循迹小车制作过程
循迹小车

目录摘要 (2)1.1系统组成结构 (3)1.2应用软件介绍 (3)1.3原理分析 (4)第二章硬件电路原理图 (5)2.1系统硬件设计原理图 (5)2.2单片机系统电路图 (6)2.3电源电路图 (7)2.4电动机控制驱动图 (8)2.5电机控制方法 (9)2.6循迹小车光电采样电路 (10)第三章元器件介绍 (11)3.1低压差稳压芯片LM2940简介 (11)3.2用于避障功能的光电传感器 (11)3.3黑白线检测传感器 (12)3.4常用H桥集成电路芯片L298 (12)第四章软件系统的实现 (14)4.1主程序设计 (15)4.2设计思路 (15)设计总结 (16)参考文献 ........................................... 错误!未定义书签。
附录:源程序代码 . (18)摘要智能车以及在智能车辆基础上开发出来的产品已成为航天、医疗、工业控制、物流等各个领域的关键设备因此世界上许多国家都在积极进行智能车的研究和开发设计。
本文介绍了以AT89C51单片机为核心控制系统,通过传感器读入数据,采用红外对管获取赛道的信息。
经单片机处理后,输出控制信号给马达驱动电路,来控制马达的正反转动。
所以整个过程不需要人来控制,当不同的传感器检测到黑线时,马达会有不同的转动方向。
以达到智能小车循迹运行的目地,从而实现了简单的智能控制。
智能小车的结构主要分为以下几个部分:1. 循迹模块:用于探测黑线的位置,基础由若干个光电管组成,通过反射红外线的变化判断黑线的有无。
高年级的同学建议尝试使用摄像头等作为传感器。
3. 电机驱动模块,本系统用两个直流电机。
由于单片机输出的电流有限,无法直接驱动电机进行工作,因此需要通过专用的电路进行驱动,只要单片机给出相应的控制信号,便可控制电机工作,本文以较为常用的H桥驱动芯片L298N 为例,鼓励大家自行选择更合适的驱动方案。
4. 单片机模块,根据使用的传感器和控制策略的不同,单片机的选择也不同,对于低年级刚入门的同学可以使用51 单片机,有一定基础的同学可以使用性能稍强的AVR 系列,高年级同学推荐使用MSP430 或者S12 等其他性能更强的单片机。
循迹小车全资料

寻迹小车在历届全国大学生电子设计竞赛中多次出现了集光、机、电于一体的简易智能小车题目。
笔者通过论证、比较、实验之后,制作出了简易小车的寻迹电路系统。
整个系统基于普通玩具小车的机械结构,并利用了小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。
总体方案整个电路系统分为检测、控制、驱动三个模块。
首先利用光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。
系统方案方框图如图1所示。
图1 智能小车寻迹系统框图传感检测单元小车循迹原理该智能小车在画有黑线的白纸“路面”上行驶,由于黑线和白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。
笔者在该模块中利用了简单、应用也比较普遍的检测方法——红外探测法。
红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。
在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。
传感器的选择市场上用于红外探测法的器件较多,可以利用反射式传感器外接简单电路自制探头,也可以使用结构简单、工作性能可靠的集成式红外探头。
ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,所以该系统中最终选择了ST168反射传感器作为红外光的发射和接收器件,其内部结构和外接电路均较为简单,如图2所示:图2 ST168检测电路ST168采用高发射功率红外光、电二极管和高灵敏光电晶体管组成,采用非接触式检测方式。
ST168的检测距离很小,一般为8~15毫米,因为8毫米以下是它的检测盲区,而大于15毫米则很容易受干扰。
笔者经过多次测试、比较,发现把传感器安装在距离检测物表面10毫米时,检测效果最好。
R1限制发射二极管的电流,发射管的电流和发射功率成正比,但受其极限输入正向电流50mA的影响,用R1=150的电阻作为限流电阻,Vcc=5V作为电源电压,测试发现发射功率完全能满足检测需要;可变电阻R2可限制接收电路的电流,一方面保护接收红外管;另一方面可调节检测电路的灵敏度。
智能循迹小车详细制作过程

第二届“飞思卡尔”杯全国大学生智能汽车邀请赛技术报告目录第一章引言 (1)1.1 智能车制作概述 (1)1.2 参考文献综述 (1)1.3 技术报告内容与结构 (1)第二章设计方案概述 (3)2.1 总体设计 (3)2.2 具体方案 (3)2.2.1 道路识别模块 (3)2.2.2 速度检测模块 (4)第三章模型车整体设计 (5)3.1 机械部分的调整 (5)3.2 传感器设计与安装 (5)3.2.1 光电管安装: (5)3.2.2 摄像头安装: (6)3.2.3 测速装置 (7)第四章硬件电路设计 (9)4.1 整体介绍 (9)4.2 各模块电路介绍 (10)第五章控制算法实现 (15)5.1 总体软件设计 (15)5.2 路径识别算法 (16)5.2.2 基于光电管的模糊控制算法 (16)5.2.2 基于CMOS的算法 (18)5.2.3 两者的结合 (20)5.3 速度控制算法 (20)第六章调试及主要问题解决 (23)6.1 调试工具 (23)6.2 调试过程 (24)6.3 主要技术参数说明 (25)第七章结论 (27)附录A 参考书目 (I)附录B 部分程序...................................................................................... I I第一章引言1.1 智能车制作概述本队在小车制作过程中,先对比赛内容,要求与规则进行了详细分析,然后按照要求制订了几种设计方案,并对几种方案进行比较敲定最后方案。
根据方案完成小车的总体设计和详细设计(包括底层硬件设计和总体软件设计),在完成了车模组装和改造后,完成了各个模块的硬件电路设计与安装,并进行了控制算法的设计和软件实现,最后进行了整车的调试和优化。
1.2 参考文献综述方案设计过程中参考了一些相关文献,如参考文献所列。
例如文献 1 与 2 单片机嵌入式系统在线开发方法。
简易电磁循迹智能小车ppt课件

过渡页
Transition Page
总体设计方案
电磁传感器
电
信号采集及处理
源
模
块
逻辑控制
电机驱动
左电机
右电机
电磁传感器
由于赛道路径上铺设的漆包线通有20KHz的方波,传感器采用传统的 电磁感应线圈方案,它具有原理简单,体积较小,价格便宜,相应频率快, 电路实现简单等优点。
检测电磁线圈选用10mH的工字电感,这类电感的体积小, Q值高,具有开放的磁芯等特点。
已知感应电动势的频率为f=20 kHz,感应线圈电感为 L= 10 mH ,可以计算出谐振电容的容量为:
标称电容与上述容值最为接近的电容为 6.8nF,所以在 实际电路中我们选用 6.8nF 的独石电容作为谐振电容。该电 容虽然误差比较大,测试中15个电容里面误差最小的都有 1453pF,但价格便宜。
磁感线是以导体为圆心的一系列同心圆,由上述公式可知,当电 流I一定时,磁感应强度与距离导线中心的长度成反比。变化的磁 场通过感应线圈会产生感应电动势。因此在小车前方放置感应线 圈,根据磁场的大小产生相应感应电动势,驱动小车行进。根据 法拉第电磁感应定律可知,假设线圈半径为r,感应电动势为:
过渡页
过渡页
Transition Page
1
制作过程 2
3
第一阶段:课程设计题目分析、文献查询和 咨询阶段
第二阶段:电路设计、元器件采购及电路板 PCB设计阶段
第三阶段:焊接电路及调试阶段
过渡页
Transition Page
通过在跑道上测试,本设计基本达到了课程设计要求。 但其中也有不足之处。首先小车在行进途中会出现左 右晃动的情况,通过分析,是由于对感应部分的放大 电路没有达到要求,当导线位于两电感线圈中间时, 产生的感应电动势极其微小,放大倍数不高,以至于 后面的逻辑判断不能准确定位。其次对于小车行驶速 度也有待提高,起初为了防止小车因速度过快不能及 时反应而脱离跑道,因此在电机驱动电路上选择稍大 电阻,以减小电流。整体而言,整个设计所需成本较 低,功能也基本完善,在后续的学习和工作中,我将 进一步改进传感器电路,加大探测范围,提升小车速 度,来提升智能车的性能。
循迹小车制作过程

电子与信息工程系电子实训课题: 基于STC89C52RC和TCRT5000光电传感器的自动循迹小车设计专业:班级:学号:姓名:指导老师:完成日期:目录目录 0摘要: (1)1.任务及要求 (2)1.1任务 (2)2.系统设计方案 (2)2.1小车循迹原理 (2)2.2控制系统总体设计 (2)3.系统方案 (3)3.1 寻迹传感器模块 (3)3.1.1光电传感器TCRT5000简介 (3)3.1.2比较器LM324简介 (3)3.1.3具体电路 (4)3.1.4传感器安装 (4)3.2控制器模块 (5)3.3电源模块 (6)3.4电机及驱动模块 (6)3.4.1电机 (6)3.4.2驱动 (7)4.软件设计 (8)4.1 PWM控制 (8)4.2 总体软件流程图 (8)4.3小车循迹流程图 (9)4.4中断程序流程图 (10)4.5单片机测序 (11)5.参考资料 (15)摘要本设计是基于STC89C52单片机控制的简易自动寻迹小车系统,包括小车系统构成软硬件设计方法。
小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。
小车系统以 STC89S52 单片机为系统控制处理器;采用TCRT5000光电传感器获取赛道的信息,并通过驱动控制电路来对小车的方向和速度进行控制。
此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。
1.任务及要求1.1任务设计一个基于直流电机的自动寻迹小车,使小车能够自动检测地面黑色轨迹,并沿着黑色车轨迹行驶。
系统方案方框图如图1-1所示。
图1-1 系统方案方框图2.系统设计方案2.1小车循迹原理这里的循迹是指小车在白色地板上循黑线行走,由于黑线和白色地板对光线的反射系数不同,可以根据接收到的反射光的强弱来判断“道路”。
通常采取的方法是红外探测法。
红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。
实验1 循迹小车

实验1 循迹小车循迹方案的运动原理:要想识别地面上的黑线或者白线,很容易可以想到使用灰度传感器,而且至少要有2个灰度传感器。
当只安装一个传感器时,一旦小车偏离轨迹就不好办了,所以还要想办法在小车快要离开轨迹的时候把它拉回来,这样就需要另外一个传感器。
所以我们最少要用到两个灰度传感器,一个安装在车头左侧,一个安装在车头右侧,如果左侧传感器检测到轨迹,就向右行驶来纠正;同理,如果右侧传感器检测到轨迹,就向左行驶来纠正。
这样就保证轨迹始终在两个传感器之间。
如下图所示:图1 循迹方案的运动原理机械结构:图2 寻迹小车机械结构程序代码:int pin[2] = {A0, A4 }; //如上图,从左至右对应int velocity; //定义速率void setup(){pinMode( 5 , OUTPUT);pinMode( 6 , OUTPUT);pinMode( 9 , OUTPUT);pinMode( 10 , OUTPUT);velocity=150;}void loop(){while(!digitalRead(pin[0])&&! digitalRead(pin[1])) //当两个传感器都检测黑色时,小车前进{Forwards();}while( digitalRead(pin[0])&& !digitalRead(pin[1]))//当左侧传感器都检测白色时,小车右转弯{Right();}while(!digitalRead(pin[0])&& digitalRead(pin[1]))//当右侧传感器都检测白色时,小车左转弯{Left();}while( digitalRead(pin[0])&& digitalRead(pin[1]))//当两侧传感器都检测白色时,小车停止{Stop();}}void Left() //小车左转子函数{analogWrite( 5 , 0);analogWrite( 6 , velocity ); //驱动右侧电机转动analogWrite( 9 , 0 );analogWrite( 10 , 0 ); //左侧电机停转}void Right() //小车右转子函数{analogWrite( 5 , 0 );analogWrite( 6 , 0 ); //右侧电机停转analogWrite( 9 , 0);analogWrite( 10 , velocity );//驱动左侧电机转动}void Forwards() //小车前进子函数{analogWrite( 5 , 0); analogWrite( 6 , velocity ); analogWrite( 9 , 0 ); analogWrite( 10 , velocity );}void Stop() //小车停止子函数{analogWrite( 5 , 0 ); analogWrite( 6 , 0 ); analogWrite( 9 , 0 ); analogWrite( 10 , 0 );}要零件附件。
自动循迹小车(附有程序)

大学生电子设计竞赛自动循迹小车目录摘要 (1)1.方案论证 (2)1.1方案描述 (2)1.2单片机方案的比较与论证 (2)1.3编码器选择与论证 (2)1.4 LDC1000与LDC1314选择与论证 (3)1.5 OLED显示方案 (3)1.6蜂鸣器发声方案 (3)2.理论分析与计算 (3)2.1速度增量式PID计算 (3)2.2舵机位置式PID算法 (3)3.电路与程序设计 (4)3.1系统组成 (4)3.2系统流程图 (5)4.测试方案与测试结果 (5)4.1测试方案 (5)4.1.1舵机测试方案 (6)4.1.2电机测试方案 (6)4.2系统测试结果分析 (6)5.结论 (6)6.参考文献 (7)摘要本循迹小车以单片机XS128为控制核心,主要由LDC1314感应模块、稳压模块、液晶显示模块、驱动控制模块、蜂鸣器模块、编码器、舵机以及小车组成。
跑道的标识为一根直径0.6~0.9mm的细铁丝,小车在规定的平面跑道自动按顺时针方向循迹前进。
在任意直线段铁丝上放置4个直径约19mm的镀镍钢芯硬币(第五套人民币的1角硬币),硬币边缘紧贴铁丝。
实验结果表明,在直线区任意指定一起点(终点),小车都能够依据跑道上设置的铁丝标识,能够自动绕跑道跑完一圈,而且时间不超过10分钟,小车运行时始终保持轨迹铁丝位于小车垂直投影之下,小车路过硬币时能够发现并发出声音提示,显示屏上能够实时显示小车行驶的距离和运行时间。
关键词:自动循迹 LDC1314 实时显示自动循迹小车1.方案论证1.1方案描述自动循迹小车依据电磁感应原理,由单片机XS128控制,控制系统是由XS128控制模块、LDC1314感应模块、稳压模块、液晶显示模块、驱动控制模块、蜂鸣器模块、编码器、舵机以及电动小车组成的闭环控制系统。
LDC1314感应模块采集小车在跑道上位置与角度信息,利用XS128单片机处理位置与角度数据后调节舵机打角并通过PID精确算法调整后轮速度。
智能循迹小车详细制作过程

(穿山乙工作室)三天三十元做出智能车基本设计思路:1.基本车架(两个电机一体轮子+一个万向轮)2.单片机主控模块3.电机驱动模块(内置5V电源输出)4.黑白线循迹模块0.准备所需基本元器件1).基本二驱车体一台。
(本课以穿山乙推出的基本车体为例讲解)2).5x7cm洞洞板、单片机卡槽、51单片机、石英晶体、红色LED、1K电阻、10K排阻各一个;2个瓷片电容、排针40个。
3).5x7cm洞洞板、7805稳压芯片、红色LED、1K电阻各一个;双孔接线柱三个、10u电解电容2个、排针12个、9110驱动芯片2个。
4).5x7cm洞洞板、LM324比较器芯片各一个;红外对管三对、4.7K电阻3个、330电阻三个、红色3mmLED三个。
一、组装车体(图中显示的很清晰吧,照着上螺丝就行了)二、制作单片机控制模块材料:5x7cm洞洞板、单片机卡槽、51单片机、石英晶体、红色LED、1K电阻、10K排阻各一个;2个瓷片电容、排针40个。
电路图如下,主要目的是把单片机的各个引脚用排针引出来,便于使用。
我们也有焊接好的实物图供你参考。
(如果你选用的是STC98系列的单片机在这里可以省掉复位电路不焊,仍能正常工作。
我实物图中就没焊复位)三、制作电机驱动模块材料:5x7cm洞洞板、7805稳压芯片、红色LED、1K电阻各一个;双孔接线柱三个、10u电解电容2个、排针12个、9110驱动芯片2个。
电路图如下,这里我们把电源模块与驱动模块含在了同一个电路板上。
因为电机驱动模块所需的电压是+9V左右(6—15V 均可),而单片机主控和循迹模块所需电压均为+5V。
这里用了一个7805稳压芯片将+9V电压稳出+5V电压。
+9V这是工作室做的电源+驱动模块,仅作参考四、制作循迹模块材料:5x7cm洞洞板、LM324比较器芯片各一个;红外对管三对、4.7K电阻3个、330电阻三个、红色3mmLED三个。
LM324电压比较器工作原理:该芯片内部有四组比较器,原理就是反相输入端Vi—与同相输入端Vi+的电压进行比较,若Vi+大于Vi—则比较器的输出端OUT输出高电平+5V;若Vi+小于Vi—则比较器的输出端OUT输出低电平0V;TCRT5000红外对管工作原理:工作时由蓝色发射管发射红外线,红外线由遮挡物反射回来被接收管接收。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子与信息工程系电子实训课题: 基于STC89C52RC和TCRT5000光电传感器的自动循迹小车设计专业:班级:学号:姓名:指导老师:完成日期:目录目录 0摘要: (1)1.任务及要求 (2)1.1任务 (2)2.系统设计方案 (2)2.1小车循迹原理 (2)2.2控制系统总体设计 (2)3.系统方案 (3)3.1 寻迹传感器模块 (3)3.1.1光电传感器TCRT5000简介 (3)3.1.2比较器LM324简介 (3)3.1.3具体电路 (4)3.1.4传感器安装 (4)3.2控制器模块 (5)3.3电源模块 (6)3.4电机及驱动模块 (6)3.4.1电机 (6)3.4.2驱动 (7)4.软件设计 (8)4.1 PWM控制 (8)4.2 总体软件流程图 (8)4.3小车循迹流程图 (9)4.4中断程序流程图 (10)4.5单片机测序 (11)5.参考资料 (15)摘要本设计是基于STC89C52单片机控制的简易自动寻迹小车系统,包括小车系统构成软硬件设计方法。
小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。
小车系统以 STC89S52 单片机为系统控制处理器;采用TCRT5000光电传感器获取赛道的信息,并通过驱动控制电路来对小车的方向和速度进行控制。
此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。
1.任务及要求1.1任务设计一个基于直流电机的自动寻迹小车,使小车能够自动检测地面黑色轨迹,并沿着黑色车轨迹行驶。
系统方案方框图如图1-1所示。
图1-1 系统方案方框图2.系统设计方案2.1小车循迹原理这里的循迹是指小车在白色地板上循黑线行走,由于黑线和白色地板对光线的反射系数不同,可以根据接收到的反射光的强弱来判断“道路”。
通常采取的方法是红外探测法。
红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。
单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。
2.2控制系统总体设计自动循迹小车控制系统由主控制电路模块、稳压电源模块、红外检测模块、电机及驱动模块等部分组成,控制系统的结构框图如图2-1 所示。
3.系统方案3.1 寻迹传感器模块我们采用TCRT5000作为红外检测传感器。
传感器的红外发射二极管不断发射红外线,当发射出的红外线没有被反射回来或被反射回来但强度不够大时,光敏三极管一直处于关断状态,此时模块的输出端为低电平,指示二极管一直处于熄灭状态;被检测物体出现在检测范围内时,红外线被反射回来且强度足够大,光敏三极管饱和,此时模块的输出端为高电平,指示二极管被点亮。
判断有无黑线我们用的一块比较器LM324,比较基准电压由30K的变阻器调节,各个接收管的参数都不一致,每个传感器的比较基准电压也不尽相同,我们为每个传感器配备了一个变阻器。
3.1.1红外传感器TCRT5000简介TCRT5000传感器的工作原理与一般的红外传感器一样,一传一感.TCRT5000具有一个红外发射管和一个红外接收管。
通过发射红外信号,看接收信号变化判断检测物体状态的变化。
A、K之间接发光二极管,C、E之间接光敏三极管(二者在电路中均正接,但要串联一定阻值的电阻)3.1.2比较器LM324简介LM324为四运放集成电路,采用14脚双列直插塑料封装。
内部有四个运算放大器,有相位补偿电路。
电路功耗很小,工作电压范围宽,可用正电源3~30V,或正负双电源±1.5V~±15V工作。
在黑线检测电路中用来确定红外接收信号电平的高低,以电平高低判定黑线有无。
在电路中,LM324的一个输入端需接滑动变阻器,通过改变滑动变阻器的阻值来提供合适的比较电压。
图 3-3 LM324内部电路图 3-4 集成运放的管脚图3.1.3具体电路通过TCRT5000检测黑线,输出接收到的信号给LM324 ,接收电压与比较电压比较后,输出信号变为高低电平,再输入到单片机中,用以判定是否检测到黑线。
图3-5 传感器模块电路图3.1.4传感器安装在小车具体的循迹行走过程中,为了能精确测定黑线位置并确定小车行走的方向,需要同时在底盘装设4个红外探测头,进行两级方向纠正控制,提高其循迹的可靠性。
这4个红外探头的具体位置如图3-6所示。
图3-6 传感器安装图图中循迹传感器全部在一条直线上。
其中X1与Y1为第一级方向控制传感器,X2与Y2为第二级方向控制传感器,并且黑线同一边的两个传感器之间的宽度不得大于黑线的宽度。
小车前进时,始终保持(如图3-6中所示的行走轨迹黑线)在X1和Y1这两个第一级传感器之间,当小车偏离黑线时,第一级传感器就能检测到黑线,把检测的信号送给小车的处理、控制系统,控制系统发出信号对小车轨迹予以纠正。
若小车回到了轨道上,即4个探测器都只检测到白纸,则小车会继续行走;若小车由于惯性过大依旧偏离轨道,越出了第一级两个探测器的探测范围,这时第二级探测器动作,再次对小车的运动进行纠正,使之回到正确轨道上去。
可以看出,第二级方向探测器实际是第一级的后备保护,从而提高了小车循迹的可靠性。
3.2控制器模块STC89C52是STC公司生产的一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash存储器。
具有以下标准功能: 8k字节Flash,512字节RAM,32 位I/O 口线,看门狗定时器,内置4KB EEPROM,MAX810复位电路,3个16 位定时器/计数器,4个外部中断,一个7向量4级中断结构(兼容传统51的5向量2级中断结构),全双工串行口。
图3-7 时钟电路和复位电路3.3电源模块采用7805和7812作为电路的驱动电源,电路图如下:3.4电机及驱动模块3.4.1电机电机采用直流减速电机,直流减速电机转动力矩大,体积小,重量轻,装配简单,使用方便。
由于其内部由高速电动机提供原始动力,带动变速(减速)齿轮组,可以产生较大扭力。
可选用减速比为1:74 的直流电机,减速后电机的转速为100r/min。
若车轮直径为6cm,则小车的最大速度可以达到V=2πr·v=2*3.14*0.03*100/60=0.314m/s能够较好的满足系统的要求。
3.4.2驱动驱动模块采用专用芯片L298N 作为电机驱动芯片,L298N 是一个具有高电压大电流的全桥驱动芯片,其响应频率高,一片L298N可以分别控制两个直流电机。
以下为L298N的引脚图和输入输出关系表。
图3-9 L298N外部引脚表2 L298N输入输出关系驱动电路的设计如图3-10 所示:图3-10 L298N电机驱动电路4.软件设计4.1 PWM控制本系统采用PWM来调节直流电机的速度。
PWM是通过控制固定电压的直流电源开关频率,从而改变负载两端的电压,进而达到控制要求的一种电压调整方法。
PWM可以应用在许多方面,如电机调速、温度控制、压力控制等。
在PWM驱动控制的调整系统中,按一个固定的频率来接通和断开电源,并根据需要改变一个周期内“接通”和“断开”时间的长短。
通过改变直流电机电枢上电压的“占空比”来改变平均电压的大小,从而控制电动机的转速。
因此,PWM又被称为“开关驱动装置”。
在脉冲作用下,当电机通电时,速度增加;电机断电时,速度逐渐减少。
只要按一定规律,改变通、断电的时间,即可让电机转速得到控制。
4.2 总体软件流程图小车进入寻迹模式后,即开始不停地扫描与探测器连接的单片I/O 口,一旦检测到某个I/O 口有信号变化,就执行相应的判断程序,把相应的信号发送给电动机从而纠正小车的状态。
软件的主程序流程图如图4-1所示:4.3小车循迹流程图小车进入循迹模式后,即开始不停地扫描与探测器连接的单片机I/O口,一旦检测到某个I/O口有信号,即进入判断处理程序,先确定4个探测器中的哪一个探测到了黑线,如果左面第一级传感器或者左面第二级传感器探测到黑线,即小车左半部分压到黑线,车身向右偏出,此时应使小车向左转;如果是右面第一级传感器或右面第二级传感器探测到了黑线,即车身右半部压住黑线,小车向左偏出了轨迹,则应使小车向右转。
在经过了方向调整后,小车再继续向前行走,并继续探测黑线重复上述动作。
循迹流程图如图4-2所示由于第二级方向控制为第一级的后备,则两个等级间的转向力度必须相互配合。
第二级通常是在超出第一级的控制范围的情况下发生作用,它也是最后一层保护,所以它必须要保证小车回到正确轨迹上来,则通常使第二级转向力度大于第一级,即Turn_left2 > Turn_left1,Turn_right2 > Turn_right1 (其中Turn_left2,Turn_left1, Turn_right2 , Turn_right1为小车转向力度,其大小通过改变单片机输出的占空比的大小来改变),具体数值在实地实验中得到。
4.4中断程序流程图这里利用的是51单片机的T0定时计数器,从而让单片机P0口的P0.4和P0.5引脚输出占空比不同的方波, 然后经驱动芯片放大后控制直流电机。
定时计数器若干时间(比如0.1ms)比如中断一次, 就使P0.4或P0.5产生一个高电平或低电平。
中断程序流程图如图4-3所示4.5单片机测序/******************硬件连接P1_6 接驱动模块ENA 使能端,输入PWM信号调节速度P1_7 接驱动模块ENB 使能端,输入PWM信号调节速度P3_4 P3_5 接IN1 IN2 当P3_4=1,P3_5=0; 时左电机正转驱动蓝色输出端OUT1 OUT2接左电机P3_4 P3_5 接IN1 IN2 当P3_4=0,P3_5=1; 时左电机反转P3_6 P3_7 接IN3 IN4 当P3_6=1,P3_7=0; 时右电机正转驱动蓝色输出端OUT3 OUT4接右电机P3_6 P3_7 接IN3 IN4 当P3_6=0,P3_7=1; 时右电机反转P1_0接四路寻迹模块接口第一路输出信号即中控板上面标记为OUT1P1_1接四路寻迹模块接口第二路输出信号即中控板上面标记为OUT2P1_2接四路寻迹模块接口第三路输出信号即中控板上面标记为OUT3P1_3接四路寻迹模块接口第四路输出信号即中控板上面标记为OUT4 四路寻迹传感器有信号(白线)为0 没有信号(黑线)为1四路寻迹传感器电源+5V GND 取自于单片机板靠近液晶调节对比度的电源输出接口关于单片机电源:本店驱动模块内带LDO稳压芯片,当电池输入最低的电压6V时候可以输出稳定的5V分别在针脚标+5 与GND 。