2017年秋季新版北师大版七年级数学上学期1.3、截一个几何体素材2
北师大版七年级上册数学1.3 截一个几何体(解析版)

1.3 截一个几何体一、单选题1.如图,一个有盖..的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是A.B.C.D.【答案】D【解析】【分析】根据圆柱体的截面图形可得.【详解】解:将这杯水斜着放可得到A选项的形状,将水杯倒着放可得到B选项的形状,将水杯正着放可得到C选项的形状,不能得到三角形的形状,故选D.【点睛】本题主要考查认识几何体,解题的关键是掌握圆柱体的截面形状.2.粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线【答案】B【解析】【分析】点动线,线动成面,将滚筒看做线,在运动过程中形成面.【详解】解:滚筒看成是线,滚动的过程成形成面,故选:B.【点睛】本题考查点、线、面的关系;理解点动成线,线动成面的过程是解题的关键.3.用一个平面取截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆柱B.球体C.圆锥D.以上都有可能【答案】A【解析】【分析】根据圆柱、球体、圆锥的几何特征,分别分析出用一个平面去截该几何体时,可能得到的截面的形状,逐一比照后,即可得到答案.【详解】解:A、用一个平面去截一个圆柱,得到的图形可能是四边形,故A选项符合题意;B、用一个平面去截一个球体,得到的图形可能是圆,故B选项不合题意;C、用一个平面去截一个圆锥,得到的图形可能是圆、椭圆、抛物线、三角形,不可能是四边形,故C选项不符合题意;D、因为A选项符合题意,故D选项不合题意;故选A.【点睛】本题考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.4.如图,在一密闭的圆柱形玻璃杯中装一半的水,水平放置时,水面的形状是()A.圆B.长方形C.椭圆D.平行四边形【答案】B【解析】分析:此题实质是垂直圆柱底面的截面形状;解:水面的形状就是垂直圆柱底面的截面的形状,即为长方形;故选B.5.用一个平面去截几何体,截面不可能是三角形的是()A.圆柱B.圆锥C.三棱柱D.正方体【答案】A【解析】【分析】根据正方体、球体、棱柱、圆柱的形状特点判断即可.【详解】A、圆柱的截面跟圆、四边形有关,截面不可能是三角形,符合题意;B、过圆锥的顶点和下底圆心的面得到的截面是三角形,不符合题意;C、过三棱柱的三个面得到的截面是三角形,不符合题意;D、过正方体的三个面得到的截面是三角形,不符合题意.故选:A.【点睛】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,从中学会分析和归纳的思想方法.6.用一个平面去截一个几何体,其截面形状是圆,则原几何体可能为()①圆柱①圆锥①球①正方体①长方体A.①①B.①①①C.①①①①D.①①①①①【答案】B【解析】【分析】根据圆柱、圆锥、球、正方体、长方体的形状进行判断即可,可用排除法.【详解】解:①圆柱的截面形状可能是圆,符合题意;①圆锥的截面形状可能是圆,符合题意;①球的截面形状一定是圆,符合题意;①正方体的截面形状不可能是圆,不符合题意;①长方体的截面形状不可能是圆,不符合题意;故选B.【点睛】本题考查了用平面去截一个几何体,截面的形状即与被截的几何体有关,还与截面的角度和方向有关.7.如图所示,用一个平面去截一个圆柱,则截得的形状应是(①A.B.C.D.【答案】B【解析】【分析】当截面的角度和方向不同时,圆柱体的截面不相同进行判断即可.【详解】解:平面平行圆柱底面截圆柱可以得到一个圆,而倾斜截得到椭圆,所以B选项是正确的.【点睛】本题考查的是截面位置与截面的关系, 解答的关键是知道截面位置不同所得截面可能不同;8.一个几何体的一个截面是三角形,则原几何体一定不是下列图形中的( )A.圆柱和圆锥B.球体和圆锥C.球体和圆柱D.正方体和圆锥【答案】C【解析】【分析】观察题目,每个选项中都有圆锥,而圆锥的截面可能是三角形,故可以判断A①B①D;根据圆柱的截面可能是圆,长方形,不会是三角形,球体的截面永远是圆对C选项进行判断.【详解】圆柱的截面可能是圆,长方形,不会是三角形,球体的截面永远是圆,也不会是三角形.故选C①【点睛】本题主要考查的是几何体的有关知识,熟练掌握常见几何体截面的形状是解答本题的关键.9.用一个平面去截圆锥,截面图形不可能是()A.B.C.D.【答案】C【解析】试题分析:根据圆锥的形状特点判断即可,也可用排除法.解:如果用平面取截圆锥,平面过圆锥顶点时得到的截面图形是一个等腰三角形,如果不过顶点,且平面与底面平行,那么得到的截面就是一个圆,如果不与底面平行得到的就是一个椭圆或抛物线与线段组合体,所以不可能是直角形.故选;C.点评:此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.10.一个正方体锯掉一个角后,顶点的个数是① ①A.7个或8个B.8个或9个C.7个或8个或9个D.7个或8个或9个或10个【答案】D【解析】如下图,一个正方体锯掉一个角,存在以下四种不同的情形,新的几何体的顶点个数分别为:7个、8个、9个或10个.故选D.二、填空题11.正方体的截面中,边数最多的是________边形.【答案】六【解析】解:①用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,①最多可以截出六边形.故答案为:六.12.在“长方体、圆柱、圆锥”三种几何体中,用一个平面分别去截三种几何体,则截面的形状可以截出长方形也可以截出圆形的几何体是_____.【答案】圆柱【解析】【分析】首先当截面的角度和方向不同时,长方体的截面始终不是圆,无论什么方向截取圆锥都不会截得长方形,从而可用排除法可得答案.【详解】解:用一个平面截长方体,不管角度与方向,始终截不到圆,所以排除长方体,用一个平面截圆锥,不管角度与方向,始终截不到长方形,所以排除圆锥,用一个平面截圆柱,可以截到长方形与圆.故答案为:圆柱.【点睛】本题考查的是对基本的几何立体图形的认识,掌握长方体,圆柱,圆锥的特点是解题的关键.13.用一个平面去截下列几何体,截面可能是圆的是__________.(填写序号)①三棱柱;①圆柱;①圆锥;①长方体;①球【答案】①①①【解析】【分析】根据一个几何体有几个面,则截面最多为几边形,由于棱柱没有曲边,所以用一个平面去截棱柱,截面不可能是圆.【详解】用一个平面去截球,截面是圆,用一个平面去截圆锥或圆柱,截面可能是圆,但用一个平面去截棱柱,截面不可能是圆.故答案为:①①①【点睛】本题考查了截一个几何体:用一个平面去截一个几何体,截出的面叫做截面.截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.14.小华用一个平面去截圆柱体,所得到的截面形状可能是_______(写出一个即可).【答案】长方形或梯形或椭圆或圆【解析】【分析】用平面取截一个圆柱体,横着截时截面是椭圆或圆(截面与上下底平行),竖着截时,截面是长方形(截面与两底面垂直)或梯形.【详解】用平面取截一个圆柱体,横着截时截面是椭圆或圆(截面与上下底平行).竖着截时,截面是长方形(截面与两底面垂直)或梯形.故答案为:长方形或梯形或椭圆或圆.【点睛】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.15.下列说法:①球的截面一定是圆;①正方体的截面可以是五边形;①棱柱的截面不可能是圆;①长方体的截面一定是长方形,其中正确的有___________个【答案】3【解析】【分析】根据用一个平面截几何体,从不同角度截取所得形状会不同,进而分析得出答案.【详解】解::①球的截面一定是圆,说法正确;①正方体的截面可以是五边形,说法正确;①棱柱的截面不可能是圆,说法正确;①长方体的截面中,边数最多的多边形是六边形,也可以是三角形,故说法错误;故答案为:3.【点睛】本题考查了截面的形状.截面的形状既与被截的几何体有关,还与截面的角度和方向有关.主要考查学生的观察图形的能力、空间想象能力和动手操作能力.16.用一个平面分别截棱柱、圆锥,都能截出的一个图形是________.【答案】三角形【解析】【分析】分析用一个平面分别去截圆锥、棱柱,分别能够得到哪些截面图形,然后从分别得到的截面图形中找出都有的图形即可.【详解】用一个平面去截棱柱可以得到三角形、长方形;用一个平面去截圆锥可以得到圆、三角形等.故用一个平面分别去截分别截棱柱、圆锥,都能截出的一个截面是三角形.故答案为三角形.【点睛】此题考查几何体的截面图形,熟练掌握常见几何体的截面图形是解题的关键.17.用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n棱柱,最多可以截得________边形.n .【答案】五,六,七,2【解析】【分析】三棱柱有五个面,用平面去截三棱柱时最多与五个面相交得五边形.因此最多可以截得五边形;四棱柱有六个面,用平面去截三棱柱时最多与六个面相交得六边形.因此最多可以截得六边;五棱柱有七个面,用平面去截三棱柱时最多与七个面相交得七边形.因此最多可以截得七边形;n棱柱有n+2个面,用平面去截三棱柱时最多与n+2个面相交得n+2边形.因此最多可以截得n+2边形.【详解】用一个平面去截三棱柱最多可以截得5边形,用一个平面去截四棱柱最多可以截得6边形,用一个平面去截五棱柱最多可以截得7边形,试根据以上结论,用一个平面去截n棱柱,最多可以截得n+2边形.故答案为五;六;七; n+2.【点睛】此题考查截一个几何体,解题关键在于熟练掌握常见几何体的截面图形.18.一块方形蛋糕,一刀切成相等的两块,两刀最多切成4块,试问:五刀最多可切成__ 块相等体积的蛋糕,十刀最多可切成____块(要求:竖切,不移动蛋糕).【答案】16 56【解析】当切1刀时,块数为1+1=2块;当切2刀时,块数为1+1+2=4块;当切3刀时,块数为1+1+2+3=7块;…当切n刀时,块数=1+①1+2+3…+n①=1+()12n n+.n=5代入公式得16,n=10,代入公式得56.点睛:找规律题需要记忆常见数列1①2①3①4……n.1①3①5①7……2n-1.2①4①6①8……2n.2①4①8①16①32……2n.1①4①9①16①25 (2)2①6①12①20……n(n+1).学会常见数列的变形,才能具体问题找到规律.三、解答题19.(1)用一个平面去截一个几何体,可以得到圆形的截面的几何体有?(2)用一个平面去截一个几何体,可以得到三角形的截面的几何体有?【答案】(1)球,圆柱,圆锥;(2)三棱柱,三棱锥,正方体.【解析】(1)根据截面是圆,可得几何体是旋转体,根据旋转得到的几何体,可得答案;(2)根据截面与几何体的三个面相交,可得截面是三角形.【详解】(1)用一个平面去截一个几何体,可以得到圆形的截面的几何体有球,圆柱,圆锥;(2)用一个平面去截一个几何体,可以得到三角形的截面的几何体有三棱柱,三棱锥,正方体,故答案为:(1)球,圆柱,圆锥;(2)三棱柱,三棱锥,正方体.【点睛】此题考查截一个几何体,解题关键在于掌握图形的形状结构.20.如图所示是一个圆柱体,它的底面半径为3cm ,高为6cm .(1)请求出该圆柱体的表面积;(2)用一个平面去截该圆柱体,你能截出截面最大的长方形吗?截得的长方形面积的最大值为多少?【答案】(1)()254πcm ;(2)能截出截面最大的长方形,长方形面积的最大值为:()236cm 【解析】【分析】(1)用圆柱上下底面积加上侧面积即可;(2)当截得的面积最大时,长方形的长为底面直径,宽为6,可得面积最大值.解:(1)圆柱体的表面积为:232236ππ⨯⨯+⨯⨯1836ππ=+;()254π=cm ;(2)能截出截面最大的长方形.该长方形面积的最大值为:()2(32)636⨯⨯=cm .【点睛】本题考查了圆柱表面积的求法和截几何体,根据截面的形状既与被截的几何体有关,还与截面的角度和方向有关,得出这个圆柱体的截面面积最大是长方形是本题的关键.21.如图,图①1①是正方体木块,把它切去一块,可能得到①2①①①3①①①4①①①5①所示的图形,问①2①①①3①①①4①①①5①图中切掉的部分可能是其他几块中的哪一块?【答案】①2①图切掉的部分可能是①3①图和①5①图,①3①图切掉的部分可能是①2①图,①5①图切掉的部分可能是①2①图.【解析】试题分析:如图所示,图(3)可能是通过如下图(6①方法切割得到的,切下去的就是图(2①①图(5)可通过如下图(7)方法切割得到的,切下的是图(2①.试题解析:(2)图切掉的部分可能是(3)图和(5)图,(3)图切掉的部分可能是(2)图,(5)图切掉的部分可能是(2)图.22.如图,用一个平面去截一个正方体,如果截去的几何体是一个三棱锥,请回答下列问题:(1)截面一定是什么图形?(2)剩下的几何体可能有几个顶点?【答案】(1)三角形;(2)剩下的几何体可能有7个顶点、或8个顶点、或9个顶点、或10个顶点.【解析】【分析】①1)如果截去的几何体是一个三棱锥,那么截面一定是一个三角形;①2)当截面截取由三个顶点组成的面时可以得到三角形,剩下的几何体有7个点,当截面截取一棱的一点和两底点组成的面时可剩下几何体有8个点,当截面截取由2条棱中点和一顶点组成的面时剩下几何体有9个顶点.当截面截取由三棱中点组成的面时,剩余几何体有10个顶点.【详解】①1)如果截去的几何体是一个三棱锥,那么截面一定是一个三角形;①2)剩下的几何体可能有7个顶点、或8个顶点、或9个顶点、或10个顶点,如图所示:【点睛】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.23.一个表面涂满色的正方体,现将棱三等分,再把它切开变成若干个小正方体.问:其中三面都涂色的小正方体有多少个?两面都涂色的小正方体有多少个?只有一面涂色的小正方体有多少个?各面都没有涂色的小正方体有多少个?【答案】8,12,6,1【解析】试题分析:在大正方体的顶点处的小正方体的三面都有色;有一条棱在大正方体的棱上的小正方体的两面有色,与大正方体没有公共棱的小正方体有一面有色,在大正方体的中心的小正方体各面都无色.试题解析:解:由题意知,各顶点处的小正方体的三面都涂色,共有8个;有一条边在棱上的小正方体有12个,是两面涂色;每个面的正中间有一个只有一面涂色的,有6个;正方体正中心处有1个小正方体,它的各面都没有涂色.因此三面涂色的小正方体有8个,两面涂色的小正方体有12个,只有一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个.24.如图①是一个正方体,不考虑边长的大小,它的平面展开图为图①,四边形APQC是截正方体的一个截面.问截面的四条线段AC,CQ,QP,PA分别在展开图的什么位置上?【答案】线段AC,CQ,QP,PA分别在展开图的面ABCD,BCGF,EFGH,EFBA上.【解析】【分析】把立体图形表面的线条画在平面展开图上,找到四边形APQC四个顶点所在的位置这个关,再进一步确定四边形的四条边所在的平面即可①【详解】根据四边形所在立体图形上的位置,确定其顶点所在的点和棱,以及四条边所在的平面:顶点:A−A①C−C①P在EF边上,Q在GF边上.边AC在ABCD面上,AP在ABFE面上,QC在BCGF面上,PQ在EFGH面上.如图:【点睛】此题考查正方体的展开图,解决此题的关键是抓住四边形APQC四个顶点所在的位置,再进一步确定四边形的四条边所在的平面就可容易地画出.。
北师大版-数学-七年级上册-《截一个几何体》知识全解

1.3截一个几何体新知概览:知识要点课标要求中考考点用平面去截几何体所得截面的形状探索并理解几何体的截面形状。
截面的定义(掌握)几种常见几何体的截面掌握几种常见几何体的截面。
判断一个几何体的截面(应用)本节重、难点1.重点:截面的定义和形状.2.难点:利用截面解决实际问题.知识全解知识点1截面(1)截面的概念:用一个平面去截几何体,截出的面叫做截面.(2)正方体的截面:根据面与面相交可以得到线可知用一个平面去截正方体的三个面,得到的截面是三角形.如果用一个平面去截正方体的四个面,就能得到四边形,除能得到正方形、长方形这样的四边形外,还能得到其他的四边形,如梯形、平行四边形等.知识警示:(1)正方体总共有六个面,用一个平面去截最多只能得到六条交线,从而截面的边数最多只能是六,还可以得到五,但不可能截得七边形.(2)一般地,截面与几何体的几个面相交就得到几条交线,截面就是几边形.因此,若一个几何体有n个面,则截面最多的边数是n.知识拓展正方体的截面主要有三角形、四边形、五边形和六边形,如图1-3-1所示.【试练例题1 】如图1-3-2所示的一块长方体木头,想象沿虚线所示位置截下去所得到的截面图形是()思路导引:首先根据两组对边平行,可确定为平行四边形;又有一角为直角,故截面图形是长方形.答案:B.长方体的截面,经过长方体四个侧面,长方体中,对边平行,故可确定为平行四边形,交点垂直于底边,故为长方形.知识方法:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.知识点2几种常见几何体的截面(1)如图1-3-3所示,用平面截圆柱体,可能出现以下的几种情况.(2)如图1-3-4所示,用平面去截一个圆锥,能截出圆和三角形两种截面.图1-3-1A图1-3-2B C D(3)如图1-3-5所示,用平面去截球体,只能出现一种形状的截面---圆.知识警示: (1) 用一个平面去截一个圆柱所得到的截面有圆、长方形、椭圆、拱形形状和梯形.(2) 用一个平面去截圆锥,可得到圆、三角形、拱形形状和椭圆.【试练例题2】如图1-3-6中几何体的斜截面形状是( )思路导引:几何体是一个圆柱体,用一个平面斜截它,得到的截面应该是类似拱形的图形.答案C 用一个平面去截一个圆柱体,过平行于上下底面的面去截可得到圆;圆柱体的轴截面是矩形;过侧面且不平行于上下底面的面去截可得到椭圆;过一底面不平行于另一底面的面去截可得到类似拱形的截面.方法:平面与平面相交得直线,平面与曲面相交可能得到直线,也可能得到曲线.图1-3-5图1-3-4 图1-3-6。
数学:截一个几何体(北师大版七年级上)PPT课件

(2)
(3)
(4)
(5)
(6)
(7)
(8)
图形编号 (1) (2) (3) (4) (5) (6) (7) (8)
截面形状 圆 三角形 圆 长方形 三角形 梯形 三角形 长方形
正方形
2、用平面去截一个几何体如果截面的形状 是圆,你能想像出原来的几何体是什么?
答 : 球 圆柱 圆锥
3、如图 用一个平面去截下列各几何体,所得 截面与其它三个不同的是 ( D )
A
B
C
D
4、分别指出图中几何体截面形状的标号.
5、用平面截正方体得到五边形,需要经
过正方体的几个面?( C )
A.3个 B.4个 C.5个 D.6个
6、从任意方向截几何体,球 的截面一定
是圆.
7、 一立体图形,用水平截面去截,所 得的截面是圆;用竖直的截面去截,所得
截面是矩形,这个几何体可能是 圆柱体 .
截一个几何体
用平面去截正方体,能截 出七边形截面吗?
形状 三角形 四边形 五边形 六边形
特殊情形
等
等腰边三三角角形
形
平
长
正
梯
行
方
方
形
四
形
形
边
形
用一个平面去截圆柱和圆锥,截面是什么形 状?
圆柱体
圆锥体
考考你:1、如图 ,用平面分别截这些几何体,请
你将截面的形状按对应的图号填表:
(1)
You Know, The More Powerful You Will Be
Thank You
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
1.3 截一个几何体 课件 北师大版七年级上

不规则图形
圆锥被平面所截
思考题:
答:可能为 圆 三角形
平面
圆锥体被一平面所截,截面可能有哪些图形? 不规则图形
布置作业
书上P14 习题1.5
截一个几何体
正方体被一平面所截
思考题:
答:可能为 长方形 正方形
平面
正方体被一平面所截,截面可能有哪些图形? 三角形 梯形
圆柱被一平面所截
思考题:
答:可能为 长方形 正方形
平面
圆柱被一平面所截,截面可能有哪些图形? 圆 不规则图形
棱体被一平面所截
思考题:
答:可能为 长方形
平面
棱体被一平面所截,截面可能有哪些图形? 正方形 三角形 梯形
截一个几何体北师大版数学初一上册教案

截一个几何体北师大版数学初一上册教案几何体也叫立体,是空间的有限部分,是由平面和曲面所围成。
如棱柱体、正方体、圆柱体、球体。
也叫立体。
棱柱是多面体中最简单的一种。
以下是整理的截一个几何体北师大版数学初一上册教案,欢迎大家借鉴与参考!《1.3截一个几何体》教案【教学目标】1.经历切截几何体的活动过程,体会几何体在切截过程中的变化.2.体会数学中的面与体之间的转换过程.3.发展学生的空间观念.【基础知识精讲】1.用平面截几方体出现的截面形状.(1)用一个平面去截正方体,可能出现下面几种情况:(括号内的是出现的截面形状)图1—20点拨:由前面的知识我们知道“面与面相交得到线”,而用平面去截几何体,所得的截面就是这个平面与几何体每个面相交的线所围成的图形.正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.注:长方体、棱柱的截面与正方体的截面有相似之处.用平面截圆柱体,可能出现以下的几种情况.图1—21分析:用平面去截圆柱体,可以与圆柱的三个面(两个底面,一个侧面)同时相交,由于圆柱侧面为曲面,故相交得到是曲线,无法截出三角形.只能用平面平行和垂直于圆柱的底面截出这几种图形.(3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)(4)用平面去截球体,只能出现一种形状的截面——圆.《1.3截一个几何体》同步练习10.用一个平面截下列几何体:①长方体,②六棱柱,③球,④圆柱,⑤圆锥,截面能得到三角形的是(填写序号即可)11.用一个平面去截一个三棱柱,截面可能是.(填一个即可)12.把一个长方体切去一个角后,剩下的几何体的顶点个数为.13.用一个平面截一个圆柱,如果能得到一个截面是正方形,那么圆柱的底面直径d与圆柱的高h之间的关系.《1.3截一个几何体》课堂测试7,用一个平面去截一个正方体,所得截面的形状可能是.(写出所有可能的形状)8.用一个平面截一个圆锥,所得截面可能是三角形吗?可能是直角三角形吗?当截面是一个圆时,截面面积可能恰好等于底面面积的一般吗?9,试一试:用平面去截一个正方体,能得到一个等边三角形吗?能截到一个直角三角形或钝角三角形截面吗?10,用一个平面截去四棱柱的一部分,请画图说明剩下的部分是否还可能是四棱柱.11,一个正方体容器,内有一定体积的水,上面浮着一层黄色的油,如果将容器朝不同方向倾斜,便可观察到类似于截面的形象.试一试,你看到了哪几种形状的截面?截一个几何体北师大版数学初一上册教案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通过栩栩如生的多媒体图片展现上面的问题情境,一下子使学生“身临其境”,紧紧抓住了学生的注意力.而他们能否走出森林,悬念般扣人心弦,使得所有同学在上课伊始便自然地融入教师创设的教学情境,经历“担忧小明小华能否平安走出森林”的情感体验. 通过学生的讨论和教师的适时点拨,学生可以借助树木年轮来确定方向,这样既丰富了学生的科普知识,又让学生在解决问题的过程中“自然”地接触到“截面”,从而增强学生对于截面学习必要性的认识.事实上,现实生活中截面应用的例子还有很多,如地质剖面、CT 等。