不动点迭代法matlab程序
matlab迭代。混沌,原因,分叉 Microsoft Word 文档

问题与实验3: 一元线性迭代的收敛性条件怎样表述? 关于迭代法收敛性的两个判别条件: a 、充分必要条件是:矩阵M 的谱半径(){}1,..,2,1max<==n i M iiλρ()b 、充分条件是:矩阵M 的某个算子范数M<1。
问题与实验4: 在本例中,12<M,这时迭代序列是收敛的,就本例或选择别的例子,按12<M和12≥M构造不同的迭代法,通过实验和比较,并给出你对实验结果的解释(如关于收敛性、收敛速度等),当然这需要你首先知道矩阵范数的概念,并且对它有比较好的理解。
设x 是方程组(5)的解,{}mx 是迭代法(6)生成的任一序列,因为f Mx x +=,f Mxx mm +=+1()()()0221x x Mx x Mx x M x x mm m m -==-=-=--- ,设D = diag (a 11, a 22, …, a nn ),将AX = b 改写为: AX = (D – (D - A )) x = b DX = (D - A ) x + bX = (I – D -1A ) x + D -1b记 B = I – D -1A F = D -1 b 则迭代格式的向量表示为F BX Xk k +=+)()1( B称为雅克比迭代矩阵。
由此可知要判断X 是否收敛只需看M 的谱半径是否小于1,既有一其中I 是单位i 矩阵,D 是提取A 的对角线上的元素。
下判断条件:充要条件:(1) (){}1,..,2,1max<==n i M iiλρ.(2)充分条件是:矩阵M 的某个算子范数M<1.并且我们知道当M 越小的时候其收敛的速度越快。
并且还可以知道当初始值越接近精确解时收敛速度越快。
这是由于迭代的公式所定的。
下面来看另一个例子:X1+2X2+-2X3=1 X1+X2+X3=1 2X1+2X2+X3=1雅可比法的迭代矩阵:A=[1 2 -2; 1 1 1; 2 2 1;] b=[1;1;1;] D=diag(diag(A)); LU=D-A; M=D\LU;p=max(abs(eig(M))) f=D\b; x=[]; z=[];x(:,1)=eye(3,1); N=200000000; for i=1:N;if norm(A*x(:,i)-b)<1e-010;m=i;breakelsex(:,i+1)=M*x(:,i)+f;z=x(:,i+1)endendme=norm(A*z-b)plot([1:length(x)],x)title('JACOBI ITERATION OF LINEAR EQUATIONS')A =1 2 -21 1 12 2 1b = 1 1 1p = 5.8106e-006(谱范数)可以看出是收敛的z=1 0 -1z =-1 1 -1z =-33 1m =4(迭代的次数)e =0(误差的估计)图像是:1 1.52 2.53 3.54-3-2-1123JACOBI ITERATION OF LINEAR EQUATIONSA=[9 -1 -1; -1 8 0; -1 0 9;] b=[7;7;8;] D=diag(diag(A)); LU=D-A; M=D\LU;p=max(abs(eig(M))) f=D\b; x=[]; z=[];x(:,1)=eye(3,1);N=200000000;for i=1:N;if norm(A*x(:,i)-b)<1e-010;m=i;breakelsex(:,i+1)=M*x(:,i)+f;z=x(:,i+1)endendme=norm(A*z-b)plot([1:length(x)],x)title('JACOBI ITERATION OF LINEAR EQUATIONS')A = 9 -1 -1-1 8 0-1 0 9b =7 7 8p =0.1620(谱范数)可以看出是收敛,m =16迭代的次数。
7.2 迭代法及其收敛性

k4.1045
1/ 2
表 7.2.1 用不动点迭代法计算例7.2.1的结果
0 (a) 1.5 -0.625 6.447 -378.2 5.3697e7 -1.547e23 (b) 1.5 0.912871 2.454577 (c) (d) (e) 1.5 1.5 1.5 1.241638702 1.333333333 1.365079365 1.424290116 1.305205188 1.387624336 1.332682451 1.370291856 1.344991115 1.362217505 1.350582520 1.358732441 1.355350555 1.354767869 1.355301399 1.355384418 1.355301398 1.355288480 1.355303407 1.355301085 1.355301446 1.355301390
*
k
xk x L x0 x L max x0 a , b x0 ,
* k * k
从而 7.2.4 成立.
再由 7.2.3 , 对m k 1, 我们有
x m x k x m x m 1 x m 1 x m 2 x k 1 x k x m x m 1 x m 1 x m 2 x k 1 x k Lm 1 x1 x0 Lm 2 x1 x0 Lk x1 x0 Lk x1 x0 1 L L2 Lm k 1 .
(7.2.1)
其中 ( x )为连续函数,其取法不唯一,例如可取
方程(7.2.1)的解称为函数 ( x )的不动点, 求方程 (7.2.1)的解的问题称为不动点问题.
matlab(迭代法_牛顿插值)

实验报告内容:一:不动点迭代法解方程二:牛顿插值法的MA TLAB实现完成日期:2012年6月21日星期四数学实验报告一日期:2012-6-21hold on>> fplot(g,[-2,2])>> fplot(f,[-2,2])>> hold off>> grid输出结果如下所示:所以,确定初值为x0=1二:不断迭代算法:第一步:将f(x0)赋值给x1第二步:确定x1-x0的绝对值大小,若小于给定的误差值,则将x1当做方程的解,否则回到第一步编写计算机程序:clearf=inline('0.5*sin(x)+0.4');x0=1;x1=f(x0);k=1;while abs(x1-x0)>=1.0e-6x0=x1;x1=f(x0);k=k+1;fprintf('k=%.0f,x0=%.9f,x1=%.9f\n',k,x0,x1)end显示结果如下:k=2,x0=0.820735492,x1=0.765823700k=3,x0=0.765823700,x1=0.746565483k=4,x0=0.746565483,x1=0.739560873k=5,x0=0.739560873,x1=0.736981783k=6,x0=0.736981783,x1=0.736027993k=7,x0=0.736027993,x1=0.735674699k=8,x0=0.735674699,x1=0.735543758k=9,x0=0.735543758,x1=0.735495216k=10,x0=0.735495216,x1=0.735477220k=11,x0=0.735477220,x1=0.735470548k=12,x0=0.735470548,x1=0.735468074k=13,x0=0.735468074,x1=0.735467157>>。
Matlab非线性方程数值解法

Matlab⾮线性⽅程数值解法实验⽬的⽤Matlab实现⾮线性⽅程的⼆分法、不动点迭代法实验要求1. 给出⼆分法算法和不动点迭代算法2. ⽤Matlab实现⼆分法3. ⽤Matlab实现不动点迭代法实验内容(1)在区间[0,1]上⽤⼆分法和不动点迭代法求的根到⼩数点后六位。
(2)⼆分法的基本思想:逐步⼆分区间[a,b],通过判断两端点函数值的符号,进⼀步缩⼩有限区间,将有根区间的长度缩⼩到充分⼩,从⽽,求得满⾜精度要求的根的近似值。
(3)不动点迭代法基本思想:已知⼀个近似根,构造⼀个递推关系(迭代格式),使⽤这个迭代格式反复校正根的近似值,计算出⽅程的⼀个根的近似值序列,使之逐步精确法,直到满⾜精度要求(该序列收敛于⽅程的根)。
实验步骤(1)⼆分法算法与MATLAB程序(⼆分法的依据是根的存在性定理,更深地说是介值定理)。
MATLAB程序,1 %⼆分法2 %输⼊:f(x)=0的f(x),[a,b]的a,b,精度ep3 %输出:近似根root,迭代次数k4 function [root,k]=bisect(fun,a,b,ep)5if nargin>36 elseif nargin<47 ep=1e-5;%默认精度8else9 error('输⼊参数不⾜');%输⼊参数必须包括f(x)和[a,b]10 end11if fun(a)*fun(b)>0%输⼊的区间要求12 root=[fun(a),fun(b)];13 k=0;14return;15 end16 k=1;17while abs(b-a)/2>ep%精度要求18 mid=(a+b)/2;%中点19if fun(a)*fun(mid)<020 b=mid;21 elseif fun(a)*fun(mid)>022 a=mid;23else24 a=mid;b=mid;25 end26 k=k+1;27 end28 root=(a+b)/2;29 end⼆分法1运⾏⽰例(并未对输出格式做控制,由于精度要求,事后有必要控制输出的精度):优化代码,减⼩迭代次数(在迭代前,先搜寻更适合的有根区间)1 %⼆分法改良2 %在⼀开始给定的区间中寻找更⼩的有根区间3 %输⼊:f(x)=0的f(x),[a,b]的a,b,精度ep4 %输出:近似根root,迭代次数k5 %得到的根是优化区间⾥的最⼤根6 function [root,k]=bisect3(fun,a,b,ep)7if nargin>38 elseif nargin<49 ep=1e-5;%默认精度10else11 error('输⼊参数不⾜');%输⼊参数必须包括f(x)和[a,b]12 end13 %定义划分区间的分数14 divQJ=1000;15 %等分区间16 tX=linspace(a,b,divQJ);17 %计算函数值18 tY=fun(tX);19 %找到函数值的正负变化的位置20 locM=find(tY<0);21 locP=find(tY>0);22 %定义新区间23if tY(1)<024 a=tX(locM(end));25 b=tX(locP(1));26else27 a=tX(locP(end));28 b=tX(locM(1));29 end30if fun(a)*fun(b)>0%输⼊的区间要求31 root=[fun(a),fun(b)];32 k=0;33return;34 end35 k=1;36while abs(b-a)/2>ep%精度要求37 mid=(a+b)/2;%中点38if fun(a)*fun(mid)<039 b=mid;40 elseif fun(a)*fun(mid)>041 a=mid;42else43 a=mid;b=mid;44 end45 k=k+1;46 end47 root=(a+b)/2;48 end⼆分法2运⾏⽰例(同样没有控制输出)明显地,迭代次数减⼩许多。
MATLAB在化工中的应用 非线性方程(组)求解与迭代法

本讲小结
sol=roots(C) [sol,feval,exitflag,output]=fzero(@fun ,x0,options,p1,p2,...) [sol,feval,exitflag,output,jacobian]=fs olve(@fun,x0,options,p1,p2,...)
fsolve函数的使用
sin x y 2 ln z 0 y 3 3x 2 z 1 0 x y z 5
function Cha2demo6 x0=[1 1 1]; x=fsolve(@fun,x0) function y=fun(x) y(1)=sin(x(1))+x(2)^2+log(x(3)); y(2)=3*x(1)+2^x(2)-x(3)^3+1; y(3)=x(1)+x(2)+x(3)-5; 解得结果如下:x=0.5991 2.3959
结果: The conversion could be 0.0408 0.0408 0.2804 0.2804 0.2804 0.2804 0.8363 0.8363 0.8363 0.8363 1.0951
fsolve函数
• 与fzero函数只能求解单个方程的根不同,fsolve函数可求 解非线性方程组的解。其算法采用的是最小二乘法。 • 调用格式: [x,fval,exitflag,output] = fsolve(fun,x0,options, p1, p2, ...) • 输入变量的意义同fzero函数。
function Cha2demo7 x0 = [0.05 0.2 0.01]; x = fsolve(@EquiC3,x0); CAC=x(3)/sum(x) if CAC<0.05 disp('The AC concentration could not be over 0.05%') else disp('The AC concentration could be over 0.05%') end function f = EquiC3(x) f1 = x(1)-0.064*(1-x(1)-x(2)-x(3)); f2 = x(2)*(x(2)+x(3))-0.076*(1-x(1)-x(2)-x(3))*(1+x(2)+x(3)); f3 = x(3)*(x(2)+x(3))-0.00012*(1-x(1)-x(2)-x(3))*(1+x(2)+x(3)); f = [f1 f2 f3]; 结果:The AC concentration could not be over 0.05%
matlab求解非线性方程组

非线性方程组求解1.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-6;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0); %迭代公式tol=norm(r-x0); %注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend2.mulNewton用牛顿法法求非线性方程组的一个根function [r,n]=mulNewton(F,x0,eps)if nargin==2eps=1.0e-4;endx0 = transpose(x0);Fx = subs(F,findsym(F),x0);var = findsym(F);dF = Jacobian(F,var);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx;n=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx; %核心迭代公式tol=norm(r-x0);n=n+1;if(n>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend3.mulDiscNewton用离散牛顿法法求非线性方程组的一个根function [r,m]=mulDiscNewton(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=transpose(x0)-inv(J)*fx;m=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;4.mulMix用牛顿-雅可比迭代法求非线性方程组的一个根function [r,m]=mulMix(F,x0,h,l,eps)if nargin==4eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = transpose(x0)-dr; m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend5.mulNewtonSOR用牛顿-SOR迭代法求非线性方程组的一个根function [r,m]=mulNewtonSOR(F,x0,w,h,l,eps)if nargin==5eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = transpose(x0)-dr;m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend6.mulDNewton用牛顿下山法求非线性方程组的一个根function [r,m]=mulDNewton(F,x0,eps)%非线性方程组:F%初始解:x0%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-4;endx0 = transpose(x0);dF = Jacobian(F);m=1;tol=1;while tol>epsttol=1;w=1;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);F1=norm(Fx);while ttol>=0 %下面的循环是选取下山因子w的过程r=x0-w*inv(dFx)*Fx; %核心的迭代公式Fr = subs(F,findsym(F),r);ttol=norm(Fr)-F1;w=w/2;endtol=norm(r-x0);m=m+1;x0=r;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend7.mulGXF1用两点割线法的第一种形式求非线性方程组的一个根function [r,m]=mulGXF1(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;8.mulGXF2用两点割线法的第二种形式求非线性方程组的一个根function [r,m]=mulGXF2(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;9.mulVNewton用拟牛顿法求非线性方程组的一组解function [r,m]=mulVNewton(F,x0,A,eps)%方程组:F%方程组的初始解:x0% 初始A矩阵:A%解的精度:eps%求得的一组解:r%迭代步数:mif nargin==2A=eye(length(x0)); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendx0 = transpose(x0);Fx = subs(F, findsym(F),x0);r=x0-A\Fx;m=1;tol=1;while tol>epsx0=r;Fx = subs(F, findsym(F),x0);r=x0-A\Fx;y=r-x0;Fr = subs(F, findsym(F),r);z= Fr-Fx;A1=A+(z-A*y)*transpose(y)/norm(y); %调整A A=A1;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end10.mulRank1用对称秩1算法求非线性方程组的一个根function [r,n]=mulRank1(F,x0,A,eps)if nargin==2l = length(x0);A=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-inv(A)*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-inv(A)*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;A1=A+ fr *transpose(fr)/(transpose(fr)*y); %调整A A=A1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end11.mulDFP用D-F-P算法求非线性方程组的一组解function [r,n]=mulDFP(F,x0,A,eps)if nargin==2l = length(x0);B=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;B1=B+ y*y'/(y'*z)-B*z*z'*B/(z'*B*z); %调整AB=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end12.mulBFS用B-F-S算法求非线性方程组的一个根function [r,n]=mulBFS(F,x0,B,eps)if nargin==2l = length(x0);B=eye(l); %B取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;u = 1 + z'*B*z/(y'*z);B1= B+ (u*y*y'-B*z*y'-y*z'*B)/(y'*z); %调整B B=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end13.mulNumYT用数值延拓法求非线性方程组的一组解function [r,m]=mulNumYT(F,x0,h,N,eps)format long;if nargin==4eps=1.0e-8;endn = length(x0);fx0 = subs(F,findsym(F),x0);x0 = transpose(x0);J = zeros(n,n);for k=0:N-1fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endinJ = inv(J);r=x0-inJ*(fx-(1-k/N)*fx0);x0 = r;endm=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;14.DiffParam1用参数微分法中的欧拉法求非线性方程组的一组解function r=DiffParam1(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);for k=1:NFx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endinJ = inv(J);r = x0 - ht*inJ*Fx0;x0 = r;end15.DiffParam2用参数微分法中的中点积分法求非线性方程组的一组解function r=DiffParam2(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nxt = x0;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx0)/h(i);endinJ = inv(J);x1 = x0 - ht*inJ*Fx0;for k=1:Nx2 = x1 + (x1-x0)/2;Fx2 = subs(F,findsym(F),x2);J = zeros(n,n);for i=1:nxt = x2;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx2)/h(i);endinJ = inv(J);r = x1 - ht*inJ*Fx0;x0 = x1;x1 = r;end16.mulFastDown用最速下降法求非线性方程组的一组解function [r,m]=mulFastDown(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0-J*lamda; %核心迭代公式fr = subs(F,findsym(F),r);tol=dot(fr,fr);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;17.mulGSND用高斯牛顿法求非线性方程组的一组解function [r,m]=mulGSND(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endDF = inv(transpose(J)*J)*transpose(J);r=x0-DF*fx; %核心迭代公式tol=norm(r-x0);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;18.mulConj用共轭梯度法求非线性方程组的一组解function [r,m]=mulConj(F,x0,h,eps)format long;if nargin==3eps=1.0e-6;endn = length(x0);x0 = transpose(x0);fx0 = subs(F,findsym(F),x0);p0 = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)*(1+h);p0(:,i) = -(subs(F,findsym(F),x1)-fx0)/h;endm=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0+p0*lamda; %核心迭代公式fr = subs(F,findsym(F),r);Jnext = zeros(n,n);for i=1:nx1 = r;x1(i) = x1(i)+h;Jnext(:,i) = (subs(F,findsym(F),x1)-fr)/h;endabs1 = transpose(Jnext)*Jnext;abs2 = transpose(J)*J;v = abs1/abs2;if (abs(det(v)) < 1)p1 = -Jnext+p0*v;elsep1 = -Jnext;endtol=norm(r-x0);p0 = p1;x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;19.mulDamp用阻尼最小二乘法求非线性方程组的一组解function [r,m]=mulDamp(F,x0,h,u,v,eps)format long;if nargin==5eps=1.0e-6;endFI = transpose(F)*F/2;n = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsj = 0;fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;afx = subs(F,findsym(F),x1);J(:,i) = (afx-fx)/h;endFIx = subs(FI,findsym(FI),x0);for i=1:nx2 = x0;x2(i) = x2(i)+h;gradFI(i,1) = (subs(FI,findsym(FI),x2)-FIx)/h;ends=0;while s==0A = transpose(J)*J+u*eye(n,n);p = -A\gradFI;r = x0 + p;FIr = subs(FI,findsym(FI),r);if FIr<FIxif j == 0u = u/v;j = 1;elses=1;endelseu = u*v;j = 1;if norm(r-x0)<epss=1;endendendx0 = r;tol = norm(p);m=m+1;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendformat short;。
迭代运算matlab程序 -回复

迭代运算matlab程序-回复迭代运算matlab程序是一种重要的计算方法,它可以通过在一个循环中重复执行相同的计算步骤,逐步逼近所需的结果。
本文将详细介绍迭代运算matlab程序的原理、使用方法以及一些常见的应用示例。
首先,我们需要了解迭代运算的原理。
迭代,顾名思义就是重复执行某一操作。
在数值计算中,迭代运算通常用于解决无法通过解析方法得到精确解的问题。
它通过不断逼近解的过程,最终得到一个近似解。
迭代运算matlab程序的基本步骤如下:1. 确定迭代的初值:根据问题的要求,选择一个合适的初值作为迭代的起点。
2. 设定迭代终止条件:根据问题的求解精度要求,确定终止迭代的条件。
通常情况下,我们会设定一个误差阈值,当迭代过程中的误差小于该阈值时,停止迭代。
3. 迭代计算:每次迭代过程中,根据给定的公式或算法,通过matlab程序对初值进行计算,得到一个新的近似解。
4. 判断终止条件:判断当前的近似解是否满足终止条件,如果满足,则停止迭代;否则,返回到第3步,继续迭代计算。
下面,我们以求解方程x^2-2=0为例,来演示如何使用迭代运算matlab 程序。
首先,我们需要将方程转化为迭代形式:x = (x + 2/x)/2。
在matlab代码中,我们可以写成:x0 = 1; 初始值err = 1e-6; 误差阈值x = x0;while abs(x^2-2) > errx = (x + 2/x)/2;end代码的含义如下:- `x0` 表示迭代的初始值,我们选择1作为初始值。
- `err` 表示误差阈值,当迭代过程中的误差小于该阈值时,停止迭代。
- `x` 表示当前的近似解,首先将其赋值为初始值x0。
- `while` 循环用于判断是否满足终止条件,即判断迭代过程中的误差是否小于误差阈值。
- 在循环内部,根据迭代公式`(x + 2/x)/2`更新近似解x。
使用上述代码,我们可以通过迭代运算matlab程序求解方程x^2-2=0的近似解。
matlab牛顿迭代法求方程组的根

MATLAB(矩阵实验室)是一种用于数学计算、绘图等的高度工程化的软件评台。
利用MATLAB进行牛顿迭代法求解方程组的根是一种常见的数值分析方法。
本文将介绍如何使用MATLAB进行牛顿迭代法求解方程组的根,并给出具体的代码实现。
1. 理论基础牛顿迭代法是一种求解方程根的常用数值方法。
对于一般的方程组F(X)=0,牛顿迭代法的迭代公式如下:X(k+1)=X(k)−(∂F/∂X)^(-1)·F(X(k))其中,X(k)表示第k次迭代的解,∂F/∂X表示F对X的雅可比矩阵,^(-1)代表矩阵的逆运算。
2. MATLAB代码实现以下是使用MATLAB进行牛顿迭代法求解方程组的一般代码实现:```matlabfunction [x, numIter] = newtonMethod(F, J, x0, tol, maxIter)F为方程组F(X)=0的函数句柄J为方程组F(X)的雅可比矩阵的函数句柄x0为初始解向量tol为迭代精度maxIter为最大迭代次数x = x0;numIter = 0;while norm(F(x)) > tol numIter < maxIterx = x - J(x) \ F(x); 使用MATLAB的\表示矩阵的逆运算numIter = numIter + 1;endend```3. 示例下面以一个二元非线性方程组为例,演示如何使用上述MATLAB代码进行牛顿迭代法求解方程组的根。
考虑方程组:F1(x1, x2) = x1^2 + x2^2 - 25 = 0F2(x1, x2) = x1*x2 - 9 = 0对应的雅可比矩阵为:J(x)=[2x1, 2x2; x2, x1]下面是具体的MATLAB代码实现:```matlab定义方程组F和雅可比矩阵JF = (x) [x(1)^2 + x(2)^2 - 25; x(1)*x(2) - 9];J = (x) [2*x(1), 2*x(2); x(2), x(1)];设置初始解向量、迭代精度和最大迭代次数x0 = [1; 1];tol = 1e-6;maxIter = 100;调用newtonMethod函数进行求解[x, numIter] = newtonMethod(F, J, x0, tol, maxIter);显示结果disp(['解向量为:', num2str(x')]);disp(['迭代次数为:', num2str(numIter)]);```4. 结论本文介绍了使用MATLAB进行牛顿迭代法求解方程组的方法,并给出了具体的代码实现和示例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四
姓名:木拉丁。
尼则木丁班级:信计08-2
学号:20080803405 实验地点:新大机房
实验目的:通过本实验学习利用MATLAB不动点迭代法,抛物线法,斯特芬森迭代法解非线性方程组,及其编程实现,培养编程与上机调试能力。
实验要求:①上机前充分准备,复习有关内容,写出计算步骤,查对程序;
②完成实验后写出完整的实验报告,内容应该包括:所用的算法语言,
算法步骤陈述,变量说明,程序清单,输出计算结果,结果分析等等;
③用编好的程序在Matlab环境中执行。
迭代法
MATLAB程序:
function pwxff(f,x0,x1,x2,d,n)
f=inline(f);
x(1)=x0;
x(2)=x1;
x(3)=x2;
w1=(f(x(2))-f(x(3)))/(x(2)-x(3));
t1=(f(x(1))-f(x(3)))/(x(1)-x(3));
t2=(f(x(1))-f(x(2)))/(x(1)-x(2));
w2=1/(x(1)-x(2))*(t1-t2);
w=w1+w2*(x(3)-x(2));
for k=3:n
x(k+1)=x(k)-2*f(x(k))/(w+sqrt(w^2-4*f(x(k))*w2));
if abs(x(k+1)-x(k))<d
break
end
disp(sprintf('%d %f',k,x(k+1)))
end
x=x(k+1)
计算例题: 求f(x)=x3-x-1在[1,1.5]的零点. 取x0=1.5,
取x0=1.5,迭代公式为x n+1=(1+x n)1/3,计算结果如下表:
数值结果:ddfa('(x+1)^(1/3)',1.5,0.0001,100)
k x
1 1.500000
2 1.357209
3 1.330861
4 1.325884
5 1.324939
抛物线法
MATLAB程序:
function pwxf(f,x0,x1,x2,e,m)
f=inline(f);
x(1)=x0;
x(2)=x1;
x(3)=x2;
w1=(f(x(2))-f(x(3)))/(x(2)-x(3));
t1=(f(x(1))-f(x(3)))/(x(1)-x(3));
t2=(f(x(1))-f(x(2)))/(x(1)-x(2));
w2=(1/(x(1)-x(2)))*(t1-t2);
w=w1+w2*(x(3)-x(2));
for k=3:m
x(k+1)=x(k)-2*f(x(k))/(w+sqrt(w^2-4*f(x(k))*w2));
if abs(x(k+1)-x(k))<e
break
end
disp(sprintf('%d %f %f',k,x(k+1),f(x(k+1))))
end
x=x(k+1)
计算例题: 用抛物线法求解方程 :
56532.0,6.0,5.00
1)(210====-=x x x xe x f x
数值结果:
pwxf('x*exp(x)-1',0.5,0.6,0.56532,0.001,100)
3 0.567111 -0.000090
x = 0.5671
实验总结:从计算过程中得知迭代法的收敛性跟初始值和迭代公式有关,如果取初始值不妥当,迭代法会发散的。
2012-5-18。