高中数学必修五解三角形专题
最新数学-高中必修五-解三角形-经典题目

第一章 解三角形1.1正弦定理和余弦定理1.1.1正弦定理【典型题剖析】考察点1:利用正弦定理解三角形 例1在ABC 中,已知A:B:C=1:2:3,求a :b :c.【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。
解:::1:2:3,A .,,,6321::sin :sin :sin sin:sin:sin:1 2.6322A B C B C A B C a b A B C πππππππ=++=∴===∴====而【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。
例2在ABC 中,已知,C=30°,求a+b 的取值范围。
【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。
解:∵C=30°,,∴由正弦定理得:sin sin sin a b c A B C === ∴)sin (150°-A ).∴)[sinA+sin(150°)·2sin75°·cos(75°-A)=2cos(75°-A)① 当75°-A=0°,即A=75°时,a+b取得最大值2;② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°,∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1,∴>2cos75°=2×4. 综合①②可得a+b 的取值范围为,8+考察点2:利用正弦定理判断三角形形状 例3在△ABC 中,2a ·tanB=2b ·tanA ,判断三角形ABC 的形状。
【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。
高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。
作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。
必修5解三角形知识点归纳总结

第一章解三角形一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 —=—=—=2R (其中R 是三角形外接圆的半径) sin A sin B sinC a + b + c a b c = = = . sin A + sin B + sin Csin A sin B sin C 2)化边为角: a : b : c = sin A : sin B : sin C . a sin A b sin B a sin Ab sin B ,c sin C ,csin C 3)化边为角:a = 2R sin A , b = 2R sin B , c = 2R sin Csin A a sin B b sin A a • —— •sin B b ' sin C c ' sin C c 'abc sin A =——, sin B =——, sin C =—— 2 R 2 R 2 R3.利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角;例:已知角B,C,a,解法:由A+B+C=180o ,求角A,由正弦定理a =空A ;-=把B b sin B c sin C a sin A = ------- ;求出b 与c c sin C②已知两边和其中一边的对角,求其他两个角及另一边。
例:已知边a,b,A,解法:由正弦定理a =竺4求出角B,由A+B+C=180o 求出角C,再使用正 b sin B弦定理a = sn A 求出c 边 c sin C 4.△ABC 中,已知锐角A,边b,则①a < b sin A 时,B 无解;②a = b sin A 或a > b 时,B 有—个解③b sin A < a < b 时,B 有两个解。
2.变形:1) 4)化角为边: 5)化角为边:如:①已知A :60。
高中数学 必修5 第一章 解三角形 知识整理

必修五
1.1 正弦定理和余弦定理
1. 正弦定理
(1)正弦定理 在一个三角形中,各边的长和它所对的角的正弦的比相等,且等于该三角形外接圆的
直径长,即 a b c 2R 。 sin A sin B sin C
(2)利用正弦定理解三角形
①解三角形:一般的,我们把三角形的三个角 A、B、C 和它们的对边 a、b、c 叫做三
②已知三边,如 a、b、c。
解法: cos A b2 c2 a2 ,同样可求出 B、C。 2bc
③已知两边和其中一边的对角,如 a、b、A。 解法:(一般是建立二次方程求解)利用余弦定理建立关于 c 的一元二次方程 c2-2bccosA+b2-a2=0,此方程正实数解的个数即为该问题解的个数。利用解出的 c 值,进而 转换成类型 2,可求角 B、C。 (4)如何判断三角形的形状 ①判断三角形的形状是看该三角形是否为某些特殊的三角形(如锐角、直角、钝角、 等腰、等边三角形等)。 ②对于给出条件是边角关系混合在一起的问题,一般的,应运用正弦定理和余弦定理, 要么把它统一为边的关系,要么统一为角的关系。再利用三角形的有关知识,三角恒等变 形方法、代数恒等变形方法等进行转化、化简,从而得出结论。 ③常见结论:设 a、b、c 是△ABC 的角 A、B、C 的对边: a.若 a2+b2=c2,则 C=90°; b.若 a2+b2>c2,则 C<90°; c.若 a2+b2<c2,则 C>90°;
d.若 sin2A=sin2B,则 A=B 或 A B 。 2
4
必修五
1.2 应用举例
实际应用问题中有关的名称、术语 1. 仰角、俯角
如图,当我们进行测量时,在视线与水平线所成的 角中,视线在水平线上方的角叫仰角,视线在水平线下 方的角叫俯角。 2. 方向角、方位角
高中数学必修5__第一章_解三角形复习知识点总结与练习

高中数学必修5__第一章_解三角形复习知识点总结与练习高中数学必修5第一章解三角形复习一、知识点总结【正弦定理】1.正弦定理:ainAbinBcinC2RR为三角形外接圆的半径2正弦定理的一些变式:iabcinAinBinC;iiinAa2R,inBb2R,inCc2R;2Riiia2RinA,b2RinB,b2RinC;(4)3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角abcinAinBinC(2)已知两边和其中一边的对角,求其他边角(可能有一解,两解,无解)中,已知a,b及A时,解得情况:解法一:利用正弦定理计算解法二:图形一解两解一解一解无解A 为锐角A为钝角或直角关系式解的个数【余弦定理】a2b2c22bccoA2221.余弦定理:bac2accoB2推论:设a、b、c是C的角、、C的对边,则:①若abc,则C90;②若abc,则C90;③若abc,则C90.3两类余弦定理解三角形的问题:(1)已知三边求三角(2)已知两边和他们的夹角,求第三边和其他两角12222222【面积公式】已知三角形的三边为a,b,c,1.S1aha1abinC1rabc(其中r为三角形内切圆半径)12abc,S/h的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B点观测灯塔A的方位角为110°,航行半小时到达C点观测灯塔A的方位角是65°,则货轮到达C点时,与灯塔A的距离是多少?扩展阅读:高中数学必修5第一章解三角形知识点复习及经典练习高中数学必修五第一章解三角形知识点复习及经典练习一、知识点总结abc2R或变形:a:b:cinA:inB:inC1.正弦定理:inAinBinC推论:①定理:若α、β>0,且αβ<,则α≤βinin,等号当且当α=β时成立。
②判断三角解时,可以利用如下原理:inA>inBA>Ba>bcoAcoBAB(co在0,上单调递减)b2c2a2coA2bca2b2c22bccoA2a2c2b2222.余弦定理:bac2accoB或coB2acc2b2a22bacoCb2a2c2coC2ab3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角2、已知两角和其中一边的对角,求其他边角(2)两类余弦定理解三角形的问题:1、已知三边求三角2、已知两边和他们的夹角,求第三边和其他两角4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式5.三角形中的基本关系:inABinC,coABcoC,tanABtanC,in已知条件一边和两角(如a、B、C)ABCABCABCco,coin,tancot222222一般解法由ABC=180,求角A,由正弦定理求出b与c,在有解时有一解。
必修五《解三角形,不等式》专题典例参考资料

解三角形(理)知识要点:一、正弦定理及其变形: sin a A= (R 为三角形外接圆半径) 变形1:=C B A sin :sin :sin 变形2:⎪⎪⎩⎪⎪⎨⎧======)(sin ;)(sin ;)(sin ;C c B b A a 二、余弦定理及其推论:=2a=2b=2c推论:=A cos =B cos =C cos三、三角形面积公式=∆ABC S l r S ABC ⋅=∆21(r 是内切圆的半径,l 是三角形的周长) 1sin cos 22=+A A π=++C B A重要习题1、在△ABC 中,b =22,B =45°,则A=60°a =______;2、在△ABC 中,已知bc c b a ++=222,则角A 为 ;3、在△ABC 中,已知bc b c a =--2222123且32π=A △ABC 是 三角形. 4、在△ABC 中,a =3,b =7,c =2,那么B 等于 ;最大角的余弦值为 ; △ABC 的面积为 ;5、在△ABC 中,4:3:2sin :sin :sin =C B A 且14=+c b 则△ABC 的面积为 。
6、在ABC ∆中,若其面积222S =C ∠=_______;7、已知△ABC 中,a =8,b =7,B =60°,求边c 及S △ABC ‘《不等式》(理)一、一元二次不等式的解法:1、解一元二次不等式的步骤:当0a ≠时求解不等式:20ax bx c ++>(或20axbx c ++<)(1)将原不等式化为一般式(a ).(2)判断 的符号.(3)求 (4)根据 写解集. 顺口溜:在二次项系数为正的前提下:大于 ,小于 。
2、分式不等式求解步骤: , , , ,如:⇒>a x g x f )()(⇒≤a x g x f )()( 3、一元二次不等式恒成立情况小结:20ax bx c ++>(0a ≠)恒成立⇔20ax bx c ++<(0a ≠)恒成立⇔4、[]n m x x f a ,)(∈<,恒成立⇔[]n m x x f a ,)(∈≥,恒成立⇔三.线性规划1、解线性规划问题的一般步骤:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找到最优解所对应的点;第三步:解方程的最优解,从而求出目标函数的最大值或最小值。
必修5-解三角形知识点归纳总结
第一章 解三角形一.正弦定理:1.正弦定理:R C cB b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b cC C++===A +B +A B R 2=.2)化边为角:C B A c b a sin :sin :sin ::=;;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin caC A = 5)化角为边: RcC R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角(唯一解); 例:已知角B,C,a ,解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a =;sin sin C B c b = ;sin sin CAc a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。
(解不定,需要讨论) 例:已知边a,b,A,解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理CAc a sin sin =求出c 边4.(i )△ABC 中,已知锐角A ,a ,边b ,则先求B sin ,⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧≥<==>解解解无解1,2,,1sin 1,1sin ,1sin b a b a B B B如:①已知32,2,60===O b a A ,求B (有一个解)②已知32,2,60===O a b A ,求B (有两个解) 注意:由正弦定理求角时,注意解的个数。
高中数学必修5(人教B版)第一章解三角形1.1知识点总结含同步练习题及答案
a b b sin A 1 √2 sin 45∘ ,所以sin B = = = = .因为 a > b,所以 sin B a 2 2 sin A A > B,所以 B 为锐角,所以 B = 30∘ .
下列关于 △ABC 的说法正确的是( ) A.若 a = 7,b = 14 ,A = 30∘ ,则 B 有两解 B.若 a = 30 ,b = 25 ,A = 150 ∘ ,则 B 只有一解
14 × 7 25 × 30 9×
1 2 = 1,所以 B = 90∘ ,即只有一解,A 项 1 2 < 1,又 A 为钝角,故 B 只有一解,B
b sin A C 项中,由正弦定理,得 sin B = = a
误;
√2 2 > 1,所以 B 不存在,即无解,C 项错 6
√3 10 × c sin B 2 < 1 ,因为 b < c ,B = 60∘ , D 项中,由正弦定理,得 sin C = = b 9 0 ∘ < C < 180 ∘ ,所以 C 有两解,D 项错误.
得{ b = 2,
c = 4.
4.判断三角形形状 描述: 利用三角恒等变换、正弦定理和余弦定理进行边角互化,从而找到三角形元素之间的关系,进而 判断三角形形状. 例题: 设 △ABC 的内角 A ,B ,C 所对的边分别为 a ,b ,c ,若 b cos C + c cos B = a sin A,则 ) △ABC 的形状为( A.直角三角形 B.锐角三角形 C.钝角三角形 D.不确定 解:A 由正弦定理可得 sin B cos C + sin C cos B = sin A sin A,所以 sin(B + C ) = sin 2 A,即 sin A = sin 2 A .又 sin A ≠ 0,所以 sin A = 1,所以 A = 90∘ . 在 △ABC 中,a2 ⋅ tan B = b 2 ⋅ tan A,判断三角形 ABC 的形状. 解:由正弦定理得
高中数学必修五三角函数知识点+练习题含答案解析(很详细)
高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。
数学_高中必修五_解三角形_
第一章 解三角形1.1正弦定理和余弦定理1.1.1正弦定理【典型题剖析】考察点1:利用正弦定理解三角形例1在ABC 中,已知A:B:C=1:2:3,求a :b :c.【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。
解:::1:2:3,A .,,,6321::sin :sin :sin sin :sin :sin :1 2.6322A B C B C A B C a b A B C πππππππ=++=∴===∴====而【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。
例2在ABC 中,已知C=30°,求a+b 的取值范围。
【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。
解:∵C=30°,,∴由正弦定理得:sin sin sin sin 30a b c A B C ===︒ ∴(150°-A ).∴°·2sin75°·cos(75°-A)= 2cos(75°-A) ① 当75°-A=0°,即A=75°时,a+b取得最大值2② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°,∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1,∴>2 cos75°=2综合①②可得a+b 的取值范围为考察点2:利用正弦定理判断三角形形状例3在△ABC 中,2a ·tanB=2b ·tanA ,判断三角形ABC 的形状。
【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形
【知识要点】
1.正弦定理:
a sin A =
b sin B =
c sin C
=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C .
sin A =a 2R ,sin B =b 2R ,sin C =c 2R
. 2. 余弦定理:
a 2=
b 2+
c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .
推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2
2ab
. 3.三角形面积公式:111sin sin sin 222
S ab C bc A ac B === 4. 三角形中的常用结论
(1)三角形内角和定理:A +B +C =π, ()()C B A C B A cos cos ,sin sin -=+=+
(2)A >B >C ⇔a >b >c ⇔sin A >sin B >sin C .
5.仰角和俯角
在视线和水平线所成的角中,视线在水平线__________的角叫仰角,在水平线______的角叫俯角(如图①).
6.方位角
从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②).
7.方向角
相对于某一方向的水平角(如图③).
图③
(1)北偏东α°:指北方向向东旋转α°到达目标方向.
(2)东北方向:指北偏东45°或东偏北45°.
(3)其他方向角类似.
一、选择题:
1. 在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )
A .310+
B .()1310-
C .13+
D .310
2. 在△ABC 中,b=3,c=3,B=300,则a 等于( )
A .3
B .123
C .3或23
D .2
3. 已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为
( )
A .41-
B .41
C .32
- D .32
4.在△ABC 中,b cos A =a cos B ,则三角形为( )
A.直角三角形 B .锐角三角形
C.等腰三角形
D.等边三角形
5.在ABC ∆中,已知()()()a c a c b b c +-=+,则A ∠为( )
A .300
B .450
C .600
D .120
6. △ABC 中,45B =,60C =,1c =,则最短边的边长等于 ( )A 63 B 6
2 C 1
2 D 3
2
7.长为5、7、8的三角形的最大角与最小角之和为( )
A 90°
B 120°
C 135°
D 150°
8. △ABC 中,cos cos cos a
b
c
A B C ==,则△ABC 一定是( )
A 直角三角形
B 钝角三角形
C 等腰三角形
D 等边三角形
9. △ABC 中,8b =,83c =,163ABC S =,则A ∠等于( )
A 30
B 60
C 30或150
D 60或120
10.在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( )
A.60° B .45° C.120 D.30°
11.在△ABC 中,a =2,A =30°,C =45°,则△ABC 的面积S △ABC 等于( )
A. B .2 C.+1 D.(+1)
12. 已知△ABC 的三边长6,5,3===c b a ,则△ABC 的面积为( )
A .14
B .142
C .15
D .152
13.已知三角形ABC 的三边a 、b 、c 成等比数列,它们的对角分别是A 、B 、C ,则sin A sin C 等于( )
A.cos 2B
B.1-cos 2B
C.1+cos 2B
D.1+sin 2B
14. △ABC 中,若c=ab b a ++22,则角C 的度数是( )
A.60°
B.120°
C.60°或120°
D.45°
15.△ABC 中,A =60°,b =1,这个三角形的面积为
,则△ABC 外接圆的直径为( )
A. B. C. D.
二、填空题
1.已知在△ABC 中,a =10,b =5,A =45°,则B = .
2.在△ABC 中,a =1,b =1,C =120°则c = .
3.在△ABC 中,若a 2>b 2+c 2,则△ABC 为;若a 2=b 2+c 2,则△ABC 为 ;若a 2<b 2+c 2且b 2<a 2+c 2且c 2<a 2+b 2,则△ABC 为 .
4.在△ABC 中,sin A =2cos B sin C ,则三角形为
5.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若,,a b c 成等差数列,30,
B =AB
C ∆的面积为32
,则b =____. 6.在△ABC 中,B =,C =3,B =30°,则A =
7.在△ABC 中,a +b =12,A =60°,B =45°,则a = ,b =
8. 在等腰三角形 ABC 中,已知sinA ∶sinB=1∶2,底边BC=10,则△ABC 的周长是 。
9.在△ABC 中,已知503b =,150c =,30B =,则边长a = 。
10. 在△ABC 中,已知sinA ∶sinB ∶sinC=3∶5∶7,则此三角形的最大内角的度数等于________.
三、解答题
1.已知在△ABC 中,c =10,A =45°,C =30°,求a 、b 和 B .
2.已知△ABC的三边长a=3,b=4,c=,求三角形的最大内角.
3.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.
4.已知△ABC的面积,解此三角形.
5.在△ABC中,a=,b=2,c=+1,求A、B、C及S
△.
6.在锐角三角形中,边a、b是方程x2-2 3 x+2=0的两根,角A、B满足:2sin(A+B)- 3 =0,求角C的度数,边c的长度及△ABC的面积。
7. 如图1,甲船在A处,乙船在A处的南偏东45°方向,距A有9海里并以20海里/时的速度沿南偏西15°方向航行,若甲船以28海里/时的速度航行,应沿什么方向,用多少小时能尽快追上乙船?
北
A
45°
B
°
C
图1。