东南大学——预应力混凝土简支T梁计算示例
30米预应力混凝土简支T梁计算书(H=2m)last(推荐文档)

目录1 计算依据与基础资料 (1)1.1 标准及规范 (1)1.1.1 标准 (1)1.1.2 规范 (1)1.1.3 参考资料 (1)1.2 主要材料 (1)1.3 设计要点 (2)2 横断面布置 (2)2.1 横断面布置图 (2)2.2 预制T梁截面尺寸 (3)2.3 T梁翼缘有效宽度计算 (4)3 汽车荷载横向分布系数、冲击系数的计算 (4)3.1 汽车荷载横向分布系数计算 (4)3.1.1 车道折减系数 (4)3.1.2 跨中横向分布系数 (4)3.2 汽车荷载冲击系数 值计算 (6)3.2.1汽车荷载纵向整体冲击系数 (6)3.2.2 汽车荷载的局部加载的冲击系数 (7)4 作用效应组合 (7)4.1 作用的标准值 (7)4.1.1 永久作用标准值 (7)4.1.2 汽车荷载效应标准值 (8)4.2 作用效应组合 (12)4.2.1 基本组合(用于结构承载能力极限状态设计) (12)4.2.2 作用短期效应组合(用于正常使用极限状态设计) (14)4.2.3 作用长期效应组合(用于正常使用极限状态设计) (15)4.3 截面预应力钢束估算及几何特性计算 (18)4.3.1 全预应力混凝土受弯构件受拉区钢筋面积估算 (18)4.3.2 截面几何特性计算 (23)5 持久状态承载能力极限状态计算 (25)5.1 正截面抗弯承载能力 (25)5.2 斜截面抗剪承载力验算 (26)5.2.1 验算受弯构件抗剪截面尺寸是否需进行抗剪强度计算 (26)5.2.2 箍筋设置 (30)5.2.3 斜截面抗剪承载力验算 (31)6 持久状况正常使用极限状态计算 (32)6.1 预应力钢束应力损失计算 (32)6.1.1 张拉控制应力 (32)6.1.2 各项预应力损失 (32)6.2 温度梯度截面上的应力计算 (38)6.3 抗裂验算 (41)6.3.1 正截面抗裂验算 (41)6.3.2 斜截面抗裂验算 (44)6.4 挠度验算 (47)6.4.1 汽车荷载引起的跨中挠度 (47)6.4.2 预制梁是否设置预拱值的计算 (48)7 持久状态和短暂状况构件应力验算 (50)7.1 使用阶段正截面法向应力验算 (50)7.1.1 受压区混凝土的最大压应力 (51)7.1.2 受拉区预应力钢筋的最大拉应力 (51)7.2 使用阶段混凝土主压应力、主拉应力计算 (52)7.3 施工阶段应力验算 (56)8 桥面板计算 (58)8.1 边梁内翼缘根部配筋计算 (58)8.1.1 荷载标准值计算 (58)8.1.2 极限状态承载力计算 (60)8.1.3 抗裂计算 (61)8.2 边梁外翼缘根部配筋计算 (62)8.2.1 荷载标准值计算 (62)8.2.2 极限状态承载力计算 (64)8.2.3 抗裂计算 (65)8.3 翼缘底面配筋计算 (66)8.3.1 荷载标准值计算 (66)8.3.2 极限状态承载力计算 (68)8.3.3 抗裂计算 (69)9 横隔梁计算 (70)9.1 作用于横隔梁上的计算荷载 (70)9.2 跨中横隔梁的内力影响线 (70)9.2.1 绘制弯矩影响线 (71)9.2.2 绘制剪力影响线 (72)9.2.3 车道荷载横向加载 (73)9.3 跨中横隔梁的内力计算 (73)9.4 跨中横隔梁的配筋计算 (74)9.4.1 截面特征 (74)9.4.2 配筋计算 (74)9.4.3 裂缝计算 (76)预应力混凝土公路桥梁通用设计图成套技术通用图计算书(30m预应力混凝土简支T梁)1 计算依据与基础资料1.1 标准及规范1.1.1 标准∙跨径:桥梁标准跨径30m;计算跨径(正交、简支)28.9m;预制T 梁长29.92m∙设计荷载:公路-Ⅰ级∙桥面宽度:分离式路基宽24.5m(高速公路),半幅桥全宽12.0m 0.5m(护栏墙)+11.0m(行车道)+0.5m(护栏墙)=12.0m∙桥梁安全等级为一级,环境条件为Ⅱ类1.1.2 规范∙《公路工程技术标准》JTG B01-2003∙《公路桥梁设计通用规范》JTG D60-2004(简称《通规》)∙《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004(简称《桥规》)1.1.3 参考资料∙《公路桥涵设计手册》桥梁上册(人民交通出版社2004.3)1.2 主要材料1)混凝土:预制T梁及湿接缝为C50、现浇铺装层为C40、护栏为C302)预应力钢绞线:采用钢绞线s 15.2m m φ,pk 1860MPa f =,5p 1.9510MPa E =⨯3)普通钢筋:采用HRB335,sk 335MPa f =,5s 2.010MPa E =⨯ 1.3 设计要点1)本计算中简支T 梁按全预应力构件进行设计,现浇层80mm 的C40混凝土不参与截面组合作用;2)预应力钢束张拉控制应力值con pk 0.75f σ=;3)计算混凝土收缩、徐变引起的预应力损失时传力锚固龄期为7d; 4)环境平均相对湿度RH=55%; 5)存梁时间为90d ; 6)不均匀沉降为5mm ;7)温度梯度效应计算的温度基数,114T =℃,2 5.5T =℃。
预应力混凝土T型简支梁设计计算书

一、设计资料1、桥面跨径及桥宽标准跨径:总体方案选择的结果,采用装配式预应力混凝土T 型简支梁,跨度25m ;主梁长:伸缩缝采用40mm ,预制梁长24.96m ; 计算跨径:取相邻支座中心间距24.5m ;桥面净空:由于该桥所在线路的宽度较大,确定采用分离式桥面;左半幅路面布置:0.5m (护栏)+12m (行车道)+0.8m (护栏+检修道)=13.3m 。
2、主要技术指标设计荷载:公路Ⅰ级;结构重要性系数为γ0 = 1.1; 桥面坡度:行车道单向横坡2%。
3、材料性能参数 (1)混凝土强度等级为C40,主要强度指标为:强度标准值 ck f =26.8a MP ,tkf=2.4a MP强度设计值 cd f =18.4 a MP ,td f =1.65a MP 弹性模量 c E =3.25×410a MP(2)预应力钢筋采用1×7标准型-15.2-1860-Ⅱ-GB/T5224-1995钢绞线。
其强度指为:抗拉强度标准值 pk f =1860a MP 抗拉强度设计值pdf =1260aMP 弹性模量pE =1.95×510aMP相对界限受压区高度b ξ=0.4,pu ξ=0.2563(3)普通钢筋①纵向抗拉普通钢筋采用HRB400钢筋,其强度指标为抗拉强度标准值sk f =400a MP 抗拉强度设计值sdf =330aMP相对界限受压区高度bξ=0.53puξ=0.1985②箍筋及构造钢筋采用HRB335,其强度指标为 抗拉强度标准值sk f =335a MP 抗拉强度设计值sdf =280aMP弹性模量sE =2.0×510aMP4、设计依据 1)《公路桥涵设计通用规范》(JTG D60—04),简称《桥规》; 2)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D60—04),简称《公预规》; 3)《公路桥涵地基与基础设计规范》(JTJ024—85);二、构造布置1、梁间距:采用装配式施工。
预应力混凝土简支梁计算

全预应力混凝土简支梁设计算例一、设计资料1. 桥梁跨径及桥宽标准跨径:m L k 30=(墩中心距),主梁全长:L =29.96m ,计算跨径:f L =29.16m ,桥面净宽:净9+2×1m 。
2. 设计荷载公路—Ⅱ级车辆荷载,人群荷载3.5KN/m 2,结构重要性系数1.10=γ。
3. 材料性能参数 (1)混凝土强度等级为C40,主要强度指标为: 强度标准值 MPa f MPa f tk ck 4.2,8.26== 强度设计值 MPa f MPa f td cd 65.1,4.18== 弹性模量 MPa E c 41025.3⨯=⑵ 预应力钢筋采用1×7标准型_15.2_1860_II_GB/T 5224——1995钢绞线, 其强度 指标为:抗拉强度标准值 MPa f pk 1860= 抗拉强度设计值 MPa f pd 1260= 弹性模量 MPa E p 51095.1⨯= 相对界限受压区高度 4.0=b ξ⑶普通钢筋采用HRB335钢筋,其强度指标为: 抗拉强度标准值 MPa f sk 335= 抗拉强度设计值 MPa f sd 280= 弹性模量 MPa E s 5100.2⨯= 4.主梁纵横截面布置 各部分截面尺寸跨中截面毛截面几何性质为:截面面积c A =0.7018×106mm 2;截面重心至构件上缘的距离cs y =475.4mm ; 截面重心至构件下缘的距离cx y =824.6 mm ; 截面惯性矩c J =0.1548×1012mm 4。
5.内力计算主梁内力计算的方法将在《桥梁工程》中进一步学习,在此仅列出内力计算的结果。
(1)恒载内力按预应力混凝土分阶段受力的实际情况,恒载内力按下列三种情况分别计算: ①预制主梁(包括横隔梁) m KN g /66.1635.13.151=+= ②现浇混凝土板自重 m KN g /25.22=③后期恒载(包括桥面铺装、人行道及栏杆等) m KN g /51.624.027.63=+= 恒载内力计算结果如表1所示。
桥梁工程毕业设计——预应力混凝土简支T型梁桥

1 方案拟订与比选1.1 设计资料(1)技术指标:汽车荷载:公路—I级桥面宽度:26m采用双幅(12+2×0.5)m(2)设计洪水频率:百年一遇;(3)通航等级:无;(4)地震动参数:地震动峰值加速度0.05g,地震动反应谱特征周期0。
35s,相当于原地震基本烈度VI度。
1.2 设计方案鉴于展架桥地质地形情况。
该处地势平缓,故比选方案主要采用简支梁桥和连续梁桥形式。
根据安全、适用、经济、美观的设计原则,我初步拟定了三个方案。
1。
2。
1 方案一:(8×40)m预应力混凝土简支T型梁桥本桥的横截面采用T型截面(如图1—1).防收缩钢筋采用下密上疏的要求布置所有钢筋的焊缝均为双面焊,因为该桥的跨度较大,预应力钢筋采用特殊的形式(如图1—2)布置,这样不仅有利于抗剪,而且在拼装完成后,在桥面上进行张拉,可防止梁上缘开裂。
优点:制造简单,整体性好,接头也方便,而且能有效的利用现代高强材料,减少构件截面,与钢筋混凝土相比,能节省钢材,在使用荷载下不出现裂缝等。
缺点:预应力张拉后上拱偏大,影响桥面线形,使桥面铺装加厚等。
施工方法:采用预制拼装法(后张法)施工,即先预制T型梁,然后用大型机械吊装的一种施工方法。
其中后张法的施工流程为:先浇筑构件混凝土,并在其中预留孔道,待混凝土达到要求强度后,将预应力钢筋穿入预留的孔道内,将千斤顶支承与混凝土构件端部,张拉预应力钢筋,使构件也同时受到反力压缩.待张拉到控制拉力后,即用夹片锚具将预应力钢筋锚固于混凝土构件上,使混凝土获得并保持其预压应力.最后,在预留孔道内压注水泥浆。
,使预应力钢筋与混凝土粘结成为整体.桥中心桩号1:1000立 面卵石卵石卵石亚粘土亚粘土亚粘土淤泥质土淤泥质土淤泥质土细砂细砂亚砂土亚砂土亚砂土 立面图(尺寸单位:cm )图2图1图1—1 (尺寸单位:cm ) 图1—21。
2。
2 方案二:(86+148+86)m 预应力混凝土连续箱形梁桥本桥采用单箱单室(如图1—3)的截面形式及立面图(如图1-4),因为跨度很大(对连续梁桥),在外载和自重作用下,支点截面将出现较大的负弯矩,从绝对值来看,支点截面的负弯矩大于跨中截面的正弯矩,因此,采用变截面梁能符合梁的内力分布规律,变截面梁的变化规律采用二次抛物线。
预应力混凝土简支T梁计算报告(midas)

预应力混凝土简支T梁计算报告指导老师:专业:班级:姓名:学号:李立峰桥梁工程桥梁一班**********一、计算资料1.1跨度与技术指标标准跨径:计算跨径:汽车荷载:公路一级设计安全等级:二级1.2桥梁概况及一般截面此计算为一预应力混凝土简支梁中梁的计算,不计入现浇带,其跨中与支点截面如图1-1所示,纵断面图如图1-2所示。
跨中截面^11话中及支点横断塚関(卑位:mm)mu1L i1i-----------------------1Li JE.fi* <4r i: mm} 1.3使用的材料及其容许应力混凝土:C50,轴心抗压强度设计值,抗拉强度设计值,弹性模量。
钢筋混凝土容重:丫钢筋:预应力钢束采用3束$ 15.2mm X 7的钢绞线,抗拉强度标准值,张拉控制应力b con=0.75f ak=1395MPa截面面积:,孔道直径:77mm预应力钢筋与管道的摩擦系数:0.25管道每米局部偏差对摩擦的影响系数:0.0015 (1/m)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm 结束点:6mm纵向钢筋:采用0 16的HRB335级钢筋,底部配6根,间距为70mm翼缘板配16根,间距为100mm1.4施工方法采用预制拼装法施工;主梁为预制预应力混凝土T梁,后张法工艺;预制梁混凝土立方体强度达到设计混凝土等级的85%且龄期不少于7天后方可张拉预应力钢束;张拉时两端对称、均匀张拉(不超张拉),采用张拉力与引伸量双控。
钢束张拉顺序为:N2 —N3 — N1二、计算模型2.1模型的建立本计算为一单跨预应力混凝土简支T梁桥中梁模型(图2-1 ),其节点的布置如图2-2所示。
在计算活载作用时,横向分布系数取m=0.5,并不沿纵向变化。
在建立结构模型时,取计算跨径,由于该结构比较简单,计算跨度只有24m故增加单元不会导致计算量过大,大多数单元长度为1m。
建立保证控制截面在单元的端部,以便于读取数据。
对于横隔板当作节点荷载加入计算模型,其所起到的横向联系作用已在横向分布系数中考虑。
东南大学-结构设计原理-第十三章-预应力混凝土受弯构件的设计与计算

cc或 ct
Np An
N pepn Jn
yn
M GK Jn
yn
M QK J0
y0
Transportation College of Southeast University
在使用阶段梁基本处于弹性工作状态。截面上
作用着有效预加力、自重、二期恒载和活荷载引起
的截面内力,其产生的应力可按材料力学公式计算:
如果我们设计时不加预应力,只是可能告知裂缝宽 度,这样的构件就是钢筋混凝土构件。
带裂缝工作的初期阶段,梁受压区混凝土基本上 仍处于弹性工作阶段。因此,部分预应力混凝土 B 类 构件开裂后的截面应力,可按开裂的钢筋混凝土弹性 体计算。
20
Transportation College of Southeast University
当构件在消压后继续加载,并使受拉区混凝土应
力达到抗拉极限强度ftk时的应力状态,即称为裂缝即将 出现状态(图13-2-1e)。此时荷载产生的弯矩就称为
预应力混凝土梁的开裂弯矩Mcr。
如果把受拉区边缘混凝土应力从零增加到应力为ftk
所需的外弯矩用Mcr.c(图13-2-1d)表示,则应有:
(13-3)
式中:
M cr M 0 M cr,c
Mcr.c——相当于同截面钢筋混凝土梁的开裂弯矩,
M cr.c ftkWo
16
Transportation College of Southeast University
a)
b)
Q cr
G1+ G 2
c)
d)
M0
Mcr,c
Np
pc
pc
ftk ftk
图13-2-1 各种作用下的截面应力分布
预应力混凝土简支T形梁桥设计及计算方法

第四章预应力混凝土简支T形梁桥第一节.设计资料与结构尺寸(一)设计资料1.桥梁跨径及桥宽标准跨径:40m计算跨径:38.88m主梁预制长度:39.96 m桥面净空:净9+2×1.0m2.设计荷载:汽-20级,挂-100,人群3.5KN/m23.材料及特性(见表4—1)附:①预应力钢束采用符合冶金部YB255-64标准的碳素钢丝。
②主梁所用到的钢板除主梁间的联接用16Mn低合金钢板,其余均采用A3碳素钢板。
4.锚具:采用24丝锥形锚,锚环、锚塞采用45号优质碳炭结构钢,其中锚塞的HRC=55~58。
5.施工工艺:按后张法制作主梁,预留预应力钢丝的孔道,由φ=50mm的抽拔橡胶管形成。
6.设计依据:《公路桥涵设计通用规范》(JTJ 021-85)以下简称“桥规”《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023-85)以下简称“公预规”。
(二)结构尺寸1.主梁间距与主梁片数:主梁间距随梁高与跨径的增加以加宽为宜,由此可提高主梁截面效率指标ρ值,采用主梁间距离2.2米。
考虑人行道可适当挑出,对设计资料给定的桥面净宽选用5片主梁,其横截面布置型式见图4—1。
图4—1横截面布置型式2.主梁尺寸拟定:(1)主梁高度:预应力混凝土简以梁桥的主梁高跨比通常在1/15~1/25,考虑主梁的建筑高度和预应力钢筋的用量,标准设计的高跨比约在1/17~1/19,由此,主梁高度取用250cm。
(2)主梁腹板的厚度:在预应混凝土梁中腹板内因主拉应力较小腹板的厚度主要由预应力钢束的孔道设置方式决定,同时从腹腔板的稳定出发,腹板的厚度不宜小于其高度的1/15,故取用腹板厚度为16cm,在跨中区段,钢束主要布置在梁的下缘,以形成较大的内力偶臂,故在梁腹板下部设置马蹄,以利数量较多的钢束布置,设计实践表明马蹄面积与截面面积的确良10%~20%为宜,马蹄宽度40cm高38cm。
3.翼板尺寸拟定:翼板的高度由主梁间距决定,考虑主梁间须留湿接缝,故取翼板宽度1.60m,湿接缝宽60cm.。
预应力简支T型梁桥计算

(预应力简支T型梁桥)第一章绪论梁式桥种类很多,也是公路桥梁中最常用的桥型,路桥梁常用的梁式桥形式有简支梁、悬臂梁、连续梁等,梁式桥跨径大小是技术水平的重要指标,一定程度上反映一个国家的工业、交通、桥梁设计和施工各方面的成就。
80年代以来,我国公路上修建了几座具有代表性的预应力混凝上简支T型梁桥(或桥面连续),如河南的郑州、开封黄河公路桥,浙江省的飞云江大桥等,其跨径达到62m,吊装重220t。
T形梁采用钢筋混凝土结构的已经很少了,从16m到50m跨径,都是采用预制拼装后张法预应力混凝土T形梁.预应力体系采用钢绞线群锚,在工地预制,吊装架设.其发展趋势为:采用高强、低松弛钢绞线群锚,混凝土标号40~60号;T形梁的翼缘板加宽,25m是合适的;吊装重量增加;为了减少接缝,改善行车,采用工型梁,现浇梁端横梁湿接头和桥面,在桥面现浇混凝土中布置负弯矩钢束,形成比桥面连续更进一步的“准连续"结构。
预应力混凝土T形梁有结构简单,受力明确、节省材料、架设安装方便,跨越能力较大等优点。
其最大跨径以不超过50m为宜,再加大跨径不论从受力、构造、经济上都不合理了。
大于50m跨径以选择箱形截面为宜.目前的预应力混凝土简支“准连续“。
随着交通建设事业的发展,大量的预应力混凝土简支T梁被广泛应用,其中的标准化设计起到了重要作用。
我国交通行业预应力混凝土简支T梁标准化设计经历过了一个从无到有的发展过程.20世纪60年代,主要套用过去苏联的标准图。
20世纪70年代由交通部组织交通部第二公路勘察设计院编制了装配式后张法预应力混凝土简支梁标准图JT/GQB—025-75.20世纪80年代出版了新的标准图-装配式钢筋混凝土简支梁JT/GQB-024—83。
进人20世纪90年代,交通部先后出版了预应力空心板、预应力混凝土I型组合梁标准图。
但预应力混凝土简支T梁标准化工作相对滞后,这期间的预应力混凝土简支梁在桥梁建设中仍占有相当的比例,北京市每年有近80%为这种结构形式,而一些新技术、新工艺、新材料的迅速发展和应用,原有的标准图已不适用。