多目标规划MATLABwgx

合集下载

如何使用Matlab进行最优化和多目标优化问题求解

如何使用Matlab进行最优化和多目标优化问题求解

如何使用Matlab进行最优化和多目标优化问题求解Matlab是一种强大的数学计算工具,广泛应用于各个领域的科学研究和工程实践中。

其中,最优化和多目标优化问题的求解是Matlab的一项重要功能。

本文将介绍如何使用Matlab进行最优化和多目标优化问题的求解,并提供一些实际应用案例。

一、最优化问题求解最优化问题求解是指在给定的约束条件下,寻找一个使得目标函数取得最大(或最小)值的变量组合。

Matlab提供了多种最优化算法,如线性规划、二次规划、非线性规划等。

下面以非线性规划为例,介绍如何使用Matlab进行最优化问题的求解。

1. 准备工作在使用Matlab进行最优化问题求解之前,需要先定义目标函数和约束条件。

目标函数是最优化问题的核心,可以是线性的或非线性的。

约束条件可以是等式约束或不等式约束。

同时,还需要确定变量的取值范围和初值。

2. 选择合适的算法Matlab提供了多个最优化算法,根据问题的特点选择合适的算法是非常重要的。

常用的算法有fmincon、fminunc、fminsearch等。

例如,fmincon函数适用于求解具有约束条件的非线性规划问题,而fminunc函数适用于求解无约束或有约束的非线性规划问题。

3. 调用相应的函数根据选择的算法,调用相应的函数进行求解。

以fmincon函数为例,其调用方式为:```[x, fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)```其中,fun为目标函数,x0为变量的初值,A、b为不等式约束矩阵和向量,Aeq、beq为等式约束矩阵和向量,lb、ub为变量的下界和上界,nonlcon为非线性约束函数,options为求解选项。

4. 解析结果求解完成后,可以通过解析结果来评估求解器的性能。

Matlab提供了fval和exitflag两个输出参数,其中fval表示最优解的目标函数值,exitflag表示求解器的退出标志。

应用MATLAB工具箱求解规划问题

应用MATLAB工具箱求解规划问题

应用MATLAB 优化工具箱求解规划问题如今,规划类问题是常见的数学建模问题,离散系统的优化问题一般都可以通过规划模型来求解。

用MATLAB 求解规划问题,可以避免手工的烦琐计算,大大提高工作效率和结果的准确性。

MA TLAB 是一种应用于数学计算及计算结果可视化处理的面向对象的高性能计算机语言,它以矩阵和向量为基本数据单位,从而提高程序的向量化程度,提高计算效率,尤其适合于线性规划、整数规划、多元规划、二元规划类问题的算法编写,以及数据拟合、参数估计、插值等数据处理法。

利用MA TLAB 提供的强大的规划模型求解命令,可以简单快速地得到所要的结果。

本文主要对线性规划、非线性规划、整数规划、单目标约束规划以及多目标规划等规划问题在MATLAB 中的实现做比较详细的讲解.线性规划问题线性规划是一种优化方法,MA TLAB 优化工具箱中有现成函数linprog 对标准型LP 问题求解。

线性规划问题是目标函数和约束条件均为线性函数的问题,MATLAB 中线性规划的标准型为:Min f ’x..A x b s t Aeq x beq lb x ub ⋅≤⎧⎪⋅=⎨⎪≤≤⎩其中f 、x 、b 、beq 、lb 、ub 为向量,A 、Aeq 为矩阵。

其他形式的线性规划问题都可经过适当变化化为以上标准型。

线性规划是一种优化方法,MATLAB 优化工具箱中有现成函数linprog 对标准型LP 问题求解。

在MATLAB 指令窗口运行help linprog 可以看到所有的函数调用形式,如下:x = linprog(f,A,b) %求min f’x ;s.t. b x A ≤⋅线性规划的最优解x = linprog(f,A,b,Aeq,beq) %等式约束beq x Aeq =⋅,若没有不等式约束,则A=[],b=[]。

若没有等式约束,则Aeq=[],beq=[]x = linprog(f,A,b,Aeq,beq,lb,ub) %指定x 的范围ub x lb ≤≤x = linprog(f,A,b,Aeq,beq,lb,ub,x0) %设置初值x0x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) % options 为指定优化参数进行最小化[x,fval] = linprog(...) %返回目标函数最优值,即fval= f’x[x,lambda,exitflag] = linprog(...) % lambda 为解x 的Lagrange 乘子[x,lambda,exitflag,output] = linprog(...) % exitflag 为终止迭代的条件[x,fval,exitflag,output,lambda] = linprog(...) % output 为输出优化信息exitflag 描述函数计算的退出条件:若exitflag>0表示函数收敛于解x ,exitflag=0表示目标达到函数估值或迭代的最大次数,exitflag<0表示函数不收敛于解x ;lambda 返回x 处的拉个朗日乘子:lambda.lower 表示下界lb ,lambda.upper 表示上界ub ,lambda.ineqlin 表示线性不等式约束,lambda.eqlin 表示线性等式约束,lambda 中的非0元素表示对应的约束是有效约束;output 返回优化信息:output.iterations 表示迭代次数,output.algorithm 表示使用的运算规则,output.cgiterations 表示PCG 迭代次数。

matlab多目标优化模型教程

matlab多目标优化模型教程

fgoalattainSolve multiobjective goal attainment problemsEquationFinds the minimum of a problem specified byx, weight, goal, b, beq, lb, and ub are vectors, A and Aeq are matrices, and c(x), ceq(x), and F(x) are functions that return vectors. F(x), c(x), and ceq(x) can be nonlinear functions.Syntaxx = fgoalattain(fun,x0,goal,weight)x = fgoalattain(fun,x0,goal,weight,A,b)x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq)x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub)x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,... options)x = fgoalattain(problem)[x,fval] = fgoalattain(...)[x,fval,attainfactor] = fgoalattain(...)[x,fval,attainfactor,exitflag] = fgoalattain(...)[x,fval,attainfactor,exitflag,output] = fgoalattain(...)[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(...)Descriptionfgoalattain solves the goal attainment problem, which is one formulation for minimizing a multiobjective optimization problem.x = fgoalattain(fun,x0,goal,weight) tries to make the objective functions supplied by fun attain the goals specified by goal by varying x, starting at x0, with weight specified by weight.x = fgoalattain(fun,x0,goal,weight,A,b) solves the goal attainment problem subject to the linear inequalities A*x ≤ b.x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq) solves the goal attainment problem subject to the linear equalities Aeq*x = beq as well. Set A = [] and b = [] if no inequalities exist.x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds on the design variables in x, so that the solution is always in the range lb ≤ x ≤ ub.x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon) subjects the goal attainment problem to the nonlinear inequalities c(x) or nonlinear equality constraints ceq(x) defined in nonlcon. fgoalattain optimizes such that c(x) ≤ 0 and ceq(x) = 0. Set lb = [] and/or ub = [] if no bounds exist.x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,... options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.x = fgoalattain(problem) finds the minimum for problem, where problem is a structure described in Input Arguments.Create the structure problem by exporting a problem from Optimization Tool, as described in Exporting to the MATLAB Workspace.[x,fval] = fgoalattain(...) returns the values of the objective functions computed in fun at the solution x.[x,fval,attainfactor] = fgoalattain(...) returns the attainment factor at the solution x.[x,fval,attainfactor,exitflag] = fgoalattain(...) returns a value exitflag that describes the exit condition of fgoalattain.[x,fval,attainfactor,exitflag,output] = fgoalattain(...) returns a structure output that contains information about the optimization.[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution x.Input ArgumentsFunction Arguments contains general descriptions of arguments passed into fgoalattain. This section provides function-specific details for fun, goal, nonlcon, options, weight, and problem:fun The function to be minimized. fun is a function that acceptsa vector x and returns a vector F, the objective functionsevaluated at x. The function fun can be specified as a functionhandle for a function file:x = fgoalattain(@myfun,x0,goal,weight)where myfun is a MATLAB function such asfunction F = myfun(x)F = ... % Compute function values at x.fun can also be a function handle for an anonymous function.x = fgoalattain(@(x)sin(x.*x),x0,goal,weight);If the user-defined values for x and F are matrices, they areconverted to a vector using linear indexing.To make an objective function as near as possible to a goalvalue, (i.e., neither greater than nor less than) use optimsetto set the GoalsExactAchieve option to the number of objectivesrequired to be in the neighborhood of the goal values. Suchobjectives must be partitioned into the first elements of thevector F returned by fun.If the gradient of the objective function can also be computedand the GradObj option is 'on', as set byoptions = optimset('GradObj','on')then the function fun must return, in the second outputargument, the gradient value G, a matrix, at x. The gradientconsists of the partial derivative dF/dx of each F at the pointx. If F is a vector of length m and x has length n, where n isthe length of x0, then the gradient G of F(x) is an n-by-m matrixwhere G(i,j) is the partial derivative of F(j) with respect tox(i) (i.e., the jth column of G is the gradient of the jthobjective function F(j)).goal Vector of values that the objectives attempt to attain. The vector is the same length as the number of objectives F returnedby fun. fgoalattain attempts to minimize the values in thevector F to attain the goal values given by goal.nonlcon The function that computes the nonlinear inequality constraints c(x) ≤ 0 and the nonlinear equality constraintsceq(x) = 0. The function nonlcon accepts a vector x and returnstwo vectors c and ceq. The vector c contains the nonlinearinequalities evaluated at x, and ceq contains the nonlinearequalities evaluated at x. The function nonlcon can bespecified as a function handle.x = fgoalattain(@myfun,x0,goal,weight,A,b,Aeq,beq,...lb,ub,@mycon)where mycon is a MATLAB function such asfunction [c,ceq] = mycon(x)c = ... % compute nonlinear inequalities at x.ceq = ... % compute nonlinear equalities at x.If the gradients of the constraints can also be computed andthe GradConstr option is 'on', as set byoptions = optimset('GradConstr','on')then the function nonlcon must also return, in the third andfourth output arguments, GC, the gradient of c(x), and GCeq,the gradient of ceq(x). Nonlinear Constraints explains how to"conditionalize" the gradients for use in solvers that do notaccept supplied gradients.If nonlcon returns a vector c of m components and x has lengthn, where n is the length of x0, then the gradient GC of c(x)is an n-by-m matrix, where GC(i,j) is the partial derivativeof c(j) with respect to x(i) (i.e., the jth column of GC is thegradient of the jth inequality constraint c(j)). Likewise, ifceq has p components, the gradient GCeq of ceq(x) is an n-by-pmatrix, where GCeq(i,j) is the partial derivative of ceq(j)with respect to x(i) (i.e., the jth column of GCeq is thegradient of the jth equality constraint ceq(j)).Passing Extra Parameters explains how to parameterize thenonlinear constraint function nonlcon, if necessary.options Options provides the function-specific details for the options values.weight A weighting vector to control the relative underattainment or overattainment of the objectives in fgoalattain. When thevalues of goal are all nonzero, to ensure the same percentageof under- or overattainment of the active objectives, set theweighting function to abs(goal). (The active objectives are theset of objectives that are barriers to further improvement ofthe goals at the solution.)When the weighting function weight is positive, fgoalattainattempts to make the objectives less than the goal values. Tomake the objective functions greater than the goal values, setweight to be negative rather than positive. To make an objectivefunction as near as possible to a goal value, use theGoalsExactAchieve option and put that objective as the firstelement of the vector returned by fun (see the precedingdescription of fun and options).problem objective Vector of objective functionsx0 Initial point for xgoal Goals to attainweight Relative importance factors of goalsAineq Matrix for linear inequality constraintsbineq Vector for linear inequality constraintsAeq Matrix for linear equality constraintsbeq Vector for linear equality constraintslb Vector of lower boundsub Vector of upper boundsnonlcon Nonlinear constraint functionsolver 'fgoalattain'options Options structure created with optimset Output ArgumentsFunction Arguments contains general descriptions of arguments returned by fgoalattain. This section provides function-specific details for attainfactor, exitflag, lambda, and output:attainfactor The amount of over- or underachievement of the goals. If attainfactor is negative, the goals have been overachieved;if attainfactor is positive, the goals have beenunderachieved.attainfactor contains the value of γ at the solution. Anegative value of γindicates overattainment in the goals.exitflag Integer identifying the reason the algorithm terminated.The following lists the values of exitflag and thecorresponding reasons the algorithm terminated.1 Function converged to a solutions x.4 Magnitude of the search direction lessthan the specified tolerance andconstraint violation less thanoptions.TolCon5 Magnitude of directional derivative lessthan the specified tolerance andconstraint violation less thanoptions.TolCon0 Number of iterations exceededoptions.MaxIter or number of functionevaluations exceeded options.FunEvals-1 Algorithm was terminated by the outputfunction.-2 No feasible point was found.lambda Structure containing the Lagrange multipliers at the solution x (separated by constraint type). The fields of thestructure arelower Lower bounds lbupper Upper bounds ubineqlin Linear inequalitieseqlin Linear equalitiesineqnonlin Nonlinear inequalitieseqnonlin Nonlinear equalitiesoutput Structure containing information about the optimization.The fields of the structure areiterations Number of iterations takenfuncCount Number of function evaluationslssteplength Size of line search step relative tosearch directionstepsize Final displacement in xalgorithm Optimization algorithm usedfirstorderopt Measure of first-order optimalityconstrviolation Maximum of constraint functionsmessage Exit messageOptionsOptimization options used by fgoalattain. You can use optimset to set or change the values of these fields in the options structure options. See Optimization Options for detailed information.DerivativeCheck Compare user-supplied derivatives (gradients ofobjective or constraints) to finite-differencingderivatives. The choices are 'on' or the default,'off'.Diagnostics Display diagnostic information about the functionto be minimized or solved. The choices are 'on' orthe default, 'off'.DiffMaxChange Maximum change in variables for finite-differencegradients (a positive scalar). The default is 0.1.DiffMinChange Minimum change in variables for finite-differencegradients (a positive scalar). The default is 1e-8. Display Level of display.∙'off' displays no output.∙'iter' displays output at each iteration, andgives the default exit message.∙'iter-detailed' displays output at eachiteration, and gives the technical exitmessage.∙'notify' displays output only if the functiondoes not converge, and gives the default exitmessage.∙'notify-detailed' displays output only if thefunction does not converge, and gives thetechnical exit message.∙'final' (default) displays just the finaloutput, and gives the default exit message.∙'final-detailed' displays just the finaloutput, and gives the technical exit message.FinDiffType Finite differences, used to estimate gradients, areeither 'forward' (default), or 'central'(centered). 'central' takes twice as many functionevaluations, but should be more accurate.The algorithm is careful to obey bounds whenestimating both types of finite differences. So, forexample, it could take a backward, rather than aforward, difference to avoid evaluating at a pointoutside bounds.FunValCheck Check whether objective function and constraintsvalues are valid. 'on' displays an error when theobjective function or constraints return a valuethat is complex, Inf, or NaN. The default, 'off',displays no error.GoalsExactAchieve Specifies the number of objectives for which it isrequired for the objective fun to equal the goal goal(a nonnegative integer). Such objectives should bepartitioned into the first few elements of F. Thedefault is 0.GradConstr Gradient for nonlinear constraint functions definedby the user. When set to 'on', fgoalattain expectsthe constraint function to have four outputs, asdescribed in nonlcon in the Input Arguments section.When set to the default, 'off', gradients of thenonlinear constraints are estimated by finitedifferences.GradObj Gradient for the objective function defined by theuser. See the preceding description of fun to seehow to define the gradient in fun. Set to 'on' tohave fgoalattain use a user-defined gradient of theobjective function. The default, 'off',causesfgoalattain to estimate gradients usingfinite differences.MaxFunEvals Maximum number of function evaluations allowed (apositive integer). The default is100*numberOfVariables.MaxIter Maximum number of iterations allowed (a positiveinteger). The default is 400.MaxSQPIter Maximum number of SQP iterations allowed (a positiveinteger). The default is 10*max(numberOfVariables,numberOfInequalities + numberOfBounds)MeritFunction Use goal attainment/minimax merit function if setto 'multiobj', the default. Use fmincon meritfunction if set to 'singleobj'.OutputFcn Specify one or more user-defined functions that anoptimization function calls at each iteration,either as a function handle or as a cell array offunction handles. The default is none ([]). SeeOutput Function.PlotFcns Plots various measures of progress while thealgorithm executes, select from predefined plots orwrite your own. Pass a function handle or a cellarray of function handles. The default is none ([]).∙@optimplotx plots the current point∙@optimplotfunccount plots the function count∙@optimplotfval plots the function value∙@optimplotconstrviolation plots the maximumconstraint violation∙@optimplotstepsize plots the step sizeFor information on writing a custom plot function,see Plot Functions.RelLineSrchBnd Relative bound (a real nonnegative scalar value) onthe line search step length such that the totaldisplacement in x satisfies|Δx(i)| ≤relLineSrchBnd· max(|x(i)|,|typicalx(i)|). This option provides control over themagnitude of the displacements in x for cases inwhich the solver takes steps that are considered toolarge. The default is none ([]).RelLineSrchBndDurat ion Number of iterations for which the bound specified in RelLineSrchBnd should be active (default is 1).TolCon Termination tolerance on the constraint violation,a positive scalar. The default is 1e-6.TolConSQP Termination tolerance on inner iteration SQPconstraint violation, a positive scalar. Thedefault is 1e-6.TolFun Termination tolerance on the function value, apositive scalar. The default is 1e-6.TolX Termination tolerance on x, a positive scalar. Thedefault is 1e-6.TypicalX Typical x values. The number of elements in TypicalXis equal to the number of elements in x0, thestarting point. The default value isones(numberofvariables,1). fgoalattain usesTypicalX for scaling finite differences forgradient estimation.UseParallel When 'always', estimate gradients in parallel.Disable by setting to the default, 'never'. ExamplesConsider a linear system of differential equations.An output feedback controller, K, is designed producing a closed loop systemThe eigenvalues of the closed loop system are determined from the matrices A, B, C, and K using the command eig(A+B*K*C). Closed loop eigenvalues must lie on the real axis in the complex plane to the left of the points [-5,-3,-1]. In order not to saturate the inputs, no element in K can be greater than 4 or be less than -4.The system is a two-input, two-output, open loop, unstable system, with state-space matrices.The set of goal values for the closed loop eigenvalues is initialized as goal = [-5,-3,-1];To ensure the same percentage of under- or overattainment in the active objectives at the solution, the weighting matrix, weight, is set to abs(goal).Starting with a controller, K = [-1,-1; -1,-1], first write a function file, eigfun.m.function F = eigfun(K,A,B,C)F = sort(eig(A+B*K*C)); % Evaluate objectivesNext, enter system matrices and invoke an optimization routine.A = [-0.5 0 0; 0 -2 10; 0 1 -2];B = [1 0; -2 2; 0 1];C = [1 0 0; 0 0 1];K0 = [-1 -1; -1 -1]; % Initialize controller matrixgoal = [-5 -3 -1]; % Set goal values for the eigenvalues weight = abs(goal); % Set weight for same percentagelb = -4*ones(size(K0)); % Set lower bounds on the controllerub = 4*ones(size(K0)); % Set upper bounds on the controller options = optimset('Display','iter'); % Set display parameter[K,fval,attainfactor] = fgoalattain(@(K)eigfun(K,A,B,C),...K0,goal,weight,[],[],[],[],lb,ub,[],options)You can run this example by using the demonstration script goaldemo. (From the MATLAB Help browser or the MathWorks™ Web site documentation, you can click the demo name to display the demo.) After about 11 iterations, a solution isActive inequalities (to within options.TolCon = 1e-006):lower upper ineqlinineqnonlin1 12 24K =-4.0000 -0.2564-4.0000 -4.0000fval =-6.9313-4.1588-1.4099attainfactor =-0.3863DiscussionThe attainment factor indicates that each of the objectives has been overachieved by at least 38.63% over the original design goals. The active constraints, in this case constraints 1 and 2, are the objectives that are barriers to further improvement and for which the percentage of overattainment is met exactly. Three of the lower bound constraints are also active.In the preceding design, the optimizer tries to make the objectives less than the goals. For a worst-case problem where the objectives must be as near to the goals as possible, use optimset to set the GoalsExactAchieve option to the number of objectives for which this is required.Consider the preceding problem when you want all the eigenvalues to be equal to the goal values. A solution to this problem is found by invoking fgoalattain with the GoalsExactAchieve option set to 3.options = optimset('GoalsExactAchieve',3);[K,fval,attainfactor] = fgoalattain(...@(K)eigfun(K,A,B,C),K0,goal,weight,[],[],[],[],lb,ub,[],... options)After about seven iterations, a solution isK =-1.5954 1.2040-0.4201 -2.9046fval =-5.0000-3.0000-1.0000attainfactor =1.0859e-20In this case the optimizer has tried to match the objectives to the goals. The attainment factor (of 1.0859e-20) indicates that the goals have been matched almost exactly.NotesThis problem has discontinuities when the eigenvalues become complex; this explains why the convergence is slow. Although the underlying methods assume the functions are continuous, the method is able to make stepstoward the solution because the discontinuities do not occur at the solution point. When the objectives and goals are complex, fgoalattain tries to achieve the goals in a least-squares sense.AlgorithmMultiobjective optimization concerns the minimization of a set of objectives simultaneously. One formulation for this problem, and implemented in fgoalattain, is the goal attainment problem of Gembicki[3]. This entails the construction of a set of goal values for the objective functions. Multiobjective optimization is discussed in Multiobjective Optimization.In this implementation, the slack variable γis used as a dummy argument to minimize the vector of objectives F(x) simultaneously; goal is a set of values that the objectives attain. Generally, prior to the optimization, it is not known whether the objectives will reach the goals (under attainment) or be minimized less than the goals (overattainment). A weighting vector, weight, controls the relative underattainment or overattainment of the objectives.fgoalattain uses a sequential quadratic programming (SQP) method, which is described in Sequential Quadratic Programming (SQP). Modifications are made to the line search and Hessian. In the line search an exact merit function (see [1] and [4]) is used together with the merit function proposed by [5]and [6]. The line search is terminated when either merit function shows improvement. A modified Hessian, which takes advantage of the special structure of the problem, is also used (see [1] and [4]). A full description of the modifications used is found in Goal Attainment Method in "Introduction to Algorithms." Setting the MeritFunction option to 'singleobj' withoptions = optimset(options,'MeritFunction','singleobj')uses the merit function and Hessian used in fmincon.See also SQP Implementation for more details on the algorithm used and the types of procedures displayed under the Procedures heading when the Display option is set to 'iter'.LimitationsThe objectives must be continuous. fgoalattain might give only local solutions.。

Matlab中的多目标优化方法研究

Matlab中的多目标优化方法研究

Matlab中的多目标优化方法研究引言:在现实世界中,我们常常面临着多个相互冲突的目标。

比如,在设计一辆汽车时,我们希望既要追求高速性能,又要保证足够的燃油经济性。

这样的问题称为多目标优化问题。

在处理多目标优化问题时,我们需要找到一组可行解,这组解对应于优化目标函数的不同折中。

本文将介绍在Matlab中针对多目标优化问题的研究方法。

背景:在过去的几十年中,许多研究者已经提出了许多用于解决多目标优化问题的算法。

这些算法可以分为两大类,即基于遗传算法的方法和基于演化算法的方法。

基于遗传算法的方法:遗传算法是一种模拟自然遗传和生物进化过程的优化方法。

在多目标优化问题中,遗传算法被广泛应用。

具体来说,遗传算法通过模拟自然选择、交叉和变异等基本生物学过程,逐渐生成一组优化解。

然后,根据优化目标的准则,从这组解中选择最优解。

Matlab中有很多工具箱和函数可供使用,帮助我们实现基于遗传算法的多目标优化。

例如,可以使用Matlab中的“gamultiobj”函数实现基于遗传算法的多目标优化。

这个函数允许我们指定优化目标函数、变量范围和其他约束条件,并返回Pareto前沿中的一组近似最优解。

基于演化算法的方法:演化算法是另一种常用于解决多目标优化问题的方法。

与遗传算法类似,演化算法也通过模拟自然进化过程来寻找最优解。

Matlab中的“ga”函数是一个常用的基于演化算法的优化函数。

它可以用于解决多目标优化问题,提供了多个 Pareto 前沿近似解。

与遗传算法相比,演化算法更加直观和易于理解。

案例研究:为了更好地理解在Matlab中实现多目标优化的方法,我们将介绍一个简单的案例研究。

假设我们要设计一个具有最小体积和最大载荷能力的桥梁。

我们希望在满足结构强度和安全要求的前提下,同时最小化桥梁的体积和最大化其载荷能力。

首先,我们需要定义优化目标函数和约束条件。

在本例中,我们可以将体积定义为桥梁的长度、宽度和高度的乘积,载荷能力定义为桥梁的最大承载力。

matlab多目标规划精编版

matlab多目标规划精编版

多目标规划问题的典型实例
例3 生产计划问题
某工厂生产 A1、A2 和 A3 三种产品以满足市场的需要,该厂每周生产的时间为 40h, 且规定每周的能耗都不得超过 20t 标准煤,其数据表如表 8-1 所示。现在的问题时, 每周生产三种产品各多少小时,才能使得该厂的利润最多,而能源消耗最少?
产品
f1 x 500x1 400x2 600x3 f2 x 0.48x1 0.65x2 0.42x3
x1 x2 x3 40 0.48x1 0.65x2 0.42x3 20 20x1 700 25x2 800 15x3 500 x1, x2 , x3 0
x1 60 又考虑到购买的数量必须要满足非负的条件,由于对 x1 已经有相应的约束条件,故只 需添加对 x2 的非负约束即可。 综合以上分析,得到最优化数学模型如下:
min max
f1 x 2x1 1.5x2 f2 x x1 x2
x1 x2 120 2x1 1.5x2 300 x1 60 x2 0
f1 x的同时极小化 f2 x 。
多目标规划问题的典型实例
再由约束条件,该厂每周的生产时间为 40h,故: x1 x2 x3 40 且需要满足能耗不得超过 20t 标准煤: 0.48x1 0.65x2 0.42x3 20 上面是对生产过程的约束,再考虑销售过程,由于数据表中给出了三种产品每周
的最大销量,故我们必须限制生产数量小于最大销量才能使得成本最低,即满足下
述约束条件:
qA1 20x1 700; qA2 25x2 800; qA3 15x3 500
同时考虑到生产时间的Leabharlann 负性,总结得到该问题的数学模型为:

matlab多目标规划模型

matlab多目标规划模型
多目标决策方法
李小飞
多目标决策的基本概念 多目标决策的数学模型及其非劣解 多目标决策建模的应用实例
用LINGO软件求解目标规划问题
1. 求解方法概述
• LINGO(或LINDO)不能直接求解目标规 划问题,但可以通过逐级求解线性规划的 方法,求得目标规划问题的满意解。
2. 示例
• 例1 用LINGO求解目标规划问题
需要预先确定各个目标的期望值 fi* ,同时给每一个目标 赋予一个优先因子和权系数,假定有K个目标,L个优先级
多目标决策问题有两个共同的特点,即各目 标的不可公度性和相互之间的矛盾性。所谓目标 的不可公度性指各目标之间没有统一的量纲,因 此难以作相互比较。
目标之间的矛盾性是指,如果改进某 一目标的值,可能会使另一个或一些目标 变差。正因为各目标的不可公度性和相互 之间的矛盾性,多目标决策问题不能简单 的作为单目标问题来处理。必须深入研究 其特征,特别是解的性质。单目标决策一 般有最优解,且往往是唯一的,有时可能 存在无限多个解。但是这里的“最优”往 往带有片面性,不能全而准确的反映决策 者的偏好信息。多目标决策问题不存在所 谓的“最优”解,只存在满意解。满意解 指决策者对于有关的所有目标值都认为满 意。
Z=F(X) 是k维函数向量, (X)是m维函数向量; G是m维常数向量;
多目标规划问题的求解不能只追求一个目标的最优化(最大或 最小),而不顾其它目标。 对于上述多目标规划问题,求解就意味着需要做出如下的复合 选择:
每一个目标函数取什么值,原问题可以得到最满意的解决? 每一个决策变量取什么值,原问题可以得到最满意的解决 ?
max(min) fk ( X )
1( X )
g1
s.t.
(

多目标规划matlab程序实现——【2019数学建模+思路】

多目标规划matlab程序实现——【2019数学建模+思路】

优化与决策——多目标线性规划的若干解法及MATLAB 实现摘要:求解多目标线性规划的基本思想大都是将多目标问题转化为单目标规划,本文介绍了理想点法、线性加权和法、最大最小法、目标规划法,然后给出多目标线性规划的模糊数学解法,最后举例进行说明,并用Matlab 软件加以实现。

关键词:多目标线性规划 Matlab 模糊数学。

注:本文仅供参考,如有疑问,还望指正。

一.引言多目标线性规划是多目标最优化理论的重要组成部分,由于多个目标之间的矛盾性和不可公度性,要求使所有目标均达到最优解是不可能的,因此多目标规划问题往往只是求其有效解(非劣解)。

目前求解多目标线性规划问题有效解的方法,有理想点法、线性加权和法、最大最小法、目标规划法。

本文也给出多目标线性规划的模糊数学解法。

二.多目标线性规划模型多目标线性规划有着两个和两个以上的目标函数,且目标函数和约束条件全是线性函数,其数学模型表示为:11111221221122221122max n n n nr r r rn nz c x c x c x z c x c x c x z c x c x c x =+++⎧⎪=+++⎪⎨ ⎪⎪=+++⎩ (1)约束条件为:1111221121122222112212,,,0n n n n m m mn n mn a x a x a x b a x a x a x b a x a x a x bx x x +++≤⎧⎪+++≤⎪⎪ ⎨⎪+++≤⎪≥⎪⎩ (2) 若(1)式中只有一个1122i i i in n z c x c x c x =+++ ,则该问题为典型的单目标线性规划。

我们记:()ij m n A a ⨯=,()ij r n C c ⨯=,12(,,,)T m b b b b = ,12(,,,)T n x x x x = ,12(,,,)T r Z Z Z Z = .则上述多目标线性规划可用矩阵形式表示为:max Z Cx =约束条件:0Ax bx ≤⎧⎨≥⎩(3)三.MATLAB 优化工具箱常用函数[3]在MA TLAB 软件中,有几个专门求解最优化问题的函数,如求线性规划问题的linprog 、求有约束非线性函数的fmincon 、求最大最小化问题的fminimax 、求多目标达到问题的fgoalattain 等,它们的调用形式分别为:①.[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub)f 为目标函数系数,A,b 为不等式约束的系数, Aeq,beq 为等式约束系数, lb,ub 为x 的下限和上限, fval 求解的x 所对应的值。

matlab-多目标规划模型

matlab-多目标规划模型
hj(X) 0
§10.2 多目旳规划问题旳求解
1、主要目旳法
在有些多目旳决策问题中,多种目旳旳主要性程度
往往不同。其中一种主要性程度最高和最为关键旳目
旳,称之为主要目旳法。其他旳目旳则称为非主要目
旳。
optF ( X ) ( f1 ( X ), f2 ( X ),...., f p ( X ))T
2. 过程:无妨设其顺序为 f1, f2,, f p
先求解
min ( P1 )s.t.
f1 ( x) xS
再解
min (P2 )s.t.
f2 ( x) x S1
依次进行,直到
得最优值 f1*
得最优值
f
* 2
,记 S1 x f1(x) f1* S
,S2
x
f2(x)
f
* 2
S1
(Pp )ms.ti.n
f p (x) x

Sp
x
f p (x)
f
* p
S p1
是在分层序列意义下旳最优解集合。
3.
性质:
Sp
S
* pa
,即在分层序列意义下旳最优解是有
效解。
证明:反证。设
~
xSp
,但
~
x
S
* pa
,则必存在
~
yS
使
~
~
F(y) F(x)
即至少有一种j0 ,使
~
~
f j ( y) f j (x), j 1,, j0 1,
成本型指标
可靠性和敏捷性都属于效益型指标,其打分如下
可靠性 一般 低

很高
5
敏捷 高 性
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、多目标规划的MATLAB求解
x = fgoalattain(@myfun,x0,goal,weight) where myfun is a MATLAB function such as function F = myfun(x) F = ... % Compute function values at x.
ceq = ...
% Nonlinear equalities at x
if nargout > 2 % Nonlcon called with 4 outputs
GC = ...
% Gradients of the inequalities
GCeq = ... % Gradients of the equalities
End
注意:一般 weight=abs(goal)
二、举例---有关循环控制系统优化问题
模型:x’=(A+BKC)x+Bu,设计K满足目标:
Y=Cx
1)循环系统的特征值(由命令eig(A+B*K*C)确定)的目标为goal = [-5,-3,-1] 2)K中元素均在[-4,4]中; 设特征值的weight= abs(goal),定义目标函数F如下: function F = eigfun(K,A,B,C) F = sort(eig(A+B*K*C)); % Evaluate objectives,由小到大排列
if nargout > 1 % Two output arguments
G = ... % Gradients evaluated at x
End
The gradient consists of the partial derivative dF/dx of each F at the point x.
一、0-1规划的MATLAB求解
数学模型:MIN f’x S.T. Ax<=b Aeqx=beq x=0,1
命令格式:x = bintprog(f) x = bintprog(f, A, b) x = bintprog(f, A, b, Aeq, beq) x = bintprog(f, A, b, Aeq, beq, x0) x = bintprog(f, A, b, Aeq, beq, x0, options) [x, fval] = bintprog(...) [x,fval, exitflag] = bintprog(...) [x, fval, exitflag, output] = bintprog(...)
x = fgoalattain(@myfun,x0,goal,weight,A,b,Aeq,beq,... lb,ub,@mycon)
where mycon is a MATLAB function such as
function [c,ceq] = mycon(x) c = ... % compute nonlinear inequalities at x. ceq = ... % compute nonlinear equalities at
二、多目标规划的MATLAB求解
v 有关优化参数设置:
v options = optimset(‘GradConstr’,‘on’)约束条件的 梯度方向参数设置为‘on’时,用下列函数定义:
function [c,ceq,GC,GCeq] = mycon(x)
c = ...
% Nonlinear inequalities at x
lb,ub,nonlcon,options) [x,fval] = fgoalattain(...) [x,fval,attainfactor] = fgoalattain(...) [x,fval,attainfactor,exitflag] = fgoalattain(...) [x,fval,attainfactor,exitflag,output] = fgoalattain(...) [x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(...)
二、多目标规划的MATLAB求解
命令格式:
x = fgoalattain(fun,x0,goal,weight) x = fgoalattain(fun,x0,goal,weight,A,b) x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq) x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub) x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon) x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,...
x = fgoalattain(fun,x0,goal,weight)
x = fgoalattain(fun,x0,gtain(fun,x0,goal,weight,A,b,Aeq,beq)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub)
二、多目标规划的MATLAB求解
数学模型:MIN lambda S.T. F(x)-weight* lambda <=goal(达到目标) Ax<=b(线性不等式约束) Aeqx=beq(线性等式约束) C(x)<=0(非线性不等式约束) Ceq(x)=0(非线性等式约束)
lb<=x<=ub F=[f1(x),f2(x),…]为多目标的目标函数; F与[C(x),Ceq(x)]都是通过function来定义; 命令格式:
二、多目标规划的MATLAB求解
❖ 有关优化参数设置:
❖options = optimset(‘GradObj’,‘on’)目标函数的梯度 方向参数设置为‘on’时,用下列函数定义:
function [F,G] = myfun(x)
F = ...
% Compute the function values at x
相关文档
最新文档