+,(1)(1)EA DA AD μμ=+=-+, 所以111455(1)(1)9(1)(1)244EC AD EC AD EB EA EC AD λμλμλμλμ⋅⋅-===-=--++⋅-++⋅+++,当且仅当12λμ==时取等号,故D 正确. 故选:ABD .【点评】本题主要考查平面向量的线性运算,基本不等式的应用,考查转化思想与数形结合思想的应用,属于中档题.4.已知向量a e ≠,||1e =,满足对任意t R ∈,恒有||||a te a e --,则( )A .0a e ⋅=B .()0a a e ⋅-=C .()0e a e ⋅-=D .()()0a e a e +⋅-=【分析】由平面向量数量积运算可得22210t te a e a -⋅+⋅-=,对任意t R ∈恒成立,则2(2)4(21)0e a e a ⋅-⋅-,然后求解即可.【解答】解:由向量a e ≠,||1e =,满足对任意t R ∈,恒有||||a te a e --,则2222222a te a t e a e a e -⋅+=-⋅+,即22210t te a e a -⋅+⋅-=,由题意有2(2)4(21)0e a e a ⋅-⋅-,即2(1)0e a ⋅-,即1e a ⋅=,则()0e a e ⋅-=, 故选:C .【点评】本题考查了平面向量数量积运算,重点考查了不等式恒成立问题,属基础题.5.已知e 为单位向量,向量a 满足()(5)0a e a e -⋅-=,则||a e +的最大值为( ) A .4B .5C .6D .7【分析】设(1,0)e =,(,)a x y =,根据向量a 满足()(5)0a e a e -⋅-=,可得x ,y 的关系式,并得出x ,y 的取值范围,||(1)a e x +=+ 【解答】解:设(1,0)e =,(,)a x y =,则()(5)(1a e a e x -⋅-=-,)(5y x ⋅-,22)650y x x y =-++=,即22(3)4x y -+=,则15x ,22y -,所以||(1)a e x +=+=,当5x =6,即||a e +的最大值为6, 故选:C .【点评】本题考查了向量数量积的应用,将所求问题坐标化转化为函数的最值问题是解题关键.6.已知ABC ∆中,对任意t R ∈,||||BA tBC AC -,则ABC ∆是 以C 为直角的直角 三角形.【分析】两边平方后整理成关于t 的一元二次不等式恒成立,再利用判别式小于等于0,以及正弦定理可得.【解答】解:对任意t R ∈,||||BA tBC AC -,即22()|BA tBC AC-,即22222cos 0a t act B c b -+-,则△2222(2cos )4()0ac B a c b =--,化简得222cos 1b B c -,即222sin b B c ,即sin b B c,设ABC ∆外接圆的半径为R ,则由正弦定理可得2b bR c,得2c R ,得sin 1C ,又sin 1C ,sin 1C ∴=,2C π∴=.故答案为:以C 为直角的直角.【点评】本题考查了平面向量数量积的性质及其运算,属中档题. 7.已知ABC ∆,若对任意t R ∈,||||BA tBC AC -,则ABC ∆一定为( )A .锐角三角形B .钝角三角形C .直角三角形D .答案不确定【解答】解:令AM BA tBC =-,则根据向量的减法的几何意义可得M 在BC 上, 由||||BA tBC AC -对一切实数t 都成立可得:||||AM AC ,AC BC ∴⊥,则ABC ∆为直角三角形.故选:C .【点评】本题是一道构造非常巧妙的试题,解题的关键是由||||BA tBC AC -对一切实数t都成立可得到AC 为A 到BC 的距离.8.如图,在平行四边形ABCD 中,AP BD ⊥,垂足为P ,且3AP =,则AP AC = 18 .【分析】设AC 与BD 交于O ,则2AC AO =,在RtAPO 中,由三角函数可得AO 与AP 的关系,代入向量的数量积||||cos AP AC AP AC PAO =∠可求 【解答】解:设AC 与BD 交于点O ,则2AC AO =AP BD ⊥,3AP =,在Rt APO ∆中,cos 3AO OAP AP ∠==||cos 2||cos 2||6AC OAP AO OAP AP ∴∠=⨯∠==,由向量的数量积的定义可知,||||cos 3618AP AC AP AC PAO =∠=⨯= 故答案为:18【点评】本题主要考查了向量的数量积 的定义的应用,解题的关键在于发现规律:cos 2cos 2AC OAP AO OAP AP ⨯∠=⨯∠=.9.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足向量2AP PM =,则向量()PA PB PC +等于( )A .49-B .43-C .43D .49【分析】由题意M 是BC 的中点,知AM 是BC 边上的中线,又由点P 在AM 上且满足2AP PM =可得:P 是三角形ABC 的重心,根据重心的性质,即可求解.【解答】解:M 是BC 的中点,知AM 是BC 边上的中线, 又由点P 在AM 上且满足2AP PM =P ∴是三角形ABC 的重心∴()PA PB PC +2||PA AP PA ==-又1AM =∴2||3PA =∴4()9PA PB PC +=-故选:A . 【点评】本题考查向量的数量积的应用,解题的关键是判断P 点是三角形的重心,考查计算能力.10.在ABC ∆中,2AB =,3AC =,N 是边BC 上的点,且,BN NC O =为ABC ∆的外心,则(AN AO ⋅= ) A .3B .134C .92D .94【分析】利用平面向量的线性运算法则以及外心的性质、数量积的定义求解. 【解答】解:因为O 为ABC ∆的外心,故2122AO AB AB ⋅==,21922AO AC AC ⋅==, 又BN NC =,故N 为BC 的中点,故1()2AN AB AC =+,所以11()()22AN AO AB AC AO AO AB AO AC ⋅=+⋅=⋅+⋅1913(2)224=+=.故选:B .【点评】本题考查平面向量数量积的定义以及平面向量线性运算的几何意义,属于中档题.11.设a 、b 、c 是单位向量,0a b =,则()()a c b c --的最小值为 1 【分析】利用向量的运算法则展开()()a c b c --,再利用余弦值的有界性求范围. 【解答】解:设c 与a b +的夹角等于θ,()()(a c b c a b c --=-2)a b c ++20||||cos 10||1()1c a b a b a b θ=-++-++=-++2222211a b a b a b =+++=-++1=.故答案为:1【点评】本题主要考查两个向量的数量积的定义,两个向量垂直的性质,考查向量的运算法则:交换律、分配律,但注意不满足结合律,属于中档题.12.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()()PB AB PB PC -+的最小值是( ) A .1-B .32-C .2-D .43-【分析】建立坐标系,设(,)P x y ,得出()()PB AB PB PC -+关于x ,y 的表达式,配方即可得出结论.【解答】解:以BC 为x 轴,以BC 边上的高为y 轴建立坐标系,则(0,3)A ,设(,)P x y ,则2(2,2)PB PC PO x y +==--,()(,3)PB AB PA x y -==--, 222233()()222322()22PB AB PB PC x y y x y ∴-+=+-=+--, ∴当0x =,32y =时,()()PB AB PB PC -+取得最小值32-, 故选:B .【点评】本题考查了平面向量的数量积运算,属于中档题.13.如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==.若点E 为边CD 上的动点,则AE BE 的最小值为( )A .2116B .32C .2516D .3【分析】如图所示,以D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴,求出A ,B ,C 的坐标,根据向量的数量积和二次函数的性质即可求出. 【解答】解:如图所示,以D 为原点,以DA 所在的直线为x 轴, 以DC 所在的直线为y 轴,过点B 做BN x ⊥轴,过点B 做BM y ⊥轴,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==, 1cos602AN AB ∴=︒=,3sin 60BN AB =︒,13122DN ∴=+=,32BM ∴=,3tan302CM MB ∴=︒=, 3DC DM MC ∴=+=,(1,0)A ∴,3(2B ,3)2,(0,3)C ,设(0,)E m ,∴(1,)AE m =-,3(2BE =-,3)2m -,03m,∴22233333321()()224216416AE BE m m m m =+-=-+-=-+, 当34m =时,取得最小值为2116. 故选:A .【点评】本题考查了向量在几何中的应用,考查了运算能力和数形结合的能力,属于中档题. 14.在ABC ∆中,D 是BC 的中点,H 是AD 的中点,过点H 作一直线MN 分别与边AB ,AC 交于M ,N ,若,AM xAB AN y AC ==,则4x y +的最小值是( )A .52B .73C .94D .14【分析】根据题意,利用MH 与NH 共线,求出x 与y 的表达式,再利用基本不等式求出4x y +的最小值即可.【解答】解:在ABC ∆中,D 为BC 边的中点,H 为AD 的中点, ,AM xAB AN y AC ==,∴1()4AH AM MH xAB MH AB AC =+=+=+,∴11()44MH x AB AC =-+,同理,11()44NH AB y AC =+-, MH 与NH 共线,∴存在实数λ,使(0)MH NH λλ=<,即1111()()4444x AB AC AB y AC λλ-+=+-,即114411()44x y λλ⎧-=⎪⎪⎨⎪=-⎪⎩,解得14x λ-=,114y λ-=, 1115159442(444444x y λλλλ--∴+=+⨯=--+-=, 当且仅当14λλ-=-,即2λ=-时,“=”成立,4x y ∴+的最小值是94. 故选:C .【点评】本题考查了平面向量的线性运算,以及基本不等式的应用,属于中档题. 15.直角三角形ABC 中,P 是斜边BC 上一点,且满足2BP PC =,点M 、N 在过点P 的直线上,若AM mAB =,AN nAC =,(0,0)m n >>,则下列结论错误的是( ) A .12m n+为常数 B .m n +的最小值为169C .2m n +的最小值为3D .m 、n 的值可以为:12m =,2n = 【分析】作出图形,由2BP PC =可得出1233AP AB AC =+,根据三点共线的结论得出123m n+=,结合基本不等式可判断出各选项的正误,即可得出结论. 【解答】解:如下图所示:由2BP PC =,可得2()AP AB AC AP -=-,∴1233AP AB AC =+, 若,,(0,0)AM mAB AN nAC m n ==>>,则11,AB AM AC AN m n==, ∴1233AP AM AN m n=+,M 、P 、N 三点共线,∴12133m n+=,∴123m n +=,故A 正确;所以1,22m n ==时,也满足123m n +=,则D 选项正确;122252252(2)()2333333333n m n m n m n m n mn m +=++=++⋅=, 当且仅当m n =时,等号成立,C 选项成立; 1222()()1211333333n m n m n m n m n m n m +=++=++⋅,当且仅当2n m =时,即1222,33m n ++==时等号成立,故B 选项错误. 故选:B .17.已知点O 、N 、P 在ABC ∆所在平面内,且||||||OA OB OC ==,0NA NB NC ++=,PA PB PB PC PC PA ⋅=⋅=⋅,则点O 、N 、P 依次为ABC ∆的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心【分析】根据O 到三角形三个顶点的距离相等,得到O 是三角形的外心,根据所给的四个选项,第一个判断为外心的只有C ,D 两个选项,只要判断第三个条件可以得到三角形的什么心就可以,移项相减,得到垂直,即得到P 是三角形的垂心. 【解答】证明:||||||OA OB OC ==,O ∴到三角形三个顶点的距离相等, O ∴是三角形的外心,根据所给的四个选项,第一个判断为外心的只有C ,D 两个选项,∴只要判断第三个条件可以得到三角形的什么心就可以,PA PB PB PC PC PA ⋅=⋅=⋅,∴()0PB PA PC -=,∴0PB CA ⋅=,∴PB CA ⊥,同理得到另外两个向量都与相对应的边垂直,得到P 是三角形的垂心, 故选:C .【点评】本题是一个考查的向量的知识点比较全面的题目,把几种三角形的心总结的比较全面,解题时注意向量的有关定律的应用,不要在运算律上出错. 18.已知非零向量,AB AC 和BC 满足())0||||AB AC BC AB AC +⋅=,且1||||2AC BC AC BC ⋅=,则ABC ∆为( ) A .等边三角形 B .等腰非直角三角形C .非等腰三角形D .等腰直角三角形【解答】解:根据向量的性质可得||||1||||AB ACAB AC == ∴||||AB ACAB AC +在BAC ∠的角平分线上(设角平分线为)AD (())0||||AB ACBC AB AC +⋅= AD BC ∴⊥从而有AB AC =又因为12||||AC BC AC BC ⋅=且||||1||||AC BCAC BC ==所以60C ∠=︒三角形为等边三角形 故选:A .【点评】本题主要考查了平面向量的加法的四边形法则,向量的数量积的运算,考查了等边三角形的性质,属于综合试题.19.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足()2||cos ||cos OB OC AB ACOP AB B AC Cλ+=++,[0λ∈,)+∞,则动点P 的轨迹一定通过ABC ∆的( ) A .内心B .垂心C .重心D .外心【解答】解:设BC 的中点为D , ()2||cos ||cos OB OC AB AC OP AB B AC C λ+=++,∴()||cos ||cos AB ACOP OD AB B AC C λ=++, 即()||cos ||cos AB ACDP AB B AC Cλ=+,两端同时点乘BC ,||||cos()||||cos ()()(||||)0||cos ||cos ||cos ||cos AB BC AC BC AB BC B AC BC CDP BC BC BC AB B AC C AB B AC Cπλλλ⋅⋅⋅-⋅⋅=+=+=-+=DP BC ∴⊥,∴点P 在BC 的垂直平分线上,即P 经过ABC ∆的外心故选:D .【点评】本题主要考查了空间向量的加减法,以及三角形的外心的知识,属于基础题. 20.设点O 在ABC ∆的内部,且有230OA OB OC ++=,则ABC ∆的面积与AOC ∆的面积的比为( ) A .2B .32C .3D .53【解答】解:分别取AC 、BC 的中点D 、E ,230OA OB OC++=,∴2()OA OC OB OC+=-+,即2 4OD=-OE,O∴是DE的一个三等分点,∴3ABCAOCSS∆∆=,故选:C.【点评】此题是个基础题.考查向量在几何中的应用,以及向量加法的平行四边形法则和向量共线定理等基础知识,同时考查学生灵活应用知识分析解决问题的能力和计算能力.21.已知点O在ABC∆内,且::4:3:2AOB BOC AOCS S S∆∆∆=,AO AB ACλμ=+,则(λμ+= A.1B.29C.59D.23【分析】先证明0AOB BOC AOCS OC S OA S OB∆∆∆⋅+⋅+⋅=成立,得到4320OC OA OB++=,利用向量的线性运算得到429AC AB AO+=,求出λ,μ,由此能求出结果.【解答】解:先证明0AOB BOC AOCS OC S OA S OB∆∆∆⋅+⋅+⋅=,延长AO交BC于Q,由题意得AOB BOC AOC ABCS S S S∆∆∆∆++=,由面积关系得:BOCABCS OQS AQ∆∆=,∴APB CPAABCS SAQ AQS∆∆∆+=⋅,||||||||AOC AOBAOC AOB AOC AOBS SQC QBAQ AB AC AB ACS S S SBC BC∆∆∆∆∆∆=⋅+⋅=⋅+⋅++,∴0AOC AOB BOCS OB S OC S AO∆∆∆⋅+⋅-⋅=,∴0AOB BOC AOCS OC S OA S OB∆∆∆⋅+⋅+⋅=,由题意知::4:3:2AOB BOC AOCS S S∆∆∆=,4320OC OA OB∴++=,∴429AC AB AO+=,∴24,99λμ==,23λμ∴+=.故选:D.22.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”()Mercedesbenz的log o很相似,故形象地称其为“奔驰定理”.奔驰定理:已知O是ABC∆内的一点,BOC ∆,AOC ∆,AOB ∆的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.若O 是锐角ABC ∆内的一点,A ,B ,C 是ABC ∆的三个内角,且点O 满足OA OB OB OC OA OC ⋅=⋅=⋅.则( )A .O 为ABC ∆的外心B .BOC A π∠+=C .||:||:||cos :cos :cos OA OB OC A B C =D .::tan :tan :tan A B C S S S A B C =【分析】选项A ,将OA OB OB OC ⋅=⋅移项,并结合平面向量的减法和数量积的运算法则,可得OB CA ⊥,同理推出OA CB ⊥,OC AB ⊥,得解; 选项B ,根据选项A 中所得,可知2OBC C π∠+=,2OCB B π∠+=,再由三角形的内角和定理,得解;选项C ,延长CO 交AB 于点P ,结合诱导公式与余弦函数的定义,可证cos :cos :A B OA OB =,进而得解;选项D ,由三角形的面积公式与诱导公式,可得:tan :tan A B S S A B =,进而得解. 【解答】解:对于选项A ,()00OA OB OB OC OB OA OC OB CA OB CA ⋅=⋅⇔⋅-=⇔⋅=⇔⊥,同理可得,OA CB ⊥,OC AB ⊥,故O 为ABC ∆的垂心,即A 错误; 对于选项B ,因为OB AC ⊥,OC AB ⊥,所以2OBC C π∠+=,2OCB B π∠+=,所以OBC C OCB B π∠++∠+=,又OBC OCB BOC π∠+∠+∠=,所以BOC C B ∠=+, 又A B C π++=,所以BOC A π∠+=,即B 正确; 对于选项C ,由上可知,A BOC π=-∠,B AOC π=-∠, 延长CO交AB 于点P ,cos :cos cos():cos()cos :cos ::OP OPA B BOC AOC BOP AOP OA OB OB OAππ=-∠-∠=∠∠==, 同理可得,cos :cos :A C OA OC =,所以cos :cos :cos ::A B C OA OB OC =,即C 正确;对于选项D ,11:():():tan :tan tan :tan tan():tan()tan :tan 22A B S S OC BP OC AP BP AP OP POB OP AOP BOC AOC A B A Bππ=⋅⋅⋅⋅==∠∠=∠∠=--=,同理可得,:tan :tan A C S S A C =,所以::tan :tan :tan A B C S S S A B C =,即D 正确.故选:BCD .【点评】本题考查平面向量在几何中的应用,熟练掌握平面向量的数量积,诱导公式,平面几何基础知识是解题的关键,考查逻辑推理能力和运算能力,属于难题.23.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为( )A .3B .22C 5D .2【分析】方法一:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系,先求出圆的标准方程,再设点P 的坐标为25(1θ+,252)θ+,根据AP AB AD λμ=+,求出λ,μ,根据三角函数的性质即可求出最值.方法二:根据向量分解的等系数和线直接可得.【解答】解:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系,则(0,0)A ,(1,0)B ,(0,2)D ,(1,2)C ,动点P 在以点C 为圆心且与BD 相切的圆上, 设圆的半径为r ,2BC =,1CD =,22215BD ∴=+∴1122BC CD BD r ⋅=⋅, 5r ∴=,∴圆的方程为224(1)(2)5x y -+-=,设点P 的坐标为25(1θ+252)θ+,AP AB AD λμ=+,25(1θ∴+252)(1θλ+=,0)(0μ+,2)(λ=,2)μ, ∴251θλ+=2522θμ+=,255cos sin 2sin()255λμθθθϕ∴+=++=++,其中tan 2ϕ=, 1sin()1θϕ-+,13λμ∴+,故λμ+的最大值为3,方法二:根据向量分解的等系数和线,可得λμ+的最大值为3,如图所述 故选:A .【点评】本题考查了向量的坐标运算以及圆的方程和三角函数的性质,关键是设点P 的坐标,考查了学生的运算能力和转化能力,属于中档题.24.平面直角坐标系中,O 为坐标原点,已知两点(3,1)A 、(1,3)B -,若点C 满足OC OA OB αβ=+,其中α、R β∈,且1αβ+=,则点C 的轨迹方程为( )A .32110x y +-=B .22(1)(2)5x y -+-=C .20x y -=D .250x y +-=【分析】由点C 满足OC OA OB αβ=+,其中α、R β∈,且1αβ+=,知点C 在直线AB 上,故求出直线AB 的方程即求出点C 的轨迹方程.【解答】解:C 点满足OC OA OB αβ=+且1αβ+=,A ∴、B 、C 三点共线. C ∴点的轨迹是直线AB 又(3,1)A 、(1,3)B -,∴直线AB 的方程为:133113y x --=---整理得250x y +-= 故C 点的轨迹方程为250x y +-= 故选:D .【点评】考查平面向量中三点共线的充要条件及知两点求直线的方程,是向量与解析几何综合运用的一道比较基本的题,难度较小,知识性较强.25.若动直线:440l mx y m -+-=与圆22:(4)(5)9C x y -+-=相交于A ,B 两点,则()A .||AB 的最小值为42B .CA CB ⋅的最大值为7-C .(OA OB O ⋅为坐标原点)的最大值为78D .AC AB ⋅的最大值为18【解答】解:440mx y m -+-=,(4)(4)0m x y ∴---=,故动直线l 恒过点(4,4)D ; 圆22:(4)(5)9C x y -+-=的圆心为(4,5)C ,半径为3,则22||(44)(45)1CD =-+-=, 故||AB 的最小值为2223142⨯-=;故选项A 正确;对于选项B ,||||cos 9cos CA CB CA CB ACB ACB ⋅=⋅∠=∠,易知当CD AB ⊥时,ACB ∠最小,此时22233(42)7cos 2339maxACB +-∠==-⨯⨯;故7()9()79max CA CB ⋅=⨯-=-;故选项B 正确;对于选项C ,设AB 的中点为M ,()()OA OB OM MA OM MA ⋅=+⋅-22229OM MA OM CM =-=+-,而点M 在以DC 为直径的圆2291(4)()24x y -+-=上,设1(4cos 2M θ+,91sin )([022θθ+∈,2]π,且)2πθ≠,故2222221911119(4cos )(sin )(cos )(sin )9222222OA OB OM CM θθθθ⋅=+-=+++++--284cos 4sin 2842sin()28424πθθθ=++=+++,故错误;对于选项D ,21||||cos ||2AC AB AC AB CAB AB ⋅=⋅∠=, 故当||AB 取最大值,即AB 过圆心C 时,但动直线l 的斜率一定存在, 故动直线l 不包括垂直于x 轴的直线,故AC AB ⋅的最大值不存在,即错误; 故选:AB .【点评】本题综合考查了直线与圆的位置关系的应用及平面向量的综合应用,属于难题.。

专题11 平面向量小题全归类(13大核心考点)(课件)高考数学二轮复习(新教材新高考)

专题11 平面向量小题全归类(13大核心考点)(课件)高考数学二轮复习(新教材新高考)
1
Hale Waihona Puke 由已知可得, = 2 + ,
1
所以, = 6 + ,
1
所以, = − = 6 + −
5
5
6
C.− −
1
= − 6 + 6 .
1
6
5
6
D.− +

考点题型一:平面向量基本定理及其应用
【对点训练1】(2023·天津南开·高三南开中学校考阶段练习)△ 是由3个全等的三角形与中间一个小等边三角形
∠ = 90°,∠ = ∠ = 45°,∠ = 30°, = 1,则 ⋅ =
【答案】−1
【解析】∵ ∠ = ∠ = 90°,A,B,C,D四点共
6+ 2
×
2
=
圆得出同弧对的圆周角相等

2 × cos60° −
6+ 2
×
2
1
2×2−
∵ ∠ = 30° ∴ ∠ = ∠ = 60°, ∠ = 30°
即 =
−3

3
由已知,
2
D.− 3
=
=
+
1−

3
−3
,
3
1−
,
3
2
则 + = − 3,选项D正确.
考点题型三:平面向量的数量积
【例3】(2023·江苏淮安·高三校联考期中)若向量,满足
Ԧ
Ԧ = 1,1 , = 1,且在上的投影向量为−,则
Ԧ
2 − Ԧ ⋅ =
然后根据平面图形的特征直接进行判断;
②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、

高三数学平面向量多选题复习题含答案

高三数学平面向量多选题复习题含答案

高三数学平面向量多选题复习题含答案一、平面向量多选题1.已知集合()(){}=,M x y y f x =,若对于()11,x y M ∀∈,()22,x y M ∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为( )A .1MB .2MC .3MD .4M【答案】BD 【分析】根据题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥,结合函数图象即可判断.【详解】由题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥.在21y x =+的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以1M 不是“互垂点集”集合;对y =所以在2M 中的任意点()11,P x y ,在2M 中存在另一个P ',使得OP OP '⊥, 所以2M 是“互垂点集”集合;在xy e =的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以3M 不是“互垂点集”集合;对sin 1y x =+的图象,将两坐标轴绕原点进行任意旋转,均与函数图象有交点, 所以所以4M 是“互垂点集”集合, 故选:BD . 【点睛】本题主要考查命题的真假的判断,以及对新定义的理解与应用,意在考查学生的数学建模能力和数学抽象能力,属于较难题.2.下列关于平面向量的说法中正确的是( )A .已知,a b 均为非零向量,若//a b ,则存在唯一的实数λ,使得λabB .已知非零向量(1,2),(1,1)a b ==,且a 与a λb +的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭C .若a c b c ⋅=⋅且0c ≠,则a b =D .若点G 为ABC 的重心,则0GA GB GC ++= 【答案】AD 【分析】由向量共线定理可判断选项A ;由向量夹角的的坐标表示可判断选项B ;由数量积的运算性质可判断选项C ;由三角形的重心性质即向量线性运算可判断选项D. 【详解】对于选项A : 由向量共线定理知选项A 正确;对于选项B :()()()1,21,11,2a b λλλλ+=+=++,若a 与a λb +的夹角为锐角,则()()122530a a b λλλλ⋅+=+++=+>解得53λ>-,当a 与a λb +共线时,()221λλ+=+,解得:0λ=,此时(1,2)a =,()1,2a b λ+=,此时a b =夹角为0,不符合题意,所以实数λ的取值范围是()5,00,3⎛⎫-⋃+∞ ⎪⎝⎭,故选项B 不正确; 对于选项C :若a c b c ⋅=⋅,则()0c a b ⋅-=,因为0c ≠,则a b =或c 与a b -垂直, 故选项C 不正确;对于选项D :若点G 为ABC 的重心,延长AG 与BC 交于M ,则M 为BC 的中点,所以()1222AG GM GB GC GB GC ==⨯⨯+=+,所以0GA GB GC ++=,故选项D 正确.故选:AD 【点睛】易错点睛:两个向量夹角为锐角数量积大于0,但数量积大于0向量夹角为锐角或0,由向量夹角为锐角数量积大于0,需要检验向量共线的情况. 两个向量夹角为钝角数量积小于0,但数量积小于0向量夹角为钝角或π.3.设向量(1,1)a =-,(0,2)b =,则( ) A .||||a b = B .()a b a -∥C .()a b a -⊥D .a 与b 的夹角为4π 【答案】CD【分析】根据平面向量的模、垂直、夹角的坐标运算公式和共线向量的坐标运算,即可对各项进行判断,即可求出结果. 【详解】 对于A ,(1,1)a =-,(0,2)b =,2,2a b ∴==,a b ∴≠,故A 错误; 对于B ,(1,1)a =-,(0,2)b =,()=1,1a b ∴---,又(0,2)b =,则()12100-⨯--⨯≠,()a b ∴-与b 不平行,故B 错误;对于C ,又()()()11110a b a -⋅=-⨯-+-⨯=,()a b a ∴-⊥,故C 正确; 对于D ,又2cos ,222a b a b a b⋅<>===⋅,又a 与b 的夹角范围是[]0,π,a ∴与b 的夹角为π4,故D 正确. 故选:CD. 【点睛】关键点点睛:本题考查了平面向量的坐标运算,熟记平面向量的模、垂直、夹角坐标运算公式及共线向量的坐标运算时解题的关键,考查学生的运算能力,属于基础题.4.在平行四边形ABCD 中,2AB =,1AD =,2DE EC =,AE 交BD 于F 且2AE BD ⋅=-,则下列说法正确的有( )A .1233AE AC AD =+B .25DF DB =C .,3AB AD π=D .2725FB FC ⋅=【答案】BCD 【分析】根据向量的线性运算,以及向量的夹角公式,逐一判断四个选项的正误即可得正确选项. 【详解】对于选项A :()22233133AE AD DE AD DC AD AD D C A A A C =+=+=+-=+,故选项A 不正确;对于选项B :易证DEF BFA ,所以23DF DE BF AB ==,所以2235DF FB DB ==,故选项B 正确;对于选项C :2AE BD ⋅=-,即()223AD A B D AB A ⎛⎫+-=- ⎪⎝⎭,所以 2221233AD AD AB AB -⋅-=-,所以1142332AD AB -⋅-⨯=-,解得:1AB AD ⋅=,11cos ,212AB AD AB AD AB AD⋅===⨯⨯,因为[],0,AB AD π∈,所以,3AB AD π=,故选项C 正确; 对于选项D :()()332555AB FB FC DB FD DC AD BD AB ⎛⎫⋅=⋅+=-⋅+ ⎪⎝⎭()()()3233255555AD AD AB AB AD A AB AB B AD ⎡⎤⎛⎫=-⋅-+=-⋅+ ⎪⎢⎥⎣⎦⎝⎭22969362734252525252525AB AB AD AD =⨯-⋅-⨯=⨯--=,故选项D 正确. 故选:BCD 【点睛】关键点点睛:选项B 的关键点是能得出DEF BFA ,即可得23DF DE BF AB ==,选项D 的关键点是由于AB 和AD 的模长和夹角已知,故将FB 和FC 用AB 和AD 表示,即可求出数量积.5.如图,BC ,DE 是半径为1的圆O 的两条不同的直径,2BF FO =,则( )A .13BF FC = B .89FD FE ⋅=-C .41cos ,5FD FE -<<->≤ D .满足FC FD FE λμ=+的实数λ与μ的和为定值4 【答案】BCD 【分析】A. 根据2BF FO =易得12BF FC =判断;B. 由()()FD FE OD OF OE OF ⋅=-⋅-运算求解判断;,C.建立平面直角坐标系:设,0,2DOF παα⎡⎤∠=∈⎢⎥⎣⎦,则()()1cos ,sin ,cos ,sin ,,03D E F αααα⎛⎫--- ⎪⎝⎭,得到11cos ,sin ,cos ,sin 33FD FE αααα⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭,由cos ,FD FE FD FE FD FE ⋅<>=⋅利用三角恒等变换和三角函数的性质判断;D. 将FC FD FE λμ=+,利用线性运算变形为()()4OF OD OF λμλμ-=--+判断;【详解】A. 因为2BF FO =,所以12BF FC =,故错误;B. ()()2FD FE OD OF OE OF OD OE OD OF OF OE OF ⋅=-⋅-=⋅-⋅-⋅+,()22181099OE OF OD OE OF =-+++=-++=-,故正确; C.建立如图所示平面直角坐标系:设,(0,]2DOF παα∠=∈,则()()1cos ,sin ,cos ,sin ,,03D E F αααα⎛⎫--- ⎪⎝⎭, 所以11cos ,sin ,cos ,sin 33FD FE αααα⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭,所以8cos ,FD FE FDFE FD FE-⋅<>==⋅⎛,84(1,]5---,故正确;D. 由FC FD FE λμ=+,得()()()()4OF OD OF OE OF OD OF λμλμλμ-=-+-=--+,所以4λμ+=,故正确; 故选:BCD 【点睛】本题主要考查平面向量的线性运算和数量积运算,还考查了运算求解的能力,属于中档题.6.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅ C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π 【答案】CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a ba b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b ⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.7.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λa b ,则a b a b +=-【答案】AB 【分析】根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误;若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确. 故选:AB. 【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.8.ABC ∆是边长为3的等边三角形,已知向量a 、b 满足3AB a =,3AC a b =+,则下列结论中正确的有( ) A .a 为单位向量 B .//b BCC .a b ⊥D .()6a b BC +⊥【答案】ABD 【分析】求出a 可判断A 选项的正误;利用向量的减法法则求出b ,利用共线向量的基本定理可判断B 选项的正误;计算出a b ⋅,可判断C 选项的正误;计算出()6a b BC +⋅,可判断D 选项的正误.综合可得出结论. 【详解】 对于A 选项,3AB a =,13a AB ∴=,则113a AB ==,A 选项正确; 对于B 选项,3AC ab AB b =+=+,b AC AB BC ∴=-=,//b BC ∴,B 选项正确;对于C 选项,21123cos 0333a b AB BC π⋅=⋅=⨯⨯≠,所以a 与b 不垂直,C 选项错误; 对于D 选项,()()()2260a b BC AB AC AC AB AC AB +⋅=+⋅-=-=,所以,()6a b BC +⊥,D 选项正确.故选:ABD. 【点睛】本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题.二、立体几何多选题9.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得1CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -外接球的体积是43π 【答案】BD 【分析】对于A ,取AD 中点E ,连接EC 交MD 与F ,可得到EN NF ⊥,又EN CN ⊥,且三线,,NE NF NC 共面共点,不可能;对于B ,可得由1NEC MAB ∠=∠(定值),112NE AB =(定值),AM EC =(定值),由余弦定理可得NC 是定值.对于C ,取AM 中点O ,连接1,B O DO ,假设1AM B D ⊥,易得AM ⊥面1ODB ,即可得OD AM ⊥,从而AD MD =,显然不一定成立.对于D ,当平面B 1AM ⊥平面AMD 时,三棱锥B 1﹣AMD 的体积最大,可得球半径为1,体积是43π. 【详解】对于A 选项:如图1,取AD 中点E ,连接EC 交MD 与F , 则11////NE AB NF MB ,,又11AB MB ⊥,所以EN NF ⊥, 如果1CN AB ⊥,可得EN CN ⊥,且三线,,NE NF NC 共面共点, 不可能,故A 选项不正确;对于B 选项:如图1,由A 选项可得1AMB EFN ≈△△,故1NEC MAB ∠=∠(定值),112NE AB =(定值),AM EC =(定值), 故在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+ 故CN 为定值,故B 选项正确.对于C 选项:如图,取AM 中点O ,连接1,B O DO , 由AB BM =,得1B O AM ⊥,假设1AM B D ⊥,111B D B O B =,所以AM ⊥面1ODB ,所以OD AM ⊥,从而AD MD =,显然不恒成立,所以假设不成立,可得C 选项不正确.对于D 选项:由题易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,体积是43π.故D 选项正确. 故答案为:BD . 【点睛】本题主要考查了线面、面面平行与垂直的判定和性质定理,考查了空间想象能力和推理论证能力,属于难题.本题C 选项的解题的关键在于采用反证法证明,进而推出矛盾解题,D 选项求解的关键在于把握平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大.10.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 35B .DP 5C .1AP PC +6D .1AP PC +的最小值为1705【答案】AD【分析】 DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可.【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知115,2A B A D BD ===,所以1A B 边上的高为355h =111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知11122,2,cos 10AA AC AAC ''==∠=-, 所以217042222()105AC '=+-⨯⨯⨯-=. 故选:AD.【点睛】 本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.。

高考数学平面向量专题复习(含答案)(2020年九月整理).doc

22、在平面直角坐标系xOy中,已知向量 ,
(1)求证: 且 ;
(2)设向量 , ,且 ,求实数t的值.
23、已知 ,设 .
(1)求 的解析式并求出它的周期T.
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,且 ,求△ABC的面积.
24、已知 为圆 : 上一动点,圆心 关于 轴的对称点为 ,点 分别是线段 , 上的点,且 , 。
4、.如图, 为等腰直角三角形, , 为斜边 的高, 为线段 的中点,则 ( )
A. B. C. D.
5、在平行四边形 中, ,若 是 的中点,则 ( )
A. B. C. D.
6、已知向量 , 且 ,则 ( )
A. B. C. D.
7、已知 是边长为2的等边三角形,D为 的中点,且 ,则 ( )
A. B.1 C. D. 3
(2) 若x, y在[1,6]上取值,则全部基本事件的结果为 ,满足 的基本事件的结果为 .
画出图形如图,正方形的面积为 ,阴影部分的面积为 ,
故满足 的概率为 .
22、(1)证明: ,所以 ,因为 ,所以 ;
(2)因为 ,所以 ,
由(1)得:
所以 ,解得 .
23、解析:(1)
...........4分
三、简答题
19、已知平面直角坐标系中,向量 , ,且 .
(1)求 的值;(2)设 ,求 的值.
20、已知向量 =(sin ,cos ﹣2sin ), =(1,2).
(1)若 ∥ ,求 的值;
(2)若 ,0< < ,求 的值.
21、已知向量 , .(1)若 在集合 中取值,求满足 的概率;(2)若 在区间[1,6]内取值,求满足 的概率.
15、

高三数学寒假作业(平面向量)

数学寒假作业(平面向量)姓名____________学号___________一、填空题1. 已知非零向量,a b 满足1=a =a +b ,与a b 夹角为120°,则向量b 的模为 .2. 已知向量与a b 的夹角为60º,且|a |=1,|b |=2,那么2()+a b 的值为 .3. 设向量(1,),(3,4)a x b ==-,若//a b ,则实数x 的值为 .4.已知A (2,3),B (-1,5),且AC =31AB ,AD =-41AB ,则CD 中点的坐标是 . 5. 设平面向量(1,2)a =,与向量(1,2)a =共线的单位向量坐标为 . 6. 在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为 . 7.如图,,,A B C 是直线上三点,P 是直线外一点,1==BC AB ,︒=∠90APB ,︒=∠30BPC ,则PA PC ⋅= .8. 已知在ABC ∆中,3==BC AB ,4=AC ,设O 是ABC ∆的内心,若AC n AB m AO +=,则=n m : .9.设πθ20<≤,已知两个向量()θθsin ,cos 1=OP ,()θθcos 2,sin 22-+=OP ,则向量21P P 长度的最大值是 .10. 在平面直角坐标系中,O 是坐标原点,()2,0A ,()1,1B ,则点集{},1,,P OP OA OB R λμλμλμ=++≤∈所表示的平面区域的面积是 .11. 如图, 在等腰三角形ABC 中, 底边2=BC , DC AD =, 12AE EB =, 若12BD AC ⋅=- , 则AB CE ⋅= .12.在矩形ABCD 中,AB 2F 是CD 的中点,点P 在边AD 上,则|3PB PF +|的最小值是 .300lABCP13. 已知直线x +y =a 与圆x 2+y 2=2交于A ,B 两点,O 是原点,C 是圆上一点,若OA →+OB→=OC →,则a 的值为 .14. 在平面上,12AB AB ⊥,121QB QB ==,12AP AB AB =+.若12QP < ,则QA 的取值范围是 .二、解答题15. 设(,1)a x =,(2,1)b =-,(,1)c x m m =--(,x m ∈∈R R ).(Ⅰ)若a 与b 的夹角为钝角,求x 的取值范围; (Ⅱ)解关于x 的不等式a c a c +<-.16. 已知在等边三角形ABC 中,点P 为线段AB 上一点,且(01)AP AB =≤≤λλ.(1)若等边三角形边长为6,且13=λ,; (2)若CP AB PA PB ⋅≥⋅,求实数λ的取值范围.17. 设平面向量)23,21(),1,3(=-=b a ,若存在实数)0(≠m m 和角θ,其中)2,2(ππθ-∈,使向量θθtan ,)3(tan2⋅+-=-+=b a m d b a c ,且d c ⊥.(Ⅰ)求)(θf m =的关系式; (Ⅱ)若]3,6[ππθ-∈,求)(θf 的最小值,并求出此时的θ值.18.若椭圆)0(12222>>=+b a by a x 过点(-3,2),离心率为33,⊙O 的圆心为原点,直径为椭圆的短轴,⊙M 的方程为4)6()8(22=-+-y x ,过⊙M 上任一点P 作⊙O 的切线PA 、PB ,切点为A 、B. (1)求椭圆的方程;(2)若直线PA 与⊙M 的另一交点为Q ,当弦PQ 最大时,求直线PA 的直线方程; (3)求OB OA ⋅的最大值与最小值.2014届高三数学寒假作业平面向量参考答案1. 12. 73. 43-4. (815,1237) 5. 525(,)55或255(,)55--6.57. 74-8. 3:4提示一:利用夹角相等,则有ACAC AO AB AB AO ⋅=⋅||.提示二:利用角平分线定理,根据相似比求得AC AB AO 103104+=9. 23 10. 411. 4-312.522;提示:以D 为原点建立平面直角坐标系设DC=a,DP=x, |3PB PF +|=()22534a x +-.13. ±1 14. (72,2], 法一:根据条件知A ,B 1,P ,B 2构成一个矩形AB 1PB 2,以AB 1,AB 2所在直线为坐标轴建立直角坐标系,如图.设|AB 1|=a ,|AB 2|=b ,点O 的坐标为(x ,y),则点P 的坐标为(a ,b),由|OB 1→|=|OB 2→|=1得⎩⎪⎨⎪⎧(x -a )2+y 2=1,x 2+(y -b )2=1,则⎩⎪⎨⎪⎧(x -a )2=1-y 2,(y -b )2=1-x 2. 又由|OP →|<12,得(x -a)2+(y -b)2<14,则1-x 2+1-y 2<14,即x 2+y 2>74①.又(x -a)2+y 2=1,得y 2≤1;由x 2+(y -b)2=1,得x 2≤1,即有x 2+y 2≤2②. 由①②知74<x 2+y 2≤2,所以72<x 2+y 2≤ 2.而|OA →|=x 2+y 2,所以72<|OA →|≤ 2.法二:如图,以O 为原点建立直角坐标系,不妨设P 在x 轴正半轴上,取中点B 1B 2中点M ,易知2MP= B 1B 2,所以MO 2+MP 2=1 这样设(,0)P a ,设00(x ,y )M 则有22220000(x a)1x y y ++-+= 的圆M 的轨迹方程为:222002()24a a x y --+=即是以OP 中点2a (,0) 为圆心,以2 为半径的圆,由于M 是线段AP 中点,所以A (x ,y )满足关系00202x a x y y +⎧=⎪⎪⎨+⎪=⎪⎩ ,从而2222x y a +=- ,所以A 的轨迹应该是以(0,0)为圆心,以为半径的圆。

高考数学二轮复习平面向量多选题知识点及练习题附解析

高考数学二轮复习平面向量多选题知识点及练习题附解析一、平面向量多选题1.在三棱锥M ABC -中,下列命题正确的是( )A .若1233AD AB AC =+,则3BC BD = B .若G 为ABC 的重心,则111333MG MA MB MC =++ C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ =【答案】BC【分析】 作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,由已知12322233AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则32BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即111333MG MA MB MC =++,故B 正确; 对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即()00MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即0MB AC ⋅=,故C 正确;对于D ,111()()222PQ MQ MP MB MC MA MB MC MA ∴=-=+-=+- ()2112PQ MB MC MA MB MC MA ∴=+-=+-,又()2222222MB MC MA MB MC MA MB MC MB MA MC MA +-=+++⋅-⋅-⋅2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1PQ ∴==,故D 错误. 故选:BC【点睛】关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点:(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.2.已知向量(2,1),(3,1)a b ==-,则( ) A .()a b a +⊥B .|2|5a b +=C .向量a 在向量b 上的投影是2 D .向量a 的单位向量是55⎛ ⎝⎭【答案】ABD【分析】 多项选择题需要要对选项一一验证:对于A:利用向量垂直的条件判断;对于B:利用模的计算公式;对于C:利用投影的计算公式;对于D:直接求单位向量即可.【详解】 (2,1),(3,1)a b ==-对于A: (1,2),()(1)2210,a b a b a +=-+⋅=-⨯+⨯=∴()a b a +⊥,故A 正确; 对于B: 222(2,1)2(3,1)(4,3),|2|(4)35a b a b +=+-=-∴+=-+=,故B 正确;对于C: 向量a 在向量b 上的投影是||(3)a b b ⋅==-,故C 错误;对于D: 向量a 的单位向量是255,⎛⎫ ⎪ ⎪⎝⎭,故D 正确. 故选:ABD .【点睛】 多项选择题是2020年高考新题型,需要要对选项一一验证.3.在ABC 中,D 、E 分别是AC 、BC 上的点,AE 与BD 交于O ,且AB BC BC CA CA AB ⋅=⋅=⋅,2AB AC AE +=,2CD DA =,1AB =,则( ) A .0AC BD ⋅=B .0OA OE ⋅=C .34OA OB OC ++=D .ED 在BA 方向上的正射影的数量为712【答案】BCD【分析】根据AB BC BC CA CA AB ⋅=⋅=⋅以及正弦定理得到sin cos sin cos C B B C ⋅=⋅,从而求出B C =,进一步得到B C A ==,ABC 等边三角形,根据题目条件可以得到E 为BC 的中点和D 为AC 的三等分点,建立坐标系,进一步求出各选项.【详解】由AB BC BC CA CA AB ⋅=⋅=⋅得cos cos AB BC B CA BC C ⋅=⋅, ||cos ||cos AB B CA C ⋅=⋅,正弦定理,sin cos sin cos C B B C ⋅=⋅,()0sin B C =-,B C =,同理:A C =,所以B C A ==,ABC 等边三角形.2AB AC AE +=,E 为BC 的中点,2CD DA =,D 为AC 的三等分点.如图建立坐标系,3A ⎛ ⎝⎭,1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫ ⎪⎝⎭,136D ⎛ ⎝⎭,解得3O ⎛ ⎝⎭, O 为AE 的中点,所以,0OA OE +=正确,故B 正确;132,,,23AC BD ⎛⎫⎛=-= ⎪ ⎪ ⎝⎭⎝⎭,AC BD ⋅=1210236⨯--≠,故A 错误; 32OA OB OC OA OE OE ++=+==,故C 正确;16ED ⎛= ⎝⎭,12BA ⎛= ⎝⎭,投影712||ED BA BA ⋅=,故D 正确. 故选:BCD.【点睛】如何求向量a 在向量b 上的投影,用向量a 的模乘以两个向量所成的角的余弦值就可以了,当然还可以利用公式a b b ⋅进行求解.4.下列说法中错误的为( )A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B .向量1(2,3)e =-,213,24e ⎛⎫=- ⎪⎝⎭不能作为平面内所有向量的一组基底 C .若//a b ,则a 在b 方向上的投影为||aD .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60°【答案】ACD 【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解.【详解】对于A ,∵(1,2)a =,(1,1)b =,a 与a b λ+的夹角为锐角,∴()(1,2)(1,2)a a b λλλ⋅+=⋅++142350λλλ=+++=+>,且0λ≠(0λ=时a 与a b λ+的夹角为0),所以53λ>-且0λ≠,故A 错误; 对于B ,向量12(2,3)4e e =-=,即共线,故不能作为平面内所有向量的一组基底,B 正确;对于C ,若//a b ,则a 在b 方向上的正射影的数量为||a ±,故C 错误;对于D ,因为|||a a b =-∣,两边平方得||2b a b =⋅,则223()||||2a a b a a b a⋅+=+⋅=, 222||()||2||3||a b a b a a b b a +=+=+⋅+=,故23||()32cos ,2||||3||a a a b a a b a a b a a ⋅+<+>===+⋅∣, 而向量的夹角范围为[]0,180︒︒,得a 与a b λ+的夹角为30°,故D 项错误.故错误的选项为ACD故选:ACD【点睛】本题考查平面向量基本定理及向量的数量积,向量的夹角等知识,对知识广度及准确度要求比较高,中档题.5.正方形ABCD 的边长为1,记AB a =,BC b =,AC c =,则下列结论正确的是( )A .()0a b c -⋅=B .()0a b c a +-⋅=C .()0a c b a --⋅=D .2a b c ++=【答案】ABC【分析】 作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误.【详解】如下图所示:对于A 选项,四边形ABCD 为正方形,则BD AC ⊥,a b AB BC AB AD DB -=-=-=,()0a b c DB AC ∴-⋅=⋅=,A 选项正确; 对于B 选项,0a b c AB BC AC AC AC +-=+-=-=,则()00a b c a a +-⋅=⋅=,B选项正确;对于C 选项,a c AB AC CB -=-=,则0a c b CB BC --=-=,则()0a c b a --⋅=,C 选项正确;对于D 选项,2a b c c ++=,222a b c c ∴++==,D 选项错误.故选:ABC.【点睛】 本题考查平面向量相关命题正误的判断,同时也考查了平面向量加、减法法则以及平面向量数量积的应用,考查计算能力,属于中等题.6.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭【答案】AC【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角,可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒=所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC.【点睛】 本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.7.已知向量()1,3OA =-,()2,1OB =-,()3,8OC t t =+-,若点A ,B ,C 能构成三角形,则实数t 可以为( )A .-2B .12C .1D .-1【答案】ABD【分析】若点A ,B ,C 能构成三角形,故A ,B ,C 三点不共线,即向量,AB BC 不共线,计算两个向量的坐标,由向量共线的坐标表示,即得解【详解】若点A ,B ,C 能构成三角形,故A ,B ,C 三点不共线,则向量,AB BC 不共线, 由于向量()1,3OA =-,()2,1OB =-,()3,8OC t t =+-,故(3,4)AB OB OA =-=-,(5,9)BC OC OB t t =-=+-若A ,B ,C 三点不共线,则 3(9)4(5)01t t t ---+≠∴≠故选:ABD【点睛】本题考查了向量共线的坐标表示,考查了学生转化划归,概念理解,数学运算能力,属于中档题.8.已知ABC ∆是边长为()20a a >的等边三角形,P 为ABC ∆所在平面内一点,则()PA PB PC ⋅+的值可能是( )A .22a -B .232a -C .243a -D .2a -【答案】BCD【分析】通过建系,用坐标来表示向量,根据向量的乘法运算法则以及不等式,可得结果.【详解】建立如图所示的平面直角坐标系.设(),P x y ,又()0,3A a ,(),0B a -, (),0C a ,则(),3PA x a y =--, (),PB a x y =---,(),PC a x y =--.则()(),,a x y a P PC x y B -+--+-=-即()2,2PB x y PC --+=所以()()(),32,2x a PA PB P y x y C =--⋅--⋅+ 则()PA PB PC ⋅+222223x y ay =+- 即()PA PB PC ⋅+222332222x y a a ⎛⎫=+-- ⎪ ⎪⎝⎭. 所以()PA PB PC ⋅+232a ≥-故选:BCD.【点睛】本题主要通过建系的方法求解几何中向量的问题,属中档题.二、立体几何多选题9.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且2EF =.则下列结论正确的是( )A .三棱锥A BEF -的体积为定值B .当E 向1D 运动时,二面角A EF B --逐渐变小C .EF 在平面11ABB A 内的射影长为12D .当E 与1D 重合时,异面直线AE 与BF 所成的角为π4【答案】AC【分析】对选项分别作图,研究计算可得.【详解】选项A:连接BD ,由正方体性质知11BDD B 是矩形,1112212224BEF S EF BB ∆∴=⋅=⨯⨯= 连接AO 交BD 于点O由正方体性质知AO ⊥平面11BDD B ,所以,AO 是点A 到平面11BDD B 的距离,即2AO = 112213312A BEF BEF V S AO -∆∴=⨯=⨯⨯= A BEF V -∴是定值.选项B:连接11A C 与11B D 交于点M ,连接11,AD AB ,由正方体性质知11AD AB =,M 是11B D 中点,AM EF ∴⊥ ,又1BB EF ⊥,11//BB AAA EFB ∴--的大小即为AM 与1AA 所成的角,在直角三角形1AA M 中,12tan 2MAA ∠=为定值. 选项C:如图,作1111,,,FH A B EG A B ET EG ⊥⊥⊥在直角三角形EFT 中,221cos 45222FT EF =⨯=⨯= 12HG FT ∴== 选项D:当E 与1D 重合时,F 与M 重合,连接AC 与BD 交于点R ,连接1D R ,1//D R BM 异面直线AE 与BF 所成的角,即为异面直线1AD 与1D R 所成的角,在三角形1AD R 中,22111132,2AD D R MB BB M B ===+=2AR = 由余弦定理得13cos AD R ∠=故选:AC【点睛】本题考查空间几何体性质问题.求解思路:关键是弄清(1)点的变化,点与点的重合及点的位置变化;(2)线的变化,应注意其位置关系的变化;(3)长度、角度等几何度量的变化.求空间几何体体积的思路:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法;若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.10.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则( )A .直线BD 1⊥平面A 1C 1DB .三棱锥P ﹣A 1C 1D 的体积为定值C .异面直线AP 与A 1D 所成角的取值范用是[45°,90°]D .直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为63 【答案】ABD【分析】在A 中,推导出A 1C 1⊥BD 1,DC 1⊥BD 1,从而直线BD 1⊥平面A 1C 1D ;在B 中,由B 1C ∥平面 A 1C 1D ,得到P 到平面A 1C 1D 的距离为定值,再由△A 1C 1D 的面积是定值,从而三棱锥P ﹣A 1C 1D 的体积为定值;在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°];在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为63. 【详解】解:在A 中,∵A 1C 1⊥B 1D 1,A 1C 1⊥BB 1,B 1D 1∩BB 1=B 1,∴A 1C 1⊥平面BB 1D 1,∴A 1C 1⊥BD 1,同理,DC 1⊥BD 1,∵A 1C 1∩DC 1=C 1,∴直线BD 1⊥平面A 1C 1D ,故A 正确;在B 中,∵A 1D ∥B 1C ,A 1D ⊂平面A 1C 1D ,B 1C ⊄平面A 1C 1D ,∴B 1C ∥平面 A 1C 1D ,∵点P 在线段B 1C 上运动,∴P 到平面A 1C 1D 的距离为定值,又△A 1C 1D 的面积是定值,∴三棱锥P ﹣A 1C 1D 的体积为定值,故B 正确;在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°],故C 错误;在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为1,P (a ,1,a ),则D (0,0,0),A 1(1,0,1),C 1(0,1,1),1DA =(1,0,1),1DC =(0,1,1),1C P =(a ,0,a ﹣1),设平面A 1C 1D 的法向量(),,n x y z =,则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x =1,得1,1,1n ,∴直线C 1P 与平面A 1C 1D 所成角的正弦值为: 11||||||C P n C P n ⋅⋅=22(1)3a a +-⋅=21132()22a ⋅-+, ∴当a =12时,直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为63,故D 正确. 故选:ABD .【点睛】求直线与平面所成的角的一般步骤:(1)、①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解;(2)、用空间向量坐标公式求解.。

高三数学二轮复习 课时作业10 平面向量 文

高三数学二轮复习 课时作业10 平面向量 文平面向量时间:45分钟 分值:100分一、选择题(每小题6分,共计36分)1.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →=( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)解析:由BP →=2PC →,∴BC →=3(PA →+AC →),∵Q 是AC 的中点,则AC →=2AQ →,AQ →=AP →+PQ →,∴BC →=3[PA →+2(AP →+PQ →)]=(-6,21)答案:B2.已知O 、A 、B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →=( )A .2OA →-OB →B .-OA →+2OB →C .23OA →-13OB →D .-13OA →+23OB →解析:依题意得:2(OC →-OA →)+(OB →-OC →)=0,OC →=2OA →-OB →. 答案:A图13.如图1,e 1,e 2为互相垂直的单位向量,向量a -b 可表示为( ) A .3e 2-e 1 B .-2e 1-4e 2 C .e 1-3e 2 D .3e 1-e 2解析:向量a -b 是以b 的终点为始点,a 的终点为终点的向量.由图形知,a -b 的横坐标为1,纵坐标为-3.答案:C4.(2011·上海高考)设A 1,A 2,A 3,A 4,A 5是空间中给定的5个不同点,则使MA 1→+MA 2→+MA 3→+MA 4→+MA 5→=0成立的点M 的个数为( )A .0B .1C .5D .10解析:解法1(特值法):不妨取A 1、A 2、A 3、A 4分别是正方形的顶点,A 5为正方形对角线的交点.仅当M 为A 5时满足MA 1→+MA 2→+MA 3→+MA 4→+MA 5→=0.故选B.解法2:设M (x ,y ),A i (x i ,y i ), 则MA →i =(x i -x ,y i -y ),由51i =∑MA →i =0得⎩⎪⎨⎪⎧x 1+x 2+x 3+x 4+x 5-5x =0,y 1+y 2+y 3+y 4+y 5-5y =0,即⎩⎪⎨⎪⎧x =15x 1+x 2+x 3+x 4+x 5,y =15y 1+y 2+y 3+y 4+y 5.故点M 的个数为1.故选B. 答案:B5.(2011·课标全国卷)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题p 1:|a +b |>1⇔θ∈[0,2π3)p 2:|a +b |>1⇔θ∈(2π3,π]p 3:|a -b |>1⇔θ∈[0,π3)p 4:|a -b |>1⇔θ∈(π3,π]其中的真命题是( ) A .p 1,p 4 B .p 1,p 3 C .p 2,p 3 D .p 2,p 4解析:∵|a |=|b |=1,且θ∈[0,π],若|a +b |>1,则(a +b )2>1,∴a 2+2a ·b +b 2>1,即a ·b >-12,∴cos θ=a ·b |a |·|b |=a ·b >-12,∴θ∈[0,2π3);若|a -b |>1,同理求得a ·b <12,∴cos θ=a ·b <12,∴θ∈(π3,π],故p 1,p 4正确,应选A.答案:A6.(2011·山东高考)设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R),A 1A 4→=μA 1A 2→(μ∈R),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上解析:由题意得AC →=λAB →,AD →=μAB →,且1λ+1μ=2,若C ,D 都在AB 的延长线上,则λ>1,μ>1,1λ+1μ<2与1λ+1μ=2矛盾,故选D.答案:D二、填空题(每小题8分,共计24分)7.(2011·安徽高考)已知向量a ,b 满足(a +2b )·(a -b )=-6,且|a |=1,|b |=2,则a 与b 的夹角为________.解析:由(a +2b )·(a -b )=-6,得a 2-2b 2+a ·b =-6,又|a |=1,|b |=2,得a ·b=1,设向量a 与b 的夹角为θ,则cos θ=a ·b |a |·|b |=12,又0≤θ≤π,故θ=π3.答案:π38.(2011·江苏高考)已知e 1,e 2是夹角为2π3的两个单位向量,a =e 1-2e 2,b =ke 1+e 2.若a ·b =0,则实数k 的值为________.解析:由题意a ·b =0即有(e 1-2e 2)·(ke 1+e 2)=0,∴ke 21+(1-2k )e 1·e 2-2e 22=0.又|e 1|=|e 2|=1,〈e 1,e 2〉=2π3,∴k -2+(1-2k )·cos 2π3=0,∴k -2=1-2k 2,∴k =54.答案:549.设a 、b 是非零向量,给出平面向量的四个命题: ①|a ·b |=|a ||b |;②若a ⊥b ,则|a +b |=|a -b |;③存在实数m 、n 使得ma +nb =0,则m 2+n 2=0;④若|a +b |=|a |-|b |,则|a |≥|b |且a 与b 方向相反. 其中真命题是________.(将所有真命题的序号都填上) 解析:由两向量的数量积公式可知, 只有当a 、b 共线时①才正确;a ⊥b 时,以a 、b 为两邻边所作的平行四边形是矩形, 故②正确;a 、b 是已经给定的向量,若反向,则m 2+n 2可能不为0,故③不正确;由|a +b |=|a |-|b |≥0,知|a |≥|b |,又对等式|a +b |=|a |-|b |两边平方得|a |2+2a ·b +|b |2=|a |2-2|a ||b |+|b |2,即a ·b =-|a ||b |,|a ||b |cos θ=-|a ||b |(其中θ为向量a 、b 的夹角),∴cos θ=-1,∵0≤θ≤π,∴θ=π,向量a 、b 方向相反,故④正确.答案:②④三、解答题(共计40分)10.(10分)(2011·陕西高考)叙述并证明余弦定理. 解:余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦之积的两倍.或:在△ABC 中,a ,b ,c 为A ,B ,C 的对边,有a 2=b 2+c 2-2bc cos A , b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .图2证明:法一:如图2a 2=BC →·BC →=(AC →-AB →)·(AC →-AB →)=AC →2-2AC →·AB →+AB →2 =AC →2-2|AC →|·|AB →|cos A +AB →2 =b 2-2bc cos A +c 2,即a 2=b 2+c 2-2bc cos A .同理可证b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .法二: 已知△ABC 中A ,B ,C 所对边分别为a ,b ,c ,以A 为原点,AB 所在直线为x 轴建立直角坐标系,图3则C (b cos A ,b sin A ),B (c,0), ∴a 2=|BC |2=(b cos A -c )2+(b sin A )2 =b 2cos 2A -2bc cos A +c 2+b 2sin 2A =b 2+c 2-2bc cos A同理可证b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .11.(15分)已知△ABC 中,(1)若|AC →|,|BC →|,|AB →|成等比数列,BA →·BC →,AB →·AC →,CA →·CB→成等差数列,求A ;(2)若BC →·(AB →+AC →)=0,且|AB →+AC →|=4,0<A <π3,求AB →·AC →的取值范围.解:(1)法1:由题意可知: |BC →|2=|AC →|·|AB →|,∵BA →·BC →,AB →·AC →,CA →·CB →成等差数列, ∴2AB →·AC →=BA →·BC →+CA →·CB → =BC →·(BA →-CA →)=|BC →|2,又∵AB →·AC →=|AB →||AC →|cos A ,∴cos A =12,∴A =π3.法2:由题意可知:|BC →|2=|AC →|·|AB →|, ∵BA →·BC →,AB →·AC →,CA →·CB →成等差数列, ∴2AB →·AC →=BA →·BC →+CA →·CB →,即2|AB →||AC →|cos A =|BA →||BC →|cos B +|CA →||CB →|cos C , 由|BC →|2=|AC →|·|AB →|得: 2|BC →|2cos A =|BA →||BC →|cos B +|CA →||CB →|cos C ,∴2|BC →|cos A =|BA →|cos B +|CA →|cos C , 由正弦定理得:2sin A cos A =sin C cos B +sin B cos C =sin(B +C )=sin A ,∵0<A <π,∴sin A ≠0,∴cos A =12,A =π3.(2)∵BC →·(AB →+AC →)=0, ∴(AC →-AB →)(AB →+AC →)=0, ∴AC →2=AB →2,即|AC →|2=|AB →|2. ∵|AB →+AC →|=4, ∴|AB →|2+|AC →|2+2AB →·AC →=16, 即|AB →|2+|AC →|2+2|AB →||AC →|cos A =16,则|AB →|2=81+cos A,∴AB →·AC →=|AB →||AC →|cos A =|AB →|2cos A =8cos A 1+cos A =81+1cos A(cos A ≠0).∵0<A <π3,∴12<cos A <1,1<1cos A <2,∴83<AB →·AC →<4. 12.(15分)已知m =(cos ωx +sin ωx ,3cos ωx ),n =(cos ωx -sin ωx,2sin ωx ),其中ω>0,设函数f (x )=m ·n ,且函数f (x )的周期为π.(1)求ω的值;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a ,b ,c 成等差数列. 当f (B )=1时,判断△ABC 的形状.解:(1)∵m =(cos ωx +sin ωx ,3cos ωx ), n =(cos ωx -sin ωx,2sin ωx )(ω>0)∴f (x )=m ·n =cos 2ωx -sin 2ωx +23cos ωx sin ωx =cos2ωx +3sin2ωx .∴f (x )=2sin(2ωx +π6).∵函数f (x )的周期为π,∴T =2π2ω=π.∴ω=1.(2)在△ABC 中,f (B )=1,∴2sin(2B +π6)=1.∴sin(2B +π6)=12.又∵0<B <π, ∴π6<2B +π6<136π. ∴2B +π6=5π6.∴B =π3.∵a ,b ,c 成等差数列,∴2b =a +c .∴cos B =cos π3=a 2+c 2-b 22ac =12,∴ac =a 2+c 2-a +c 24.化简得a =c .又∵B =π3,∴△ABC 为正三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

寒假作业(九) 平面向量(注意解题的速度)一、选择题1.已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( ) A .a ∥b B .a ⊥b C .|a |=|b |D .a +b =a -b解析:选B 因为|a +b |=|a -b |⇔(a +b )2=(a -b )2⇔a ·b =0,所以a ⊥b . 2.已知|a |=1,|b |=2,且a ⊥(a -b ),则向量a 与向量b 的夹角为( ) A.π6 B.π4 C.π3D.2π3解析:选B ∵a ⊥(a -b ),∴a ·(a -b )=a 2-a ·b =1-2cos 〈a ,b 〉=0,∴cos 〈a ,b 〉=22,∴〈a ,b 〉=π4. 3.已知平面向量a ,b 的夹角为2π3,且a ·(a -b )=8,|a |=2,则|b |等于( ) A. 3 B .2 3 C .3D .4解析:选D 因为a ·(a -b )=8,所以a ·a -a ·b =8,即|a |2-|a ||b |cos 〈a ,b 〉=8,所以4+2|b |×12=8,解得|b |=4.4.(2017·广西三市第一次联考)已知向量a ,b 满足|a |=1,|b |=23,a 与b 的夹角的余弦值为sin17π3,则b ·(2a -b )等于( ) A .2 B .-1 C .-6D .-18解析:选D ∵a 与b 的夹角的余弦值为sin 17π3=-32,∴a ·b =-3,b ·(2a -b )=2a ·b -b 2=-18.5.(2017·石家庄教学质量检测)已知向量a =(2,1),b =(1,m ),c =(2,4),且(2a -5b )⊥c ,则实数m =( )A .-310B .-110C.110D.310解析:选D 因为2a -5b =(4,2)-(5,5m )=(-1,2-5m ),又(2a -5b )⊥c ,所以(2a -5b )·c =0,即(-1,2-5m )·(2,4)=-2+4(2-5m )=0,解得m =310.6.已知向量a =(1,2),b =(-3,2),且向量ka +b 与a -2b 平行,则实数k 的值为( ) A .-12B.12 C .-2D .2解析:选A 由向量ka +b =(k -3,2k +2)与a -2b =(7,-2)平行,可得7(2k +2)=-2(k -3),解得k =-12.7.(2018届高三·西安八校联考)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在BA ―→方向上的投影是( )A .-3 5B .-322C .3 5D.322解析:选A 依题意得,BA ―→=(-2,-1),CD ―→=(5,5),BA ―→·CD ―→=(-2,-1)·(5,5)=-15,|BA ―→|=5,因此向量CD ―→在BA ―→方向上的投影是BA ―→·CD ―→|BA ―→|=-155=-3 5.8.(2017·惠州市第三次调研考试)若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形解析:选A ∵(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0, ∴CB ―→·(AB ―→+AC ―→)=0,∵AB ―→-AC ―→=CB ―→, ∴(AB ―→-AC ―→)·(AB ―→+AC ―→)=0,即|AB ―→|=|AC ―→|, ∴△ABC 是等腰三角形.9.在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,DE 交AF 于H ,记AB ―→,BC ―→分别为a ,b ,则AH ―→=( )A.25a -45b B.25a +45bC .-25a +45bD .-25a -45b解析:选B 如图,过点F 作BC 的平行线交DE 于G ,则G 是DE 的中点,且GF ―→=12EC ―→=14BC ―→,∴GF ―→=14AD ―→,则△AHD ∽△FHG ,从而HF ―→=14AH ―→,∴AH ―→=45AF ―→,AF ―→=AD ―→+DF ―→=b +12a ,∴AH ―→=45⎝⎛⎭⎫b +12a =25a +45b . 10.已知向量OZ ―→ (O 为坐标原点)与OZ ′―→关于x 轴对称,j =(0,1),则满足不等式OZ ―→2+j ·ZZ ′―→≤0的点Z (x ,y )的集合用阴影表示为( )解析:选C 由题意得,OZ ―→=(x ,y ),OZ ′―→=(x ,-y ),ZZ ′―→=(0,-2y ),所以OZ ―→2+j ·ZZ ′―→=x 2+(y -1)2-1≤0,即x 2+(y -1)2≤1,点Z (x ,y )的集合用阴影表示为圆心为(0,1),半径为1的圆的内部(包含边界),故C 符合.11.(2017·浙江高考)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA ―→·OB ―→,I 2=OB ―→·OC ―→,I 3=OC ―→·OD ―→,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 3解析:选C 法一:如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,∴∠AOB 与∠COD 为钝角,∠AOD 与∠BOC 为锐角.根据题意,I 1-I 2=OA ―→·OB ―→-OB ―→·OC ―→=OB ―→·(OA ―→-OC ―→)=OB ―→·CA ―→=|OB ―→|·|CA ―→|cos ∠AOB <0,∴I 1<I 2,同理得,I 2>I 3,作AG ⊥BD 于G ,又AB =AD , ∴OB <BG =GD <OD ,而OA <AF =FC <OC , ∴|OA ―→|·|OB ―→|<|OC ―→|·|OD ―→ |, 而cos ∠AOB =cos ∠COD <0, ∴OA ―→·OB ―→>OC ―→·OD ―→,即I 1>I 3, ∴I 3<I 1<I 2.法二:如图,建立平面直角坐标系,则B (0,0),A (0,2),C (2,0).设D (m ,n ), 由AD =2和CD =3,得⎩⎪⎨⎪⎧m 2+(n -2)2=4,(m -2)2+n 2=9,从而有n -m =54>0,∴n >m .从而∠DBC >45°,又∠BCO =45°,∴∠BOC 为锐角. 从而∠AOB 为钝角.故I 1<0,I 3<0,I 2>0. 又OA <OC ,OB <OD ,故可设OD ―→=-λ1OB ―→ (λ1>1),OC ―→=-λ2OA ―→(λ2>1), 从而I 3=OC ―→·OD ―→=λ1λ2OA ―→·OB ―→=λ1λ2I 1, 又λ1λ2>1,I 1<0,I 3<0,∴I 3<I 1,∴I 3<I 1<I 2.12.(2017·成都第一次诊断性检测)已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB ―→|=2,OC ―→=53OA ―→-23OB ―→.若M 是线段AB 的中点,则OC ―→·OM ―→的值为( )A .3B .2 3C .2D .-3解析:选A 法一:设A (x 1,y 1),B (x 2,y 2),则OA ―→=(x 1,y 1),OB ―→=(x 2,y 2),OM ―→=⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,AB ―→=(x 2-x 1,y 2-y 1),所以OC ―→=53OA ―→-23OB ―→=⎝⎛⎭⎫53x 1-23x 2,53y 1-23y 2.由|AB ―→|=2,得(x 2-x 1)2+(y 2-y 1)2=4 ①,又A ,B 在圆O 上,所以x 21+y 21=4,x 22+y 22=4 ②.联立①②得x 1x 2+y 1y 2=2,所以OC ―→·OM ―→=⎝⎛⎭⎫53x 1-23x 2,53y 1-23y 2·⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22, 化简并整理,得56(x 21+y 21)-13(x 22+y 22)+12(x 1x 2+y 1y 2)=56×4-13×4+12×2=3.法二:由条件易知△OAB 为正三角形.又由M 为AB 的中点,则OM ―→12(OA ―→+OB ―→),所以OC ―→·OM ―→=12(OA ―→+OB ―→)·⎝⎛⎭⎫53 OA ―→-23OB ―→=12⎝⎛ 53|OA ―→|2+OA ―→·OB ―→-⎭⎫23|OB ―→|2=3. 二、填空题13.已知向量a =(2,1),b =(1,-2).若ma +nb =(9,-8)(m ,n ∈R),则m -n 的值为________.解析:由向量a =(2,1),b =(1,-2), 得ma +nb =(2m +n ,m -2n )=(9,-8),则⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,故m -n =-3. 答案:-314.在△ABC 中,已知向量AB ―→=(2,2),|AC ―→|=2,AB ―→·AC ―→=-4,则△ABC 的面积为________.解析:∵AB ―→=(2,2),∴|AB ―→|=22+22=22,AB ―→·AC ―→=|AB ―→|·|AC ―→|cos A =22×2×cos A =-4, 即cos A =-22,∵0<A <π,∴sin A =22, ∴S △ABC =12|AB ―→|·|AC ―→|·sin A =2.答案:215.如图,在边长为2的菱形ABCD 中,∠BAD =60°,P ,Q 分别是BC ,BD 的中点,则向量AP ―→与AQ ―→的夹角的余弦值为________.解析:以A 为原点,AB 所在直线为x 轴建立如图所示的直角坐标系,则A (0,0),B (2,0),C (3,3),D (1,3),所以P ⎝⎛⎭⎫52,32,Q ⎝⎛⎭⎫32,32,所以AP ―→=⎝⎛⎭⎫52,32,AQ ―→=⎝⎛⎭⎫32,32,所以cos 〈AP ―→,AQ ―→〉=AP ―→·AQ ―→|AP ―→||AQ ―→|=154+347×3=32114.答案:3211416.(2017·长沙统一模拟考试)平行四边形ABCD 中,AB =3,AD =2,∠BAD =120°,P 是平行四边形ABCD 内一点,且AP =1,若AP ―→=x AB ―→+y AD ―→,则3x +2y 的最大值为________.解析:|AP ―→|2=(x AB ―→+y AD ―→)2=9x 2+4y 2+2xy ·3·2·⎝⎛⎭⎫-12=(3x +2y )2-3·3x ·2y ≥(3x +2y )2-34(3x +2y )2=14(3x +2y )2.又|AP ―→|2=1,因此14(3x +2y )2≤1,故3x +2y ≤2,当且仅当3x=2y ,即x =13,y =12时,3x +2y 取得最大值2.答案:2。

相关文档
最新文档