罗素悖论 一阶逻辑

合集下载

公理集合论

公理集合论

公理集合论公理集合论把一些符号组成的表达式称为集合,是一种纯粹形式化的理论,彻底摆脱了集合直观语义的束缚。

公理集合论建立在若干公理组成的公理系统之上。

最著名的集合论公理系统是由德国逻辑学家Zermelo和Frankel等人提出的ZFC公理系统。

它包含10组公理,一部分公理规定集合应当具有的几个简明性质,另外一部分公理定义了可称为集合的表达式。

本讲我们先了解公理集合论的渊源,然后重点学习ZFC公理系统。

1.康托的朴素集合论和罗素悖论在思考和表达时,我们会把一些对象视为一个整体,并称之为某某类(class)或者某某集合(set)。

例如,所有的实数构成一个类,实数类又可划分为有理数和无理数等两个类。

这些概念的出现显然是我们对于思考对象进行分类的自然结果,并非人为定义的。

因此,古代数学中就出现了这个概念(古希腊?)。

18世纪的数学家欧拉和19世纪的数学家布尔都分别用这个概念论证亚里士多德逻辑学中的推理模式的正确性。

而对于集合的研究始于19世纪德国数学家康托(Cantor)。

当戴德金用有理数的分割来定义实数时,康托把实数集合作为研究对象。

他证明了实数集合的无穷大比自然数集合的无穷大更大。

这个有趣的发现促使他研究更多更大的无穷集合,发现了一个又一个新颖的关于无穷集合的性质。

这些结果发表在1874年的一篇论文中,开创了集合论这门新的数学分支。

康托在这篇文章中对集合的定义如下(翻译为英文):A set is a gathering together into a whole of definite, distinct objects of our perception or of our thought – which are called elements of the set.显然,这是关于集合的直觉概念,并不是严格的定义(formal definition),我们称之为集合概念的朴素定义(naïve definition)。

一阶逻辑推理理论

一阶逻辑推理理论
一阶逻辑的推理理论 在一阶逻辑中,从前提A1,A2,…,Ak出发推结论B的推理 的形式结构,依然采用如下的蕴涵式形式 A1∧A2∧…∧AkB 若此式为永真式,则称推理正确,否则称推理不正确。于 是,在一阶逻辑中判断推理是否正确也归结为此式是否为永真 式了。 在一阶逻辑中称永真式的蕴涵式为推理定律,若一个推理 的形式结构正是某条推理定律,则这个推理显然是正确的。 推理定律有下面几组来源: 第一组: 命题逻辑推理定律的代换实例。 例如: xF(x) ∧yG(y)xF(x)、 xF(x) xF(x) ∨yG(y) 分别为命题逻辑中化简律和附加律的代换实例。
在一阶逻辑的推理过程中,还要用到下面的四个推理规则: 1.全称量词消去规则(简记为UI规则或UI ) xA(x) A(y) xA(x) A(c) 两式成立的条件是: (1)在第一式中,取代 x 的 y 应为任意的不在A(x)中约束出 现的个体变项。 例如:xyF(x,y) yF(y,y)是错误的。应该用s、t等公 式中没有出现的字母代替 x 。(见P53的具体说明) (2)在第二式中,c为任意个体常项。 (3)用 y 或 c 去取代A(x)中的自由出现的x时,一定要在 x 自由出现的一切地方进行取代。 在使用UI规则时,用第一式还是第二式要根据具体情况而 定。
例2.17 不存在能表示成分数的无理数。有理数都能表示 成分数。因此,有理数都不是无理数。 F(x):x为无理数。G(x):x为有理数。 H(x):x能表示成分数。 前提:x(F(x) ∧H(x)),x(G(x) H(x)) 结论:x(G(x) F(x)) 证明: ① x(F(x) ∧H(x)) 前提引入 ②x(F(x) ∨H(x)) ①置换 ③x(H(x) F(x)) ②置换 ④H(y) F(y) ③ UI规则 ⑤x(G(x) H(x)) 前提引人 ⑥G(y) H(y) ⑤ UI规则 ⑦G(y) F(y) ④ ⑥假言三段论 ⑧x(G(x) F(x)) ⑦ UG规则 正确推理

罗素的逻辑主义及其在数理逻辑史上的地位

罗素的逻辑主义及其在数理逻辑史上的地位

罗素的逻辑主义及其在数理逻辑史上的地位【张家龙】20世纪初, 在逻辑和数学中发现了许多悖论, 包括罗素本人所发现的悖论(后被称为罗素悖论) 。

这些悖论动摇了数学的基础, 史称第三次数学危机。

为了解决这一次数学危机, 罗素提出了逻辑主义的纲领, 并得到一些著名的逻辑学家的支持, 成为数理逻辑中的三大学派之一。

本文旨在对罗素的逻辑主义作出全面的科学的评述。

一、数学概念和数学定理的推导罗素的逻辑主义包含两个部分: (1) 数学概念可以通过显定义从逻辑概念推导出来; (2) 数学定理可以通过纯逻辑推演(即一阶逻辑演算) 由逻辑公理推导出来。

罗素所使用的逻辑概念有: 命题联结词(否定, 析取, 合取, 蕴涵) ; 函项和量词(全称量词和存在量词) ; 等词。

弗雷格成功地用逻辑概念定义了自然数, 而罗素独立于弗雷格也获得了相同的结果。

这种方法的关键在于, 自然数不是属于事物而是属于概念的逻辑属性(按罗素的定义, 数是某一个类的数, 而一个类的数是所有与之相似的类的类) 。

其它种类的数———正数、负数、分数、实数和复数, 不是用通常增加自然数的定义域的方法来完成的, 而是通过构造一种全新的定义域来实现的。

罗素在将数的概念向前推广时, 认为自然数并不构成分数的子集, 自然数3与分数3 /1不是等同的; 同样, 分数1 /2同与它相联系的实数也不是等同的。

关于正负整数, 罗素认为, + 1与- 1是关系, 并且互为逆关系。

+ 1是n + 1对n的关系, - 1是n对n + 1的关系。

一般地, 如果m是任何归纳数, 对任何n而言, +m是n +m对n的关系, - m是n 对n +m的关系。

+m与m不同, 因为m不是一个关系,而是许多类的一个类。

m /n被定义为, 当xn = ym时, 二归纳数x和y之间的一个关系。

m /1是x, y在x =my情形下所具有的关系。

这个关系如同关系+m一样决不能和m等同, 因为关系和一个类的类是完全不同的两个东西。

罗素悖论

罗素悖论
ll)
第三次数学危机
16级水保一班林南屏
Katalogue
什么是罗素悖论 罗素悖论的例子
罗素悖论的影响
悖论的解决
什么是罗素悖论
发现背景:
20世纪之初,数学界甚至整个科学界笼罩在一片喜悦祥和的气氛之中, 科学家们普遍认为,数学的系统性和严密性已经达到,科学大厦已经基 本建成。 例如,德国物理学家基尔霍夫(G.R.Kirchhoff)就曾经说过:“物理 学将无所作为了,至多也只能在已知规律的公式的小数点后面加上几个 数字罢了。” 英国物理学家开尔文(L.Kelvin)在1900年回顾物理学的发展时也说: “在已经基本建成的科学大厦中,后辈物理学家只能做一些零碎的修补 工作了。” 法国大数学家亨利•彭迦莱(Jules Henri Poincaré)在1900年的国际数学 家大会上也公开宣称,数学的严格性,现在看来可以说是实现了。 然而好景不长,时隔不到两年,科学界就发生了一件大事,这件大 事就是罗素(Russell)悖论的发现。
NBG公理系统
冯· 诺伊曼(von Neumann)等人提出的NBG系统等。在该公理系统 中,所有包含集合的"collection"都能被称为类(class),凡是集合也能被称 为类,但是某些 collection太大了(比如一个collection包含所有集合)以 至于不能是一个集合,因此只能是个类。这同样也避免了罗素悖论。
悖论的解决
• ZF公理系统:
1908年,策梅罗(Ernst Zermelo)在自己这一原则基础上提出第一 个公理化集合论体系。这一公理系统在通过弗兰克尔(Abraham Fraenkel) 的改进后被称为ZF公理系统。在该公理系统中,由于分类公理(Axiom schema of specification):P(x)是x的一个性质,对任意已知集合A,存在 一个集合B使得对所有元素x∈B当且仅当x∈A且P(x);因此{x∣x是一个集 合}并不能在该系统中写成一个集合,由于它并不是任何已知集合的子集; 并且通过该公理,存在集合A={x∣x是一个集合}在ZF系统中能被证明是矛 盾的,因此罗素悖论在该系统中被避免了。

一阶逻辑推理理论

一阶逻辑推理理论

一阶逻辑推理实例
命题逻辑中的推理规则及在一阶逻辑中
的代换实例,在一阶逻辑推理中仍然使 用 量词消去和引入规则
例1: 证明苏格拉底三段论“凡人都是要死的。 苏格拉底是人.所以苏格拉底是要死的。” 命题符号化:F(x):x是人(特性谓词); G(x):x是要死的; a:苏格拉底 前提:x(F(x)→G(x)),F(a) 结论:G(a) 证明: (1)x(F(x)→G(x)) 前提引入 (2)F(a)→G(a) UI(1) (3)F(a) 前提引入 (4)G(a) (2)(3)假言推理
xA(x) A(y)中, y应为任意的不在A(x)中约束 出现的个体变项。
全称量词引入规则(简称UG规则) A(y) xA(x) ③ 公式成立的条件是 1.y在A(y)中自由出现,且y取任何值时A均为真 2.取代y的x不在A(y)中约束出现。
例:设定义域为实数, 取F(x,y)为x>y,A(y)=xF(x,y)=x(x>y), A对任意给定的y都是真的。 如下推理是否正确 : ①xF(x,y) 前提引入 ②xxF(x,x) ①UG xx(x>x)是假命题,推理出错。 出错的原因是违背了条件2:取代y的x不在A(y) 中约束出现 ②zxF(x,z) ①UG √
例: 在自然数集中,设F(x)为x是奇数,G(x)是x 是偶数,则xF(x)∧xG(x)是真命题. 以下推理 是否正确: (1) xF(x)∧xG(x) 前提引入 (2) xF(x) (1)化简规则 (3) xG(x) (1)化简规则 (4) F(a) (2)EI (5) G(b) (3)EI (6) F(a)∧G(b) (4)(5)合取规则 (7) x(F(x)∧G(x)) (6)EG
前提: x ( F(x) → G(x)) ,x ( F(x) ∧ H(x) ) 结论: x ( G(x) ∧ H(x) )

简评“罗素悖论”

简评“罗素悖论”

简评“罗素悖论”罗素于1901年提出“罗素悖论”以来,引发了历史上悖论研究的第三次高潮,我们自认为已经简明地消解了“说谎者”这个悖论和“亦引亦彼”这个悖论。

但是悖论由以产生的前提存在什么问题呢?从说谎者悖论、格雷林悖论、罗素的集合论悖论等几个著名的悖论来看,它们都具有一个共同特征,即自我指涉或自我相关。

人们于是认定,悖论产生与自我指涉密切相关,一种是直接循环式;另一种间接循环式,“表面上没有循环,但在兜了一个或大或小的圈子之后又回到了原处,最后依然是自我指称或自我相关”。

人们通过考察范围的扩大,认识到现有的悖论都具有一个共同特征——自我指涉。

这似乎进一步确证,悖论产生的祸根就是自我指涉。

因此消解悖论必须从自我指涉入手的观点,在悖论研究中一度颇为流行,至今仍有不少学者持这种观点。

“自涉”为解悖方案由来以久。

两千多年前,斯多葛学派的逻辑学家克吕亚波就曾经说过:“谁要是说出了‘说谎者悖论’的那一句话,”那就完全丧失了语言的意义,说那句话的人只是发出一些声音罢了,什么也没有表示。

中世纪威尼斯的保罗列举了15种解除悖论的方法,其中第5种就是:“当苏格拉底说他自己说谎时,他并没有说什么?”20世纪初,罗素对集合论悖论的研究,进一步阐述了“禁止自我指涉”的观点,罗素明确指出,所有悖论都来自同一种错误,即恶性循环,罗素主张,要避免悖论就必须禁止任何形式的恶性循环,也就是要禁止任何形式的自我相关或自我指称——“凡包含一个汇集的总体的事物,必不是这个汇集的分子。

”而当一个命题自我指涉时,罗素就视之为“无意义命题”——“关于其分子的总体的那个陈述是无意义的”,罗素提出的消解悖论的两种方案,简单类型论和分支类型论就是用限制和区别的方法避免命题的自我指涉。

罗素的研究使得悖论源于自我指涉的观点,进一步在学术界得到了确立和巩固。

班格特·汉生也认为,一切悖论都和“循环性命题”有关,“人们常说,悖论根源在于‘涉及自身’,总的说来,我也持这种观点”,但与罗素不同的是,汉生并不主张驱逐所有的自指命题,因为有的“涉及自身”的命题是无害的,不可论者要么全盘接受“自涉”,要么全盘拒斥“自涉”,犯“轻率概括”或“极代思考”谬误,相比之下,汉生也算是进了一大步。

维特根斯坦 罗素悖论

维特根斯坦 罗素悖论

维特根斯坦罗素悖论维特根斯坦维特根斯坦(Ludwig Wittgenstein)是20世纪最重要的哲学家之一,被誉为分析哲学的奠基人。

他的思想对于逻辑、语言、心灵和现实等方面都有着深远的影响。

早期哲学思想维特根斯坦早期主要关注语言和逻辑问题,他在1913年发表了《逻辑哲学论》,提出了“事实是语言中的形式”的观点。

他认为语言是描述事实的唯一方式,而且语言本身就包含着逻辑结构。

此外,维特根斯坦还提出了“私语”(private language)的概念,即个人使用的只有自己能够理解的语言。

他认为私语是不可能存在的,因为它没有任何公共标准可供参考。

晚期哲学思想在晚年,维特根斯坦转向了伦理和宗教问题,并发表了两部重要著作:《哲学探究》和《文化与价值》。

在《哲学探究》中,维特根斯坦强调了语言与现实之间密切的联系。

他认为大部分哲学问题都源于语言的误解,只有通过理解语言的真正含义,才能解决这些问题。

而在《文化与价值》中,维特根斯坦探讨了伦理和宗教问题。

他认为价值观是基于文化和社会背景的,没有普遍适用的标准。

同时,他也否定了宗教信仰的合理性,并提出了“沉默”(silence)的概念,即对于某些问题我们应该保持沉默而不是试图用语言去描述或解释。

维特根斯坦对哲学思想的影响维特根斯坦的思想对20世纪哲学有着深远影响。

他强调了语言与现实之间密切的联系,并提出了“语言游戏”(language game)和“家族相似性”(family resemblance)等概念,为后来分析哲学奠定了基础。

此外,他还对逻辑、心灵和文化等方面做出了重要贡献,并影响了许多领域如人工智能、认知科学和文化研究等。

罗素悖论罗素悖论(Russell's paradox)是一种逻辑悖论,由英国哲学家伯特兰·罗素(Bertrand Russell)在1901年提出。

它揭示了集合论中的一个矛盾,对于数理逻辑和基础数学产生了深远的影响。

罗素悖论的内容罗素悖论可以简单地描述为:设S为所有不包含自身的集合的集合,即S={A|A不是S的成员}。

罗素悖论

罗素悖论

论罗素悖论在数学中,通过对命题函项的分层以及对类型的限制,许多悖论就都可以避免,因为类型论的限制很强,罗素又引入还原公理使数学成为可能。

在现实中,类型论可以解决日常语言与传统哲学中的许多问题,一个重要例子就是对“说谎者悖论”的解决,还原公理则使日常语言成为可能。

但是,类型论面临现实中的复杂情况所带来的困难,还原公理则面临自身存在的合法性的困难,而罗素没有完全解决这些困难。

尽管如此,类型论与还原公理仍是一种重要的超越的方法,虽然这种方法面临只能用信念来保证的困难。

尽管不应该因为数学中的符号和日常语言中的词具有类型的模糊性就抛弃它们,但也不等于说对它们就不假思索地接受,应具备“分析的精神”。

类型论与还原公理正是这种精神的集中体现。

罗素的这条悖论使集合理论产生了危机。

它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。

所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。

德国的著名逻辑学家弗雷格在他的关于集合的《算数的基本法则》完稿付印时,收到了罗素关于这一悖论的信。

他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟。

他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。

”从哲学上看,人们在解决悖论的努力使自己的认识不断深化,从而对相对静止思维形式和结构,以及它们之间错综复杂的层次和关系做了更进一步的剖析。

此外,上述努力对于反对诡辩和相对主义也有一定的意义。

悖论的存在价值自然科学发展中的大量实例充分表明,悖论的出现虽然可以暂时引起人们的思想混乱,对科学研究正常开展形成一定的冲击,但更重要的是,它对于揭露原有理论体系中的逻辑矛盾,对于揭露原有理论与概念的缺陷或局限性,对于进一步深入理解,认识和评价原有科学理论,对于原有科学概念或理论的进一步充实和完善。

对于促进科学理论产生突破性发展都具有重要意义.一个悖论或佯谬的发现,就为有关科学研究提供了重要的研究课题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

罗素悖论一阶逻辑
罗素悖论和一阶逻辑是数学和哲学领域中的两个重要概念。

罗素悖论是由英国哲学家和数学家伯特兰·罗素提出的,它是一个经典的逻辑悖论。

罗素悖论涉及到集合的概念,其核心思想是:如果一个集合是由所有不属于自身的元素组成的,那么这个集合是否属于自身?这个问题的答案会导致逻辑上的矛盾。

一阶逻辑是逻辑学中的一种,它研究的是只涉及初等概念和初等关系的推理规律。

在一阶逻辑中,所有的推理都是基于符号语言的,符号语言的元素包括文字、符号、公式等。

一阶逻辑包括一阶命题逻辑和一阶谓词逻辑两种类型,其中一阶命题逻辑研究的是简单命题之间的推理关系,而一阶谓词逻辑研究的是个体和谓词之间的推理关系。

罗素悖论可以通过一阶逻辑来进行形式化的表达和证明。

在一阶逻辑中,罗素悖论可以表述为一个形式化的命题:如果一个集合A是由所有不属于自身的元素组成的,那么A 属于自身当且仅当A不属于自身。

这个命题是自相矛盾的,因为A属于自身和A不属于自身不能同时成立。

相关文档
最新文档