小升初数学--行程问题--解题方法训练
小升初行程问题大全(含答案)

行程问题【题目1】有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟可以追上乙?【解答】乙丙的速度比是(10+40):40=5:4,甲丙的速度比是(20+60):60=4:3。
所以甲乙的速度比是4/3:5/4=16:15,甲比乙晚出发10分钟,可以得出甲用了15×10=150分钟追上乙。
【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米。
已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。
那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。
求AN占AB的几分之几?【解答】设每边720千米,AB、BC、CD和DA分别需要8,6,12,9小时,D→P需要(12-9+6)÷2=4.5小时,P→D→A需要13.5小时,这时相距8+6-13.5=0.5小时的路程,A→N就需要0.5÷2=1/4小时,所以AN:AB=1/4÷8=1/32【题目3】甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米,甲乙速度各多少?【解答】第一次甲行全程的时间乙行了全程的1-25÷400=15/16少7.5秒。
第二次甲行全程的1-40÷400=9/10的时间乙就行了全程的15/16×9/10=27/32少7.5×9/10=27/4秒。
乙行完全程需要(18-27/4)÷(1-27/32)=72秒。
乙每秒行400÷72=50/9米。
甲每秒行(400-40)÷(72-18)=20/3米【题目4】甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。
六年级下册数学-小升初行程问题应用题及答案0-人教版

-小升初行程问题应用题及答案-人教版一、解答题(题型注释)公里,慢车每小时只能行驶55公里,他们从公里两端相向而行,公里长600千米,他们经过多少小时能够相遇?2.轮船以相同速度航行,从A城到B城需3天,从B城到A城需4天.一个漂流瓶从A城到B城需几天?3.两名运动员游泳,甲的速度是0.6米/秒,乙的速度是0.5米/秒,赛道50米长,游1000米两人能相遇多少次?4.AB两地相距360km,甲乙两车同时从AB两地出发,相向而行.甲车的速度是乙车的1.25倍,3小时后两车相遇.甲乙两车每小时分别行多少千米?(用方程计算)5.一辆汽车从甲地开往乙地,每小时行60千米,3小时到达,若要2小时到达,每小时需行多少千米?6.甲乙两地相距240米,一辆汽车从甲地往乙地送货,去时以每小时40千米的速度行驶.返回时由于空载,以每小时60千米的速度行驶,这辆汽车往返的平均速度是每小时多少千米?7.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?8.甲乙两车同时从相距1200千米的两地相向而行,甲车每小时行60千米,当驾车行到两地中点时,与乙车相距100千米.求乙车的速度.9.一辆车正以36千米/时的速度行驶。
司机的反应时间是0.2秒。
①每小时36千米是每秒多少米?②如果遇到紧急情况,这辆车需要前进多少米才能停止?10.同学在春游登山活动中,上山每小时走4千米,用了3小时;下山速度快些,只用了2小时.那么在这次登山活动中的平均速度是多少?11.列方程解应用题。
甲乙两地间长480千米,客车和货车同时从两地相对开出,已知客车每小时行65千米,货车每小时行55千米,经过几小时两车相遇?12.三辆汽车同时从甲站开往已站.第一辆汽车每小时行40.1千米;第二辆汽车每小时行40千米10米;第三辆汽车每小时行40101米.请你按照到达目的地的顺序排列这三辆汽车,并说明理由.13.甲、乙两车分别从A,B两地出发,相向而行。
2024年人教版六年级下册数学小升初专题训练:行程问题(含答案)

2024年人教版六年级下册数学小升初专题训练:行程问题一、单选题1.甲乙两人各走一段路,他们走的时间比是4:5,速度比是5:3,他们走的路程比是( )。
A.12:25B.4:3C.3:4D.25:122.放学了,小明和小红同时从学校回家,小明每分钟行60米,小红每分钟行50米,经过10分钟两人都刚好回到家,小明和小红家的距离不可能是( )米。
A.100B.500C.1100D.12003.一个人从县城骑车去乡办厂。
他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米。
又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,则县城到乡办厂之间的总路程为( )。
A.15千米B.18千米C.21千米D.50千米4.甲、乙两地相隔一座山岭,某人从甲地到乙地用6.5小时,从乙地回到甲地用7.5小时,他往返途中上山速度是3千米/时,下山速度是4千米/时,则甲、乙两地间的山岭路程有( )千米。
A.24.5B.24C.49D.485.小猫与小兔从相距1km的两地同时出发,若相向而行,a分钟相遇;若同向而行,b分钟后小猫追上小兔.则小猫与小兔的速度比是( )A.b+ab―a B.a+ba―bC.a―ba+bD.b―ab+a6.正方形ABCD(如图),边长80米,甲从A点,乙从B点,同时沿同方向运动,每分钟的速度甲为135米,乙为120米,每过一个顶点时要多用5秒,出发后,甲与乙相会需要( )A.A B.B C.C D.D二、填空题7.小杰用815小时走完了223千米的路程。
以此速度他1小时可以走 千米。
8.一列动车平均每小时行驶160千米,可以写作 ,这列动车从漳州到福州大约行驶了2小时,漳州到福州大约有 千米。
9.如图,电车从A站经过B站到达C站,然后返回.去时B站停车,而返回时不停,去时的车速为每小时48千米,返回时的车速是每小时 千米.10.在比例尺是1:3000000的地图上,量得甲、乙两地间的公路长是4.5cm。
六年级小升初数学行程问题

六年级(小升初)总复习行程问题行程问题常用的解题方法有⑴公式法S=V*T ⑵图示法⑶比例法行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;⑷分段法⑸方程法模块一、时间相同速度比等于路程比【例1】甲、乙二人分别从A、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、B 两地相距多少千米?【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以A、B两地相距2301057÷=(千米).【例2】B地在A,C两地之间.甲从B地到A地去送信,甲出发10分后,乙从B地出发到C地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间。
【解析】根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:10分钟因为丙的速度是甲、乙的3倍,分步讨论如下:(1)若丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需要10分钟,所以丙用时间为:10÷(3-1)=5(分钟)此时拿上乙拿错的信5分钟5分钟当丙再回到B点用5分钟,此时甲已经距B地有10+10+5+5=30(分钟),同理丙追及时间为30÷(3-1)=15(分钟),此时给甲应该送的信,换回乙应该送的信在给乙送信,此时乙已经距B地:10+5+5+15+15=50(分钟),此时追及乙需要:50÷(3-1)=25(分钟),返回B地需要25分钟所以共需要时间为5+5+15+15+25+25=90(分钟)(2)同理先追及甲需要时间为120分钟【例3】(“圆明杯”数学邀请赛) 甲、乙两人同时从A、B两点出发,甲每分钟行80米,乙每分钟行60米,出发一段时间后,两人在距中点的C处相遇;如果甲出发后在途中某地停留了7分钟,两人将在距中点的D处相遇,且中点距C、D距离相等,问A、B两点相距多少米?【分析】甲、乙两人速度比为80:604:3=,相遇的时候时间相等,路程比等于速度之比,相遇时甲走了全程的47,乙走了全程的37.第二次甲停留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程的47,甲行了全程的37.由于甲、乙速度比为4:3,根据时间一定,路程比等于速度之比,所以甲行走期间乙走了3374⨯,所以甲停留期间乙行了43317744-⨯=,所以A 、B 两点的距离为1607=16804⨯÷(米).【例 4】 甲、乙两车分别从 A 、 B 两地同时出发,相向而行.出发时,甲、乙的速度之比是 5 : 4,相遇后甲的速度减少 20%,乙的速度增加 20%.这样当甲到达 B 地时,乙离 A 地还有 10 千米.那么 A 、B 两地相距多少千米?【解析】 两车相遇时甲走了全程的59,乙走了全程的49,之后甲的速度减少 20%,乙的速度增加 20%,此时甲、乙的速度比为5(120%):4(120%)5:6⨯-⨯+= ,所以甲到达 B 地时,乙又走了4689515⨯=,距离 A 地58191545-=,所以 A 、 B 两地的距离为11045045÷= (千米).【例 5】 早晨,小张骑车从甲地出发去乙地.下午 1 点,小王开车也从甲地出发,前往乙地.下午 2 点时两人之间的距离是 15 千米.下午 3 点时,两人之间的距离还是 l5 千米.下午 4 点时小王到达乙地,晚上 7 点小张到达乙地.小张是早晨几点出发?【解析】 从题中可以看出小王的速度比小张块.下午 2 点时两人之间的距离是 l5 千米.下午 3 点时,两人之间的距离还是 l5 千米,所以下午 2 点时小王距小张 15 千米,下午 3 点时小王超过小张 15千米,可知两人的速度差是每小时 30 千米.由下午 3 点开始计算,小王再有 1 小时就可走完全程,在这 1 小时当中,小王比小张多走 30 千米,那小张 3 小时走了15 30 45= + 千米,故小张的速度是 45 ÷3 =15千米/时,小王的速度是15 +30 =45千米/时.全程是 45 ×3 =135千米,小张走完全程用了135 +15= 9小时,所以他是上午 10 点出发的。
六年级下册数学-小升初行程问题应用题及答案41-人教版

-小升初行程问题应用题及答案-人教版一、解答题(题型注释)400米跑道上练习竞走,两人同时出发,出发时甲在乙的后面,出发后6分钟甲第一次追上乙,22分钟时甲第二次追上乙,假设两人速度都保持不变,并继续保持竞走状态.(1)问:出发后第几分钟两个人第十次相遇?(2)问:出发时甲在乙身后多少米?(3)问:若乙每秒竞走9124米,甲第二次追上乙后,甲立刻掉转方向竞走,乙保持原方向不变,再经过多少秒后两人第三次相遇?2.一辆汽车和一辆摩托车同时从相距165千米的两地出发,相对开出.汽车每小时行50千米,摩托车的速度是汽车的1.2倍,经过多长时间两车相遇?3.甲、乙两艘小游艇,静水中甲艇每小时行2.2千米,乙艇每小时行1.4千米.现甲、乙两艘小游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距18千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.问水流速度为每小时多少千米?4.一艘船往返于甲、乙两港之间,已知船在静水中的速度为每小时9千米,平时逆行与顺行所用的时间比是2:1.一天因下暴雨,水流速度为原来的2倍,这艘船往返共用10小时,问:甲、乙两港相距多少千米?5.甲、乙两人骑车比赛,甲用4小时骑了88千米,乙用3小时行了63千米,谁的速度快?6.甲、乙两城相距480 km,货车以每小时60 km的速度从甲城开往乙城,2小时后,客车才从乙城开往甲城,经过2.5小时,两车相遇,客车每小时行多少千米?7.一辆汽车以104千米/时的速度从甲地开往乙地,行驶3小时能到达。
返回时逆风,用了4小时。
这辆汽车返回时的平均速度是多少?8.环湖公路全长4000米,涛涛和冬冬同时从环湖公路的某处出发,沿相反方向步行,两人的速度分别为74米/分、79米/分。
(1)经过23分钟两人相遇了吗?相距多少米?(2)谁的速度快一些?经过25分钟,多走多少米?9.甲、乙两车分别同时从A,C两站开出,甲车从A到B再到C要行5小时,乙车从C到B再到A要行4小时。
(完整版)小升初数学行程问题应用题(附答案)

小升初数学行程问题应用题1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4。
5千米,乙行了5小时。
求AB两地相距多少千米?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB 两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0。
5千米,求甲、乙两人的速度?9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?10、甲每小时行驶9千米,乙每小时行驶7千米。
两者在相距6千米的两地同时向背而行,几小时后相距150千米?11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米? 12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?15、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇。
行程问题:相遇问题应用题(小升初专项练习)六年级数学小考总复习(含答案)

行程问题:相遇问题应用题(小升初专项练习)六年级数学小考总复习(含答案)一、相遇问题常见公式。
1、两者相遇路程=两者速度和×相遇时间2、相遇时间=两者相遇路程÷两者速度和3、两者速度和=两者相遇路程÷相遇时间4、两者速度和=甲的速度+乙的速度5、两者相遇路程=甲走的路程+乙走的路程6、甲的速度=两者相遇路程÷相遇时间-乙的速度7、甲行走的路程=两者相遇路程-乙行走的路程二、解决实际问题的技巧。
1、解答相遇此类问题,首先要弄清题目的题意,按照题意画出路程、时间或速度的相关线段图;然后分析各数量之间的关系;最后选择最适合的解答方法。
2、相遇问题除了要弄清路程、速度与两者相遇时间之外,须注意一些其他重要的细节:(1)两者是否是同一起点、同时出发。
如果有谁先出发了,先行走了路程,要考虑先出发者所走的路程值对题目的影响,该加还是该减掉。
(2)两者所行走的方向是否一致:梳理清楚两者是相向、同向,还是背向的。
方向不一样,处理问题就会不一样。
(3)所行走的路线是环形的,还是直线型的。
如果是环形的,要考虑再次相遇的可能。
【典型例题】1、小恬骑车从家出发去距离3.5千米远的图书馆,同一时间小琳从图书馆出来朝小恬家的方向骑来,14分钟后两人刚好相遇。
小恬每分钟骑车130米,那么小琳每分钟骑车多少米?【例题分析】这道题目是典型的路程相遇问题,已知相遇路程和相遇时间,只需要运用公式:甲的速度=相遇路程÷相遇时间-乙的速度代入相关的数量,求出答案即可。
【解答】3.5千米=3500米3500÷14-130=250-130=120(米)答:小琳每分钟骑车120米。
【培优练习】1、小客车从长泾镇到杨梅镇要行驶3小时,大货车从杨梅镇到长泾镇要行驶6小时。
两车分别从长泾镇和杨梅镇同时出发,多久后两车会相遇?2、两列高铁同时从两地相对开出,经过 32 个小时后,两列高铁在途中相遇。
小升初数学冲刺-----行程问题(含答案)

小升初数学冲刺-----行程问题1、甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行300千米,乙机每小时行340千米,飞行4小时后它们相隔多少千米?这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米?解析:①4小时后相差多少千米:1604)300340(=⨯-(千米).②甲机提高速度后每小时飞行多少千米:4203402160=+÷(千米).2、两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?解析:甲、乙二人开始是同向行走,乙走得快,先到达目标.当乙返回时运动的方向变成了同时相对而行,把相同方向行走时乙用的时间和返回时相对而行的时间相加,就是共同经过的时乙到达目标时所用时间:9100900=÷(分钟),甲9分钟走的路程:720980=⨯(米),甲距目标还有:180720900=-(米),相遇时间:1)80100(180=+÷(分钟),共用时间:1019=+(分钟).3、甲、乙二人分别从东、西两镇同时出发相向而行.出发2小时后,两人相距54千米;出发5小时后,两人还相距27千米.问出发多少小时后两人相遇?解析:根据2小时后相距54千米,5小时后相距27千米,可以求出甲、乙二人3小时行的路程和为)2754(-千米,即可求出两人的速度和:9)25()2754(=-÷-(千米),根据相遇问题的解题规律;相隔距离÷速度和=相遇时间,可以求出行27千米需要:89275=÷+(小时).4、甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?解析:因为客车在行驶中耽误1小时,而货车没有停止继续前行,也就是说,货车比客车多走1小时.如果从总路程中把货车单独行驶1小时的路程减去,然后根据余下的就是客车和货车共同走过的.再求出货车和客车每小时所走的速度和,就可以求出相遇时间.然后根据路程=速度×时间,可以分别求出客车和货车在相遇时各自行驶的路程.解:相遇时间:4)7050()50530(=+÷-(小时)相遇时客车行驶的路程:280470=⨯(千米)相遇时货车行驶的路程:250)14(50=+⨯(千米).5、两车同时从甲乙两地相对开出,甲车每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少公里?解:甲乙两车的速度比=48:54=8:9那么相遇时甲车行了全程的8/17所以甲乙距离=36/(1/2-8/17)=36/(1/34)=1224千米6、客货两车从甲地到乙地客车出发,30分钟后货车才出发,结果货车比客车早到1小时,如果甲乙两地相距360km,客车速度是货车的3/4.货车和客车行驶的速度分别是多少?解:若同时出发客车比货车晚到1小时30分=1.5小时客车和货车的速度比=3:4时间比=4:3所以客车行驶全程的时间=1.5/(1-3/4)=6小时所以客车速度=360/6=60千米/小时货车速度=60/(3/4)=80千米/小时7、甲乙两车同时从A、B两地相对开出,4小时后相遇,相遇后甲车在开3小时到达B地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级(小升初)总复习行程问题教学目标:1、 能够利用以前学习的知识理清变速变道问题的关键点;2、 能够利用线段图、算术、方程方法解决变速变道等综合行程题;3、 变速变道问题的关键是如何处理“变”;4、 掌握寻找等量关系的方法来构建方程,利用方程解行程题.知识精讲:比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况: 1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比 2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。
行程问题常用的解题方法有⑴公式法即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件;⑵图示法在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法;⑶比例法行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;⑷分段法在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;⑸方程法在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.例题精讲:模块一、时间相同速度比等于路程比【例 1】甲、乙二人分别从A、B 两地同时出发,相向而行,甲、乙的速度之比是4 : 3,二人相遇后继续行进,甲到达B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、 B 两地相距多少千米?【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以A、B两地相距2301057÷=(千米).【例 2】B地在A,C两地之间.甲从B地到A地去送信,甲出发10分后,乙从B地出发到C地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间。
【解析】根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:10分钟因为丙的速度是甲、乙的3倍,分步讨论如下:(1)若丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需要10分钟,所以丙用时间为:10÷(3-1)=5(分钟)此时拿上乙拿错的信5分钟5分钟10分钟当丙再回到B点用5分钟,此时甲已经距B地有10+10+5+5=30(分钟),同理丙追及时间为30÷(3-1)=15(分钟),此时给甲应该送的信,换回乙应该送的信在给乙送信,此时乙已经距B地:10+5+5+15+15=50(分钟),此时追及乙需要:50÷(3-1)=25(分钟),返回B地需要25分钟所以共需要时间为5+5+15+15+25+25=90(分钟)(2)同理先追及甲需要时间为120分钟【例 3】 (“圆明杯”数学邀请赛) 甲、乙两人同时从A、B两点出发,甲每分钟行80米,乙每分钟行60米,出发一段时间后,两人在距中点的C处相遇;如果甲出发后在途中某地停留了7分钟,两人将在距中点的D处相遇,且中点距C、D距离相等,问A、B两点相距多少米?【分析】 甲、乙两人速度比为80:604:3=,相遇的时候时间相等,路程比等于速度之比,相遇时甲走了全程的47,乙走了全程的37.第二次甲停留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程的47,甲行了全程的37.由于甲、乙速度比为4:3,根据时间一定,路程比等于速度之比,所以甲行走期间乙走了3374⨯,所以甲停留期间乙行了43317744-⨯=,所以A 、B 两点的距离为1607=16804⨯÷(米).【例 4】 甲、乙两车分别从 A 、 B 两地同时出发,相向而行.出发时,甲、乙的速度之比是 5 : 4,相遇后甲的速度减少 20%,乙的速度增加 20%.这样当甲到达 B 地时,乙离 A 地还有 10 千米.那么 A 、B 两地相距多少千米?【解析】 两车相遇时甲走了全程的59,乙走了全程的49,之后甲的速度减少 20%,乙的速度增加 20%,此时甲、乙的速度比为5(120%):4(120%)5:6⨯-⨯+= ,所以甲到达 B 地时,乙又走了4689515⨯=,距离 A 地58191545-=,所以 A 、 B 两地的距离为11045045÷= (千米).【例 5】 早晨,小张骑车从甲地出发去乙地.下午 1 点,小王开车也从甲地出发,前往乙地.下午 2 点时两人之间的距离是 15 千米.下午 3 点时,两人之间的距离还是 l5 千米.下午 4 点时小王到达乙地,晚上 7 点小张到达乙地.小张是早晨几点出发?【解析】 从题中可以看出小王的速度比小张块.下午 2 点时两人之间的距离是 l5 千米.下午 3 点时,两人之间的距离还是 l5 千米,所以下午 2 点时小王距小张 15 千米,下午 3 点时小王超过小张 15千米,可知两人的速度差是每小时 30 千米.由下午 3 点开始计算,小王再有 1 小时就可走完全程,在这 1 小时当中,小王比小张多走 30 千米,那小张 3 小时走了15 30 45= + 千米,故小张的速度是 45 ÷3 =15千米/时,小王的速度是15 +30 =45千米/时.全程是 45 ×3 =135千米,小张走完全程用了135 +15= 9小时,所以他是上午 10 点出发的。
【例 6】 从甲地到乙地,需先走一段下坡路,再走一段平路,最后再走一段上坡路。
其中下坡路与上坡路的距离相等。
陈明开车从甲地到乙地共用了 3 小时,其中第一小时比第二小时多走 15 千米,第二小时比第三小时多走 25 千米。
如果汽车走上坡路比走平路每小时慢 30 千米,走下坡路比走平路每小时快 15 千米。
那么甲乙两地相距多少千米?【解析】 ⑴由于3个小时中每个小时各走的什么路不明确,所以需要先予以确定.从甲地到乙地共用3小时,如果最后一小时先走了一段平路再走上坡路,也就是说走上坡路的路程不需要1小时,那么由于下坡路与上坡路距离相等,而下坡速度更快,所以下坡更用不了1小时,这说明第一小时既走完了下坡路,又走了一段平路,而第二小时则是全在走平路.这样的话,由于下坡速度大于平路速度,所以第一小时走的路程小于以下坡的速度走1小时的路程,而这个路程恰好比以平路的速度走1小时的路程(即第二小时走的路程)多走15千米,所以这样的话第一小时走的路程比第二小时走的路程多走的少于15千米,不合题意,所以假设不成立,即第三小时全部在走上坡路.如果第一小时全部在走下坡路,那么第二小时走了一段下坡路后又走了一段平路,这样第二小时走的路程将大于以平路的速度走1小时的路程,而第一小时走的路程比第二小时走的路程多走的少于15千米,也不合题意,所以假设也不成立,故第一小时已走完下坡路,还走了一段平路. 所以整个行程为:第一小时已走完下坡路,还走了一段平路;第二小时走完平路,还走了一段上坡路;第三小时全部在走上坡路.⑵由于第二小时比第三小时多走25千米,而走平路比走上坡路的速度快每小时30千米.所以第二小时内用在走平路上的时间为525306÷=小时,其余的16小时在走上坡路; 因为第一小时比第二小时多走了15千米,而61小时的下坡路比上坡路要多走()130157.56+⨯=千米,那么第一小时余下的下坡路所用的时间为()1157.5152-÷=小时,所以在第一小时中,有112263+=小时是在下坡路上走的,剩余的31小时是在平路上走的. 因此,陈明走下坡路用了32小时,走平路用了157366+=小时,走上坡路用了17166+=小时. ⑶因为下坡路与上坡路的距离相等,所以上坡路与下坡路的速度比是27:4:736=.那么下坡路的速度为()7301510574+⨯=-千米/时,平路的速度是每小时1051590-=千米,上坡路的速度是每小时903060-=千米. 那么甲、乙两地相距2771059060245366⨯+⨯+⨯=(千米).模块二、路程相同速度比等于时间的反比【例 7】 甲、乙两人同时从A 地出发到B 地,经过3小时,甲先到B 地,乙还需要1小时到达B 地,此时甲、乙共行了35千米.求A ,B 两地间的距离.【分析】 甲用3小时行完全程,而乙需要4小时,说明两人的速度之比为4:3,那么在3小时内的路程之比也是4:3;又两人路程之和为35千米,所以甲所走的路程为4352034⨯=+千米,即A ,B 两地间的距离为20千米.【例 8】 在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行,6 分后两人相遇,再过4 分甲到达 B 点,又过 8 分两人再次相遇.甲、乙环行一周各需要多少分?【解析】 由题意知,甲行 4 分相当于乙行 6 分.(抓住走同一段路程时间或速度的比例关系)从第一次相遇到再次相遇,两人共走一周,各行 12 分,而乙行 12 分相当于甲行 8 分,所以甲环行一周需 12+8=20(分),乙需 20÷4×6=30(分).【例 9】 上午 8 点整,甲从 A 地出发匀速去 B 地,8 点 20 分甲与从 B 地出发匀速去 A 地的乙相遇;相遇后甲将速度提高到原来的 3 倍,乙速度不变;8 点 30 分,甲、乙两人同时到达各自的目的地.那么,乙从 B 地出发时是 8 点几分.【解析】 甲、乙相遇时甲走了 20 分钟,之后甲的速度提高到原来的 3 倍,又走了 10 分钟到达目的地,根据路程一定,时间比等于速度的反比,如果甲没提速,那么后面的路甲需要走10× 3= 30分钟,所以前后两段路程的比为 20 : 30 =2 : 3,由于甲走 20 分钟的路程乙要走 10 分钟,所以甲走 30 分钟的路程乙要走 15 分钟,也就是说与甲相遇时乙已出发了 15 分钟,所以乙从 B 地出发时是 8 点5 分.【例 10】 小芳从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路,一半下坡路.小芳上学走这两条路所用的时间一样多.已知下坡的速度是平路的1.6 倍,那么上坡的速度是平路速度的多少倍?【解析】 设小芳上学路上所用时间为 2,那么走一半平路所需时间是1.由于下坡路与一半平路的长度相同,根据路程一定,时间比等于速度的反比,走下坡路所需时间是51 1.68÷=,因此,走上坡路需要的时间是511288-=,那么,上坡速度与平路速度的比等于所用时间的反比,为111:8:118=,所以,上坡速度是平路速度的811倍.【例 11】 一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到路程的35时,出了故障,用5分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?【分析】 当以原速行驶到全程的35时,总时间也用了35,所以还剩下350(1)205⨯-=分钟的路程;修理完毕时还剩下20515-=分钟,在剩下的这段路程上,预计时间与实际时间之比为20:154:3=,根据路程一定,速度比等于时间的反比,实际的速度与预定的速度之比也为4:3,因此每分钟应比原来快47507502503⨯-=米. 小结:本题也可先求出相应的路程和时间,再采用公式求出相应的速度,最后计算比原来快多少,但不如采用比例法简便.【例 12】 (2008“我爱数学夏令营”数学竞赛)一列火车出发1小时后因故停车0.5小时,然后以原速的34前进,最终到达目的地晚1.5小时.若出发1小时后又前进90公里因故停车0.5小时,然后同样以原速的34前进,则到达目的地仅晚1小时,那么整个路程为________公里. 【解析】 如果火车出发1小时后不停车,然后以原速的34前进,最终到达目的地晚1.50.51-=小时,在一小时以后的那段路程,原计划所花的时间与实际所花的时间之比为3:4,所以原计划要花()14333÷-⨯=小时,现在要花()14344÷-⨯=小时,若出发1小时后又前进90公里不停车,然后同样以原速的34前进,则到达目的地仅晚10.50.5-=小时,在一小时以后的那段路程,原计划所花的时间与实际所花的时间之比为3:4,所以原计划要花()0.5433 1.5÷-⨯=小时,现在要花()0.54342÷-⨯=小时.所以按照原计划90公里的路程火车要用3 1.5 1.5-=小时,所以火车的原速度为90 1.560÷=千米/小时,整个路程为()6031240⨯+=千米.【例 13】 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了1/9,结果提前一个半小时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高1/6,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米?【解析】 从开始出发,车速即比原计划的速度提高了1/9,即车速为原计划的10/9,则所用时间为原计划的1÷10/9=9/10,即比原计划少用1/10的时间,所以一个半小时等于原计划时间的1/10,原计划时间为:1.5÷1/10=15(小时);按原计划的速度行驶 280 千米后,将车速提高1/6,即此后车速为原来的7/6,则此后所用时间为原计划的1÷7/6=6/7,即此后比原计划少用1/7的时间,所以1 小时 40 分等于按原计划的速度行驶 280 千米后余下时间的1/7,则按原计划的速度行驶 280 千米后余下的时间为:5/3÷1/7=35/3(小时),所以,原计划的速度为:84(千米/时),北京、上海两市间的路程为:84 ×15= 1260(千米).【例 14】 一辆汽车从甲地开往乙地,如果车速提高 20%可以提前1小时到达.如果按原速行驶一段距离后,再将速度提高 30% ,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?【解析】车速提高20%,即为原速度的6/5,那么所用时间为原来的5/6,所以原定时间为51(1)66÷-=小时;如果按原速行驶一段距离后再提速30% ,此时速度为原速度的13/10,所用时间为原来的10/13,所以按原速度后面这段路程需要的时间为1011(1)4133÷-=小时.所以前面按原速度行使的时间为156433-=小时,根据速度一定,路程比等于时间之比,按原速行驶了全部路程的556318÷=【例 15】一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前1小时到达;如果以原速行驶120千米后,再将车速提高25%,则可以提前40分钟到达.那么甲、乙两地相距多少千米?【分析】车速提高20%,速度比为5:6,路程一定的情况下,时间比应为6:5,所以以原速度行完全程的时间为65166-÷=小时.以原速行驶120千米后,以后一段路程为考察对象,车速提高25%,速度比为4:5,所用时间比应为5:4,提前40分钟到达,则用原速度行驶完这一段路程需要4054106053-÷=小时,所以以原速行驶120千米所用的时间为108633-=小时,甲、乙两地的距离为812062703÷⨯=千米.【例 16】甲火车4分钟行进的路程等于乙火车5分钟行进的路程.乙火车上午8:00从B站开往A站,开出若干分钟后,甲火车从A站出发开往B站.上午9:00两列火车相遇,相遇的地点离A、B两站的距离的比是15:16.甲火车从A站发车的时间是几点几分?[分析]甲、乙火车的速度比已知,所以甲、乙火车相同时间内的行程比也已知.由此可以求得甲火车单独行驶的距离与总路程的比.根据题意可知,甲、乙两车的速度比为5:4.从甲火车出发算起,到相遇时两车走的路程之比为5:415:12=,而相遇点距A、B两站的距离的比是15:16.说明甲火车出发前乙火车所走的路程等于乙火车1个小时所走路程的()11612164-÷=.也就是说乙比甲先走了一个小时的四分之一,也就是15分钟.所以甲火车从A 站发车的时间是8点15分.模块三、比例综合题【例 17】小狗和小猴参加的100米预赛.结果,当小狗跑到终点时,小猴才跑到90米处,决赛时,自作聪明的小猴突然提出:小狗天生跑得快,我们站在同一起跑线上不公平,我提议把小狗的起跑线往后挪10米.小狗同意了,小猴乐滋滋的想:“这样我和小狗就同时到达终点了!”亲爱的小朋友,你说小猴会如愿以偿吗?【解析】小猴不会如愿以偿.第一次,小狗跑了100米,小猴跑了90米,所以它们的速度比为100:9010:9=;那么把小狗的起跑线往后挪10米后,小狗要跑110米,当小狗跑到终点时,小猴跑了9 1109910⨯=米,离终点还差1米,所以它还是比小狗晚到达终点.【例 18】甲、乙两人同时从A地出发到 B 地,经过 3 小时,甲先到 B 地,乙还需要 1 小时到达 B 地,此时甲、乙共行了35 千米.求A, B 两地间的距离.【解析】甲、乙两个人同时从A地到B地,所经过的路程是固定所需要的时间为:甲3个小时,乙4个小时(3+1)两个人速度比为:甲:乙=4:3当两个人在相同时间内共行35千米时,相当与甲走4份,已走3份,所以甲走:35÷(4+3)×4=20(千米),所以,A、B两地间距离为20千米【例 19】A、B、C三辆汽车以相同的速度同时从甲市开往乙市.开车后1小时A车出了事故,B和C车照常前进.A车停了半小时后以原速度的45继续前进.B、C两车行至距离甲市200千米时B车出了事故,C车照常前进.B车停了半小时后也以原速度的45继续前进.结果到达乙市的时间C车比B车早1小时,B车比A车早1小时,甲、乙两市的距离为千米.【分析】如果A车没有停半小时,它将比C车晚到1.5小时,因为A车后来的速度是C车的45,即两车行5小时的路A车比C车慢1小时,所以慢1.5小时说明A车后来行了5 1.57.5⨯=小时.从甲市到乙市车要行17.5 1.57+-=小时.同理,如果B车没有停半小时,它将比C车晚到0.5小时,说明B车后来行了50.5 2.5⨯=小时,这段路C车需行2.50.52-=小时,也就是说这段路是甲、乙两市距离的27.故甲、乙两市距离为220012807⎛⎫÷-=⎪⎝⎭(千米).【例 20】甲、乙二人步行远足旅游,甲出发后1小时,乙从同地同路同向出发,步行2小时到达甲于45分钟前曾到过的地方.此后乙每小时多行500米,经过3小时追上速度保持不变的甲.甲每小时行多少米?[分析]根据题意,乙加速之前步行2小时的路程等于甲步行2.25小时的路程,所以甲、乙的速度之比为2:2.258:9=,乙的速度是甲的速度的1.125倍;乙加速之后步行3小时的路程等于甲步行3.75小时的路程,所以加速后甲、乙的速度比为3:3.754:5=.加速后乙的速度是甲的速度的1.25倍;由于乙加速后每小时多走500米,所以甲的速度为()500 1.25 1.1254000÷-=米/小时.【例 21】甲、乙两人分别骑车从A地同时同向出发,甲骑自行车,乙骑三轮车.12分钟后丙也骑车从A 地出发去追甲.丙追上甲后立即按原速沿原路返回,掉头行了3千米时又遇到乙.已知乙的速度是每小时7.5千米,丙的速度是乙的2倍.那么甲的速度是多少?丙[分析]丙的速度为7.5215⨯=千米/小时,丙比甲、乙晚出发12分钟,相当于退后了1215360⨯=千米后与甲、乙同时出发.如图所示,相当于甲、乙从A,丙从B同时出发,丙在C处追上甲,此时乙走到D处,然后丙掉头走了3千米在E处和乙相遇.从丙返回到遇见乙,丙走了3千米,所以乙走了32 1.5÷=千米,故CD为4.5千米.那么,在从出发到丙追上甲这段时间内,丙一共比乙多走了3 4.57.5+=千米,由于丙的速度是乙的速度的2倍,因此,丙追上甲时,乙走了7.5千米,丙走了15千米,恰好用1个小时;而此时甲走了7.5 4.512+=千米,因此速度为12112÷=(千米/小时).【例 22】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的 1.5 倍,而且甲比乙速度快。