六旋翼农用无人机设计

摘要

本次设计主题为“六旋翼农用无人机模型设计”,结合我国当前农业机械化发展现状,通过对命题的分析得到了更加清晰开阔的设计思路,设计作品具有系统性、实用性和创新性。

针对多旋翼农用无人机,本文确定了“六旋翼农用喷药、航拍功能无人机”的设计说明书,介绍了无人机的设计过程,主要通过概念性论述,经过对无人机结构研究、分析的整体把握,以结构、动力、控制三部分进行设计,并结合实际通过对多旋翼农用无人机设想进行结构改进、设计优化以提高设计的应用性,这种方法对类似产品的设计制造同样具有借鉴作用。

设计方案包括无人机整体机架、喷药机构等,并给出了CAD设计图、整体装配图PRO/E等内容,确保无人机结构简单、适用灵活、便于普及、成本低廉等。

关键词:六旋翼农用无人机模型;CAD;PRO/E

Abstract

The design theme for the "six rotor UAV model design of agricultural", combining the current situation of agriculture mechanization development, through the analysis of the proposition of the design ideas more clearly open, design work is systematic, practical and innovative.

For multi rotor agricultural UAV, the "design specification of six rotor agricultural spraying, aerial functional UAV", introduces the design process of UAV, mainly through the concept of exposition, according to the study, no machine structure analysis in whole, to structure, power, control three parts design, combined with the the actual rotor UAV based on agricultural ideas for optimization design of structure improvement, so as to improve the application of design, this method also has a good effect on the design and manufacture of similar products.

Design includes the UAV the whole machine, spraying device, and gives the design drawings, the overall assembly drawing etc., ensure that the UAV has the advantages of simple structure, flexible application, convenient, low cost etc...

Keywords: six rotor UAV model design of agricultural;CAD;PRO/E

目录

Abstract (2)

目录 (3)

一、绪论 (4)

多旋翼农用无人机的发展简史 (4)

多旋翼农用无人机的发展现状与展望 (5)

二、六旋翼农用无人机的机体与喷施结构设计 (7)

1、六旋翼农用无人机整体基本构造设计 (7)

2、六旋翼农用无人机喷施设备的基本构造设计与工作原理 (8)

3、六旋翼农用无人机的自平衡原理 (8)

三、六旋翼农用无人机的动力系统与工作原理 (10)

动力系统基本组成 (10)

驱动电动机与电子调速器: (11)

1、驱动电机参数的确定以及巡航时间的计算 (12)

1.1 无人机电机的选择 (12)

1.2 无人机的工作时间 (13)

1.3 螺旋桨的设计 (14)

1.4 螺旋升力的计算: (15)

2、电调的使用 (15)

3、PCB电子集合板、陀螺仪、摄像及遥控传感器设备应用 (16)

四、六旋翼农用无人机的保养与保管 (21)

参考文献 (22)

致谢 (23)

一、绪论

随着社会生产力的进一步提高,农用航空飞机,是利用微型飞机和喷施设备进行农业作业的机械,它除了用来喷洒农药和化学除草剂、作物激素及脱叶剂等药液外,还可以进行观察农情等作业。

而多旋翼农用无人机,作为一种有动力、可控制、能携带完成农用任务的设备,近几年已倍受农业科技人员的青睐。它没有驾驶舱,但安装了自驾仪、航拍摄像、飞行姿态控制等设备,以辅助无人机水平移动、垂直起降等方式运动,通过超低空飞行完成农用任务和降落,便于多次作业。

多旋翼农用无人机的发展简史

多旋翼农用无人机是飞机的一种,其发展历史可以追溯到1903年,世界上第一架飞机的发明创造为其发展奠定基础。而此后数十年间,该飞行设备分别在德国、美国、苏联等国的植保农业中广泛推广使用,截止1978年,全世界拥有航空植保飞机25000余架,近几年以每年递增约2000架的幅度上升。同时,各国的农用飞机有60余种,其中定翼型飞机40多种、旋翼型(直升)飞机20多种,有数据显示世界上主要国家植保飞机数量和作业面积,如下(其中,1ha等于1公顷):

表1 世界上主要国家植保飞机数量和作业面积(1990年统计)

主要国家飞机数

量(架)作业面积

(kha)

主要国家飞机数量

(架)

作业面积

(kha)

苏联8,000 81,000 古巴184 5,152 美国6,100 42,100 秘鲁174 1,000 加拿大666 2,130 日本158 1,622 墨西哥450 3,000 危地马拉157 3,432 阿根廷450 5,000 萨尔瓦多136 1,395 澳大利亚260 6,170 德国100 1,840 新西兰213 3,320 南斯拉夫92 1,200

哥伦比亚208 5,229 世界上62

个国家共有18,800 506,667

尼加拉瓜190 3,834

随着专用航空植保飞机的先后设计和制造,作为技术较为成熟的农用无人机也相继出现,并迅速发展起来了。如美国的“农猫式”航空植保飞机等,而1960年荷兰就成立了国际航空植保中心,进一步扩大了农用植保飞机的规模。截止到上世纪80年代,世界上拥有航空植保飞机数量超过100架的国家就有近20个。

1953年,我国民航部门专门成立了专业航空植保机械业务,并在1957年成功制造第一架-5型航空植保飞机。我国航空农用机械事业是在北方平原地带开展起来的,主要对小麦、棉花、水稻等作物进行航空植保。

随着社会主义建设事业的辉煌成就,农牧经济也得到了较快的发展,尤其是改革开放以来我国各项技术的突破性发展,关系到国计民生的农牧经济对航空植保的需要愈来愈迫切。近几年,我国自行设计制造的蜜蜂2号、3号和蜻蜓5号等超轻型飞机相继试飞成功并投入生产。根据近几年的实际生产状况,航空植保在农、林、牧各业中得到了广泛的推广使用,不但能够及时、准确、高质量完成

植保作业任务,而且在一定程度上可以大幅度提高劳动生产率,降低生产成本,减少了农作物的损失。

然而,相对于我们地缘广袤的农业大国来说,国内航空植保飞机数量还是相对较少,而且大部分是通用型飞机,技术技能、经济性、实用性以及效率等都比较落后。尤其是相对于南方多丘陵、山区地带,通用型飞机不能很好地推广使用,而微型多旋翼(直升)农用无人机更合适,并十分顺应当下农业劳动者减少的现状,达到提高工作效率的作用。

多旋翼农用无人机的发展现状与展望

我国现有的超轻型飞机,代表有蜜蜂2、3号和蜻蜓5号等,这些是根据我国国情设计制造的新型航空植保飞机。其中,这些型号的飞机结构简单、制造方便、耗费少、载重大,尤其是易于驾驶,加上维护简便,作为农用飞机是十分经济的。

目前,我国使用较多的定翼植保飞机是1957年设计投产的,在国内技术已经相当成熟,但是与国外的先进机型相比,差距相当大,在经济性、效率、飞行性上远远不够,尤其是爬升率和加速性能。这些都是今后需要攻克的难关,所以本次六旋翼无人机是在传承国内先进技术的前提下,旨在进一步改善其性能,不仅要满足南方多丘陵、山区地带的农业作业,而且要满足当前农业劳动力下降的要求,提高一个人控制农用飞机作业的劳动效率与积极性。

目前,农用无人机在河南、山东、河北等地已经出现,较多的为四旋翼、八旋翼等微型无人机,相比于平原地带,类似江西、湖南等多丘陵、山区地带,本次设计的六旋翼农用无人机在性能与结构上更加适合个体户和大种植户的适用于推广。

1、具有良好的起飞、着落性能

六旋翼农用无人机的作业现场都是农场、林场以及牧场,没有现成的飞机起飞降落场地。而六旋翼农用无人机的机型较小,起飞的灵活性较好,更重要的是无人驾驶,所以其起飞、降落的场地可以是临时性小面积空地即可,也就是说,六旋翼农用无人机具有直升飞机降落特性、灵活性好。

2、噪音小、能见度较好

六旋翼农用无人机是通过六个螺旋桨提供机械动力进行作业的,噪音相比于以往的蜜蜂型、蜻蜓型飞机十分小。另外,在飞行器上已经安装有航拍设备,便于工作人员在地面监视工作现状,通过无线电子设备传输清晰的工作画面,利于达到对无人机的巡航操作。

3、操作性能好

六旋翼农用无人机一次性连续作业可以达到近2小时,在具备直升机性能的条件下加上远程控制,其加速性能、爬升率较大,能够飞越电线、建筑物等障碍物;转弯灵敏,便于喷施作业并节约时间,同时,六旋翼农用无人机十分适合超低空作业飞行,其超低空控制性能也比较好,能够保证喷施任务的顺利完成,并不会伤害作物。

4、一次载重较大

航空植保飞机的结构效率是飞机载重和起飞重量的百分比,而六旋翼农用无人机能够完成无人驾驶,在减少载荷的前提下一次性载重能够达到100kg,属于超轻型无人机,因此可以根据实际情况一次性作业可以多装一些农药。

5、能源清洁、污染小

六旋翼农用无人机的能源来自蓄电池,电能作为一种清洁、无污染能源,尤

其是作业时噪音小,不会影响周围人们的正常生活。

6、航行时间可再续

由于六旋翼农用无人机的能量来源是蓄电池,所以设计中的蓄电池部件可以更换,因此在作业中,可以带上备用蓄电池,以达到巡航时间的可再续性,便于长作业时间。

7、安全性能较好、便于检查维护

六旋翼农用无人机的结构比较简单,其中六个旋翼的坚固性能以及支架的合理结构,能够保证升降过程的安全性能;尤其是在其灵活的超低空飞行性能下,无人机的平稳降落、升起性能较好。六旋翼农用无人机的大部分零件都可以到市场上购置,而结构也十分简单,便于拆装,利于对内部构件进行检查维修,同时损坏的物件也方便更换,不至于影响现场作业。

8、减轻劳动强度、经济实用,并易于推广

基于当前农业劳动者的文明程度的提升,六旋翼农用无人机十分适合当代热衷于电子设备的青年人,并减轻他们的劳动强度;同时,六旋翼农用无人机的造价比较低廉,适于农业用户的购置实用。

诸如以上综合考虑,六旋翼农用无人机作为一种创新型农用设备十分适合当代社会发展现状,便于推广使用。同时随着人民群众各方面文化素质的提高,绿色环保、低能耗、高效益等理念深入人心,农用无人机的多功能技术也倍受广大农田工作者和行业内外人士的关注与研究,本次六旋翼农用无人机的设计仅仅作为一个参考,希望能够得到大家的认可。

二、六旋翼农用无人机的机体与喷施结构设计

1、六旋翼农用无人机整体基本构造设计

六旋翼农用无人机主要有三个部分构成,即为:机体部分、控制部分、动力部分。三个部分的功能各不相同,相互作用。机体部分指的是机身骨架,它为其他部分提供固定安装和机械连接;动力部分指的是电池、电动机、液泵、机翼等部分,它为控制部分提供电力,并进行作业;控制部分指的是无人机的控制系统,它为运动部分提供精密准确的控制指令。

其中,六旋翼农用无人机的整体设计如下图:

该六旋翼农用无人机的六个螺旋桨位于同一个平面上,通过六根长度不等的轴相连接在机架固定板上。这样做的好处,主要是保证了机架上半部分(除去药箱、活塞泵等下部部件)的重心位于中心的前提下,能够承担更大的负载。重心位于中心的位置将在以下内容重点讲述。

机体上半部分包括有螺旋桨、六个轴、上下固定板、GPS、电池、PCB电路板、电子陀螺仪、六个电机、摄像设备等重要部件及零件,主要完成动力、信息传输、控制、航拍等任务。

机体下半部分包括有药箱、活塞泵、药杆及喷头、底座、支撑架等重要部件,主要完成喷药任务。

2、六旋翼农用无人机喷施设备的基本构造设计与工作原理

六旋翼农用无人机喷施结构如下图(简图),是由药箱、活塞泵、传感器、喷射部件和电子操纵控制装置等组成。

1、药箱;

2、活塞泵;

3、调压设备;

4、电源;

5、喷药杆;

6、喷头。

药箱:用来盛装药液的箱体。箱体是一个圆柱筒,上端靠边缘处设计了加液口(内置过滤网、带有小孔的盖子等),下端安装有压力传感器和泄液出端,并在上中下部位安有密度传感器。当液泵工作时,箱体的药液便可以通过进液管源源不断进入液泵中,同时,压力传感器就将箱体内药液产生的压力数据传输给接收端,便于辨知箱体内药液的剩余量。

活塞泵:用来提供一定压力和流量的液体到喷洒部件中去。它用卡箍固定在药箱顶部,通过电动驱动液泵工作。工作时,通过电子操纵控制装置操纵活门做动筒运动,使出液活门打开或关闭,控制液泵出来的药液通过出液管送到喷洒部件。

调压设备:也即调压控制装置,是通过电子设备操控出液压力。

相关的喷量计算公式:

用Q 表示喷洒量,单位为m 3/公顷,主要取决于每个喷头的喷量、喷头的数量、喷幅和飞行速度。即为: Q =

a

BV Nq 10 式中 Q 为所需喷量;

N 为喷头数;

q 为喷头排量(m 3/s );

B 为喷副(m );

a V 为飞行速度(m/s )。 检查喷洒量时,可以把定量的药液放入药箱中,然后以合适的压力定时把它喷出,根据排出箱中的药液量能够确定喷洒量。

3、六旋翼农用无人机的自平衡原理

在六旋翼农用无人飞行机中,虽然其六轴不一样长,但是仍然位于同一圆上,

而且其重心仍在中间位置。除此之外,有2个轴上的螺旋桨为主旋翼,2个主旋翼旋转方向相反;外侧4个为副旋翼,相邻2个旋翼旋转方向两两相反,2个顺时针旋转,2个逆时针旋转。其整机升力主要由2个共轴旋翼提供,飞行器的姿态调整由4个副旋翼控制。六旋翼飞行器可以通过调节各电机的转速来改变牵引力的大小,实现飞行姿态与航向的控制,并具自平衡性。

当所有旋翼产生的升力等于无人机自身的重力时,飞行器保持悬停状态。无人机的升降运动有2个主共轴旋翼决定。当2个共轴主旋翼旋的转速共同减小,所有旋翼产生的升力小于飞行器自身的重力时,飞行器下降。当2个共轴主旋翼旋的转速共同增大,所有旋翼产生的升力大于飞行器自身的重力时,飞行器升高。

无人机要偏转航向,需要所有旋翼产生的反扭矩不平衡。六旋翼无人机的偏航由2个共轴主旋翼决定。2个共轴主旋翼旋转方向相反,平衡所有旋翼产生的反扭矩。当2个共轴主旋翼平衡了所有旋翼产生的反扭矩时,无人机无偏航。当顺时针旋转旋翼转速降低,逆时针旋转旋翼转速增大,且2个共轴主旋翼所产生的升力之和保持不变时,无人机顺时针偏航。当逆时针旋转旋翼转速降低,顺时针旋转旋翼转速增大,且2个共轴主旋翼所产生的升力之和保持不变时,无人机逆时针偏航。

无人机水平移动由4个副旋翼决定。由于所有旋翼无法产生水平方向上的牵引力,所以飞行器需要产生倾斜,由升力在水平方向上的分力推动飞行器水平移动。当一侧的2个副旋翼转速增大,产生的升力增大,而另一侧的2个副旋翼转速降低,产生的升力降低时,无人机的姿态产生倾斜,无人机朝姿态降低的一侧水平移动。当转速共同变化发生在前后两侧,无人机产生姿态发生俯仰,并产生前后运动。当转速共同变化发生在左右两侧,无人机产生姿态发生翻滚,并产生左右运动。由于无人机任意一个侧面的两个副旋翼的旋转方向都是相反的。因此,同侧副旋翼转速共同增大和降低,不会引起反扭矩的平衡。

综上所述,六旋翼无人机实现了空间6个自由度(分别沿3个坐标轴作平移和旋转运动)的运动。在实际使用情况下,有用的主要运动为沿3个坐标轴作平移运动和绕垂直轴的旋转运动,俯仰运动和翻滚运动为水平运动的诱导运动。

三、六旋翼农用无人机的动力系统与工作原理

农用无人飞机的动力大致可分为燃油动力、电动和其它三类。其它主要有喷气发动机、涡轮发动机和火箭发动机等几种;而燃油动力是指用汽油、煤油和甲醇等燃料发动机做动力;电动则是指以电池推动电动机做动力的动力系统。

相比较而言,前两类是传统的动力系统,其发展几近百年,而电动则是最近几年才发展起来的,而且是由于手机厂家为增加待机时间和减轻手机重量,不断推出容量大、体积小、重量轻的锂电池为前提而推广起来的。因此,基于蓄电池的基本特点优势和便捷的可再充电模式,锂电池就是本次无人机设计所使用的动力来源,并给电机等部件工作提供能量。

动力系统基本组成

电动无人机的动力系统主要由四个部件组成:电池、电动机、电子调速器和螺旋桨等。

电池:现在可用做模型动力的电池种类很多,镍氢(Ni-MH)、镍锰(NiOH-MnO2)、锂金属(Li)、锂聚合物(Li-Poly)等电池都行,其中以镍氢电池和锂聚合物电池以其优异的性能和低廉的价格成为本次农用无人机设计中的首选。

表示电池性能的标称有很多,我们最关心的是电压、容量和放电能力这三个。

电池的电压是用伏特(V)来表示的。标称电压只是厂家按照国家标准标示的电压,实际上使用时电池的电压是不断变化的。例如锂电池的标称电压是11.2V,充电后电压可达12V,放电后的保护电压就为11V。在实际使用过程中,电池的电压会产生压降,这是和电池所带动的负载有关的,也就是说电池所带的负载越大,电流越大,电池的电压就越小,在去掉负载后电池的电压还可恢复到一定值。

电池的容量一般是用毫安时(MAH)来表示的。它的意思是电池以某个电流来放电能维持一小时,例如16000mAH就是这个电池能保持16000毫安(16安培)放电一小时。但是电池的放电并非是线性的,所以我们不能说这个电池在8000毫安时能维持2小时。不过电池在小电流时的放电时间总是大于大电流时的放电时间,所以我们可以近似的算出电池在其它电流情况下的放电时间。

一般来说,电池的体积越大,它储存的电量就越多,这样飞机的重量也会增加,所以选好合适的电池对飞行是很有好处的,其中蓄电池的电量是可以根据容量指数,依据W=U·I·T求出总电量。

电池的放电能力是以倍数(C)来表示的,它的意思是说按照电池的标称容量最大可达到多大的放电电流。例如一个16000mAH、15C的电池,最大放电电流可达16000×15=15000毫安(15*16)安培(A)。在实际使用中,电池的放电电流究竟是多少是与负载电阻有关的,根据欧姆定理我们知道,电压等于电流乘电阻,所以电压和电阻是定数时,电池的放电电流也是一定的。例如你使用11.1V、1000mAH、15C的电池,而你的电动机的电阻是1.5欧姆,那么在电池有12V电的情况下,忽略电调和线路的电阻不计,电流等于12÷1.5=8,结果是8安培(A)。

在实际使用中电池的电压和电流不一定与我们的需要相符,所以必须串联和并联来使用。串联是指把几个单节电池头尾相接的连接起来,也就是说正极接负极、负极接正极的连接起来,其总电压等于各节电池的总和,放电电流等于单节

的放电电流,容量也等于单节的容量。并联是指把几节或几组电池头对头、尾对尾的连接起来,也就是说正极接正极、负极接负极,并联后的电压等于单节电池或电池组的电压,电流等于各电池组的总和,容量还是原来的容量。总之,电池串联后只是电压增加,并联后只是电流增加,而其它的则不变。

综上所述,主要考虑到无人机载荷、体型大小和实际工作需要,通过搜索资源,我在市场上选用了一款蓄电池,品名为格氏ACE锂电池,如右图:

其中的性能指标如下:

品名格氏ACE 锂电池

最小容量16000mAh

放电倍率15C

组合方式6S1P/22.2V

尺寸67*76*180mm

内阻13-17毫欧

重量1860g

充电插头4针标准平衡充电插头

放电插头T头或 JST头

应用范围大负载6轴、8轴航拍飞行器等;

需要注意的是,电池的串联和并联要求单节电池或电池组的性能一致,这是因为在电路中如果有个别电池的电压过低,其它电池就会为它充电,那总电压或总电流就会低于我们的要求,同时也会造成好电池的损坏,这也是为什么锂电池要用平衡充电的原因。

另外,不管是镍氢电池还是锂电池都是可充电的电池,充电过程对电池的寿命有相当大的影响。一般来说,电池的充电时间是和充电器的电流相关联的。

所以,对于16000mAH的电池,充电电压是它的额定电压,充电器的电流是5000毫安,那么充电时间就等于16000÷5000=3.2两小时。但这只是说从零电压充起情况下的,属于理想状态,实际的充电时间还要看蓄电池的时间电量。但这不能说明使用大电流充电就能节约时间,实验证明,大电流充电会对电池的性能造成一定程度的破坏。因此,根据厂家要求,基于锂电池优越的性能,所选蓄电池一次性充电时间大概为3个小时。

驱动电动机与电子调速器:

目前,微型飞行器的动力装置主要有:电动机或内燃机带动螺旋桨驱动、微型涡轮发动机驱动等。虽然内燃机具有燃料效率高、输出功率大等特点,但是它的调速不方便、启动困难等缺点限制了它在微型飞行器上的应用。微型涡轮发动

机从理论上说是最理想的选择,但是世界上对微型涡轮发动机的研究还不足以达到实际应用的水平。而电动机虽然由于电池容量的限制、存在飞行时间短等特点,但是它具有极高的可靠性、低噪音和价格经济等优点,使电动机在微型飞行器的动力装置中使用最为普遍。

作为微型无人机关键部件之一,驱动电机自身的工作特性,带上螺旋桨后整个动力装置对微型无人机的操纵、巡航时间和飞行速度等方面都会产生严重的影响,因此要慎重对待电机的选择。

1、驱动电机参数的确定以及巡航时间的计算

在确定微型无人机基本性能指标后,根据设计要求首选驱动电机基本参数,保证其能够完成低空巡航。一方面要根据根据无人机飞行过程中对动力装置的性能要求进行分析;另一方面,由于工作任务的需要,在保证动力的前提下,必须确保电机稳定的巡航工作时间。电机额定功率过大,则电机长期处于欠载状态,降低了效率,同时也会增加全机起飞重量。相反额定功率选择太小,电机长期在过载状态下运行,不仅缩短了使用寿命,而且最重要的是不能使电动机工作在经济状态,过分消耗无人机上蓄电池的电能,对延长巡航时间、增加飞行距离十分不利。

除此之外,农用无人机的电机选择将直接影响蓄电池所提供的有限电能来完成巡航任务的有效时间。

1.1 无人机电机的选择

全机起飞质量是电机参数计算的重要依据之一。六旋翼农用无人机的起飞总质量由以下公式表示:

54321M M M M M M ++++=总

式中:总M 表示无人机的起飞质量;1M 为无人机结构质量;2M 为动力部分的质量,包括电机、螺旋桨等不随飞行发生变化的质量;3M 为蓄电池质量,在飞行中也不会发生变化;4M 为农用工作部分的质量,包括药箱、喷洒药液设备、液泵设备等;5M 为航空电子、拍摄、传感器等设备的质量。

通过查询资料,根据下表1可以看出,无人机在飞升状态中需要的拉力(升力)越大,所需要的功率就越大,所以选择提供的总升力越大,需要选择的电动机总功率应较大一些,并保证巡航时间最长。

为了与螺旋桨达到一定的配合,并按照实际设计要求,并基于传统有刷直流电动机具有有刷换向设备、是以机械方式进行换向,存在噪声、火花及寿命短等

缺点,微型无刷直流电动机作为了本次设计中最佳的机械动力设备选择。

微型无刷直流电动机采用的是电子换向,其输出功率和效率较高,同时噪音小、寿命较长并无其他明显缺点,本次设计所选定的无刷直流盘式电机型号为MT3515-15,如图:

电机基本参数如下:

1.2 无人机的工作时间

在理论上,我们所选蓄电池提供的电压为U=22.2V,电流I为(16*15)A,可持续供电时间T为1h,则蓄电池可以提供的电能为:

总电Q =U*I*T

假设忽略电路上损耗的部分电能,蓄电池将电能完全转化为机械能时,电机的工作时间t 可以根据公式:

总电Q =机械W =P ·t 求出

t 0.99h

据资料显示,目前国内的农用无人机驾驶时间大概为1.5小时左右,显然,此无人机在蓄电池供电情况下,一次性作业时间约1小时,基本符合设计需求,同时在实际作业中可根据具体情况更换能量更大的蓄电池。

1.3 螺旋桨的设计

螺旋桨叶片表面积相对越大,产生推力越大、效率越高。但相对较大的螺旋桨,飞机飞行起来会很耗电,因为螺旋桨产生的阻力会比较大。所以,选择什么型号的螺旋桨必须根据电机KV 值和蓄电池提供的电压及容量进行搭配,尤其是不能选用较高KV 值的电机,主要是避免电机连同电调烧掉。

为达到有效较高的效率,螺旋桨与蓄电池、电机等三者之间应有合理的搭配设置。其中,电机的转速(空载)是KV 值*电压,所以KV 值越大,电机提供的扭力就越小,因此电机的KV 值的大小与螺旋桨有密切的关系。电机与螺旋桨的理论配置,如下:

6S 电池下:KV900-1000的电机配1060或1047桨,9寸桨即可;KV1200-1400配9050(9寸桨)至8、6桨;KV1600-1800左右的7至6寸桨;KV2200-2800左右的5寸桨;KV3000-3500左右的4530桨。

3S 电池下:KV1300-1500左右用9050桨;KV1800左右用7060桨;KV2500-3000左右用5X3桨;KV3200-4000左右用4530桨。

综合上述搭配原则,考虑到喷施设备、航拍设备工作情况,在本次设计中所采用的螺旋桨是通用比例的桨,精度较好,基本尺寸是根据电机、螺旋桨、蓄电池三者之间关系设计的,便于批量生产,产品如下图:

选用的螺旋桨参数如下:

翼角Α为9.25°

叶片数N 2个

直径D 20*2.45cm

螺距P 0.245m

浆宽度C 0.044m

材质碳素纤维 Hexcel AS4C (3000 丝)

密度ρ1780kg/m3

质量m 297.93 克

1.4 螺旋升力的计算:

根据螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)一个螺旋桨的拉力=DPCV2x1x0.25

=0.49x0.245x0.044xVxVx1x0.25

=28.9kg

综上动力系统设计,该无人机能够提供约150kg的拉力,足够现场作业使用。

2、电调的使用

蓄电池的供电量取决于电机和液压泵的转速。曲轴转速越大,耗电量自然就越大;反之,耗电量就减少。无人机的负载随着喷施化学药品变化较大,转速也跟着变化。具体讲就是:无人机的负载减少时,转速会升高,转速升高容易导致飞行飞行速度提升、耗电量增加,对化学药品的喷施、农田检测都十分不利。同理,无人机的负载比较大时,转速较低,也将导致一些列不利的变化。为改变这种不利因素,就要求一种根据负载变化自动调节供电量和转速,使蓄电池与用电设备达到合理的配合,便于农田作业。

因此,六旋翼农用无人机要满足实际使用要求,就必须安装电调,它能根据无人机的负载等变化自动调节电机等用电设备的转速,保证无人机的正常作业。

电调全称电子调速器,英文electronic speed controller,简称ESC。然而,针对不同的电机,可分

为有刷电调和无刷电

调,它根据控制信号调

节电动机的转速,如

图:

对于它们的连接,

一般情况下是这样的:

(1) 电调的输入线与电池连接;

(2) 电调的输出线(有刷两根、无刷三根)与电机连接;

(3) 电调的信号线与接收机连接。

另外,电调一般有电源输出功能,即在信号线的正负极之间,有5V左右的电压输出,通过信号线为接收机供电,接收机再为舵机等控制设备供电。

电调的输出为三~四个舵机供电是没问题的。因此,电动飞机,一般都不需要单独为接收机供电,除非舵机很多或对接收机电源有很高的要求。

3、PCB电子集合板、陀螺仪、摄像及遥控传感器设备应用

六轴多旋翼无人机的飞行原理是通过控制六个螺旋桨的正反转及转速进行的,基于市场上已经设计生产了多种PCB控制板,可以通过定制一款合适的PCB 板集合各种需要的电子元件进行无人飞机作业操控,所以本设计中重要参考了该功能的原理,随后可能进一步的研发会进行该项目的开拓。PCB板的设计原理是在保证每一个螺旋桨的中心距相等下,在电路板上设计电路进行电机的旋转控制,以达到对无人机的控制。

当对角两个轴产生的升力相同时能够保证力矩的平衡,一个六轴飞行器有六个电机呈*形排列,驱动六片桨旋转产生推力;六个电机轴距几何中方向倾转;而六个电机三个正转,三个反转的方式使得绕竖直轴方向旋转的反扭矩平衡,保证了六轴航向的稳定。六轴电机旋转方向如下图:

此飞行控制板规定六轴电机的排布方式如图所示:前(3,5号)、后(4,6号)、右(1号)、左(2号);3,1,6号电机顺时针方向旋转,5,4,2号电机逆时针方向旋转。

六个电机的转速做相应的变化即可实现六轴受力调整,进行横向、纵向、竖直方向和偏航方向上的运动。当无人机需要向前方运动时,6、4号电机保持转速不变,3、5号电机转速下降,6、4号电机转速就会上升,此时6、4号电机产生的升力大于3、5号电机的升力,六轴就会沿几何中心向前倾转,从而使无人机向前方运动。通过类似的原理,进过PCB板上安装的电子信号的传输设备及相关电子设备,工作人员可以远程进行控制无人机的运动。

无人机上的每一个功能都有相应的模块,如气压高度计、GPS模块等,具有5个不同的OSD叠加界面,配件从低端到高端提供多种选择,可根据自己的需要组成不同的组合,以达到不同的功能,相应的功能是非常之强大的。另外,飞控的固件是可升级的,便于进一步推进无人机的人性化、平民化及适应性。

对于需要实时控制的航模飞机来说,除了直接接收到信号,靠任何之外的无线电特性提高距离的方式都是不可靠的,尽管长波中波绕射能力极强,依然受空间环境制约,很不稳定。因此,需要在遥控信号传输中添加“天线”。

全向天线:无线电专业里常叫鞭状天线。它就象一个灯管,它的发射泛围,垂直放置时,是在水平方向上向周围散射,在360度泛围内都有均匀的场强分布,是我们比较常用的一种形式。水平放置时,假如天线是东西方向放置,场强分布是包括天空在内的南北方向,以及天线到地面的南北方向空间泛围内分布。因此垂直天线,主要针对水平方向的目标,水平天线主要针对垂直高度上的目标,和窄范围内的水平目标。

上图为无人机上设置的电子元件,基本参数如下:

遥控飞机陀螺仪的原理就是一个旋转物体的旋转轴所指的方向在不受外力影响时,用它来保持方向,制造出来的仪器就叫陀螺仪。例如,骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。遥控飞机陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。在本次六旋翼农用无人机的设计中,陀螺仪采用了P1-GYRO型号的飞控设备来代替,主要是配备一些传感设备通过自动控制电机等动力系统,同样能达到上述功能,使无人机保证顺利的航行,产品如下图:

P1-GYRO产品介绍

体积:26*39MM;重量:6克左右;工作电压:3.5-6V.

P1-GYRO产品介绍在六轴增稳的基础上,增加飞控开关控制模式和六轴锁定(AVCS)模式,该模式采用了角度向量控制算法,对飞机围绕六个运动轴的角度偏移进行实时检测和修正,使飞机具备始终保持上一时刻姿态的能力和趋势,所以称之为锁定,锁定与普通增稳模式相比,锁定模式不仅可以大大提升飞行稳定性,甚至可以在无人为操控(脱控)的情况下,实现自主吊机、侧飞等高难度动作。P1-GYRO产品可以通过一个3段式开关在普通增稳、六轴锁定(AVCS)和陀螺仪关闭3种飞行模式之间进行随时切换,体验完全不一样的飞行乐趣。

P1-GYRO飞控对飞机的电动机翼伸展大小无限制,属于通用型飞行控制器,可以提升飞机飞行性能和飞机可控性,抵消各种影响飞机姿态的外部因素。例如,容易失速的飞机,或者本来外形设计就不好飞的飞机,还有风和气流等等,飞控都能自动抵消这些负面因素。

初次使用请按照说明书安装和调试:感度调试建议初次飞行先把感到关到最小,按每次加大5分钟的量程来进行试飞调整,飞控板上出厂设置时50%的位置,请不要把出厂设置为标准,请根据你的飞机和动力配置调整适合的感度。

除了上述中定制的PCB电子集合板、遥控、电调等设备外,在无人机上还有安装摄像设的设计,主要选用了型号体积偏小、重量较轻的电子摄像设备,摄像前端为单摄像头(电子眼),如下图:

5.8g 无线猫眼摄像机和5寸显示屏 (90度,动态监测,100米无干扰)

TE968H是我司研发的新一代便携式无线迷你DVR录像系统。5英寸超大高清显示屏,可接收和录制无线和有线摄像机AV信号,并具备拍照、移动侦测录像、自动覆盖功能。无论是安全防范,还是掌握证据,此款便携式无线迷你DVR 都是最佳之选,可广泛用于农田监控。

一、主要特性:

1、无干扰5.8G 频率;黄铜的外壳,高贵耐用;

2、和原光学猫眼一样的外观,更换之后外观保持原样;

3、0.008LUX 超低照度,在微光下看清访客;

4、90°宽视角;

5、13.8mm 超小尺寸直径,使用方便,不用钻洞,直接安装;

6、低功耗,保证长时间的工作寿命;

7、操作方便、无需穿孔引线,无线监视器或DVR 在客厅或房间进行监控,方便快捷。

8、打开无线监视器或DVR ,调到与猫眼摄像机相同的频道即可进行监控。

二、 产品规格 配件:使用说明书X 1本、立体声耳机X1副、USB 线X 1根、电源适配器X 1个

在本设计中,用到的传感器有:动力传感器、风力传感器、转速传感器、压力传感器等。

工作频率 5.8G 带内1 CH1:5865MHz; CH2: 5845MHz; CH3: 5825MHz; CH4: 5805MHz.

工作频道24选1

CH5:5785MHz; CH6: 5765MHz; CH7: 5745MHz; CH8: 5725MHz

5.8G 带外 CH9:5705MHz;CH10:5685MHz;CH11: 5665MHz; CH12: 5645MHz. CH13:5885MHz; CH14:5905MHz;CH15:5925MHz;CH16: 5945MHz 5.8G 带内2

CH17:5733MHz;CH18:5752MHz;CH19:5771MHz;CH20: 5790MHz.

CH21:5809MHz;CH22:5828MHz;CH23:5847MHz; CH24: 5866MHz 天线 外置天线

RF 输出功率 25mW

传输距离

100米 像素 NTSC :720(H )×480(V ) PAL :720(H )×576(V )

水平清晰度 480TV Lines

最低照度 0.008Lux/F1.2

镜头 & 视角 0.5mm F1.2 / 90 °

门孔尺寸(L x

D) 38-60mm X 14mm

净重(克) 20克

电流

230mA 电压

DC 4V 环境温度

- 20°C ~ + 50°C ,相对湿度85﹪

自写-六旋翼无人机发明实用新型专利撰写范例汇总

说明书摘要 本实用新型公开一种六旋翼飞行系统,包括控制器和飞行器,所述控制器包括微处理器及分别与微处理器电连接的位置锁定装置、航姿测量装置、油门和航向以及高度调节装置,所述飞行器包括处理器、无刷电机及分别与处理器电连接的定高装置和电机调速装置,所述飞行器的无刷电机与电机调速装置电连接,所述控制器和飞行器上设有相互电连接的无线通信装置,所述控制器的无线通信装置与微处理器电连接,所述飞行器的无线通信装置与处理器电连接。本实用新型通过控制器和飞行器的相互配合工作,在一定程度上提高了六旋翼飞行系统的运行效率,为其它更多功能的拓展提供了基础。相比其它的飞行系统,此系统结构更简单,更容易实现,降低了普通用户对飞行器的控制难度。 图1

权利要求书 1.一种六旋翼飞行系统,包括控制器和飞行器,所述控制器包括微处理器及分别与微处理器电连接的位置锁定装置、航姿测量装置、油门和航向以及高度调节装置,所述飞行器包括处理器、无刷电机及分别与处理器电连接的定高装置和电机调速装置,其特征在于,所述控制器和飞行器上设有相互电连接的无线通信装置,所述控制器的无线通信装置与微处理器电连接,所述飞行器的无线通信装置与处理器电连接,所述飞行器的无刷电机与电机调速装置电连接。 2.根据权利要求1所述的一种六旋翼飞行系统,其特征在于,所述位置锁定装置包括陀螺仪、加速度计和全球卫星定位系统(GPS)电路模块。 3.根据权利要求1所述的一种六旋翼飞行系统,其特征在于,所述航姿测量装置包括陀螺仪、加速度计、电子磁场计和温度传感器。 4.根据权利要求1所述的一种六旋翼飞行系统,其特征在于,所述航姿测量装置为三轴加速度陀螺仪传感器。 5.根据权利要求1所述的一种六旋翼飞行系统,其特征在于,所述定高装置包括超声波传感器和气压计传感器。

六旋翼农用无人机的设计

摘要 本次设计主题为“六旋翼农用无人机模型设计”,结合我国当前农业机械化发展现状,通过对命题的分析得到了更加清晰开阔的设计思路,设计作品具有系统性、实用性和创新性。 针对多旋翼农用无人机,本文确定了“六旋翼农用喷药、航拍功能无人机”的设计说明书,介绍了无人机的设计过程,主要通过概念性论述,经过对无人机结构研究、分析的整体把握,以结构、动力、控制三部分进行设计,并结合实际通过对多旋翼农用无人机设想进行结构改进、设计优化以提高设计的应用性,这种方法对类似产品的设计制造同样具有借鉴作用。 设计方案包括无人机整体机架、喷药机构等,并给出了CAD设计图、整体装配图PRO/E等内容,确保无人机结构简单、适用灵活、便于普及、成本低廉等。 关键词:六旋翼农用无人机模型;CAD;PRO/E

Abstract The design theme for the "six rotor UAV model design of agricultural", combining the current situation of agriculture mechanization development, through the analysis of the proposition of the design ideas more clearly open, design work is systematic, practical and innovative. For multi rotor agricultural UAV, the "design specification of six rotor agricultural spraying, aerial functional UAV", introduces the design process of UAV, mainly through the concept of exposition, according to the study, no machine structure analysis in whole, to structure, power, control three parts design, combined with the the actual rotor UAV based on agricultural ideas for optimization design of structure improvement, so as to improve the application of design, this method also has a good effect on the design and manufacture of similar products. Design includes the UAV the whole machine, spraying device, and gives the design drawings, the overall assembly drawing etc., ensure that the UAV has the advantages of simple structure, flexible application, convenient, low cost etc... Keywords: six rotor UAV model design of agricultural;CAD;PRO/E

推荐-六旋翼无人机系统 精品

六旋翼无人机系统技术文件 一、产品名称:六旋翼无人机系统 二、X-6是全新研制的六旋翼无人机系统,具有载重能力较强、续航时间理想、 与X-8无人机相比,体积更小、重量较轻、目标特性小,使用更加快捷、机动灵活、操作使用及维修简便等特点,自成体系独立执行电力巡检任务,稳定度与性能相对x-8无人机稍有逊色。 简介: X-6 无人机是由专业无人机技术研发团队经过多年研究、测试,最新推出的一款全球同类产品载重量最大、可垂直起降、拥有多项专利的无人飞行系统。 1)选用自主驾驶设备,大大提高飞控稳定性。 2)可携带多种任务载荷。 3)可用于执行资料收集、测量、检测、侦查等多种空中任务,在电力巡检领域能发挥其高效、隐蔽性强的特点,能对目标物进行远距离监视。 产品特点: (1)飞行器具有遥控、自主飞行能力,可以实时修改飞行航路和任务设置;(2)测控与信息传输设备具有遥控、实时信息传输的功能,具有多机、多站兼容工作及一定的抗截获、抗干扰能力; (3)侦察任务设备能昼夜实时获取目标图像信息,具有手动、自动控制工作模

式,可迅速发现、捕获、识别、跟踪目标; (4)飞行控制与信息处理站具有对飞行器进行遥控飞行和对机载任务设备进行操控的功能,具有飞行参数/航迹显示、航路规划和实时修改飞行计划、重新设置任务样式的能力;具有通过视频眼镜实现第一视角控制飞行的能力;具有接收标准视频信号、实时处理/存储图像、数据叠加等能力,具有目标定位和引导打击的能力,且能与上级指挥机关、情报处理中心和指挥系统相通连; (5)地面保障设备具有简易检测、维修与训练的能力,具有快速更换易 损件、备用动力电池组和双模态充电的功能; (6)全系统外场展开迅速,具有车载大范围机动和携行能力。 机体结构技术参数:

多旋翼无人机的发展以及应用

多旋翼无人机的发展以及应用 多旋翼无人机是一种能够垂直起降的无人直升机,其发展历史最早可以追溯到1907年,当时Breguet兄弟Louis和Jacque在法国科学家CharlesRichet的指导下,设计制造了世界上第一架有人驾驶的多旋翼飞机—“旋翼机一号”。 多旋翼无人机根据旋翼的数目可以分为四旋翼、六旋翼、八旋翼等类型,还有一些特殊造型的多旋翼无人机,其最大特点就是具有多对旋翼,并且每对旋翼的转向相反,用来抵消彼此反扭力矩。多旋翼无机人相较于其它无人机具有得天独厚的优势,与固定翼飞机相比,它具有可以垂直起降,可以定点盘旋的优点;与单旋翼直升机相比,它采用无刷电机作为动力,并且没有尾桨装置,因此具有机械结构简单、安全性高、使用成本低等优点。多旋翼无人机的诸多优点使它在以下领域获得了广泛的应用: 1.教育科研领域应用,多旋翼无人机的研究涉及到自动控制技术、MEMS传感器技术、计算机技术、导航技术等,是多科学领域融合研究的一个理想平台; 2.航拍领域应用,利用多旋翼无人机搭载相机设备(可见光相机/红外相机),并配备图像传输系统,被人们称为“可飞行的相机”已被广泛的应用于影视航拍。 3.军事领域应用,多旋翼无人机搭载侦查设备快速飞行到危险区域执行侦查任务,为作战人员提供战场信息,是单兵作战的理想装备; 4.警用安全领域应用,无人机可搭载高清晰度数码摄像机:实时图传系统和地面控制系统可有效协助工作人员锁定、凝视关注事物。无人机可搭载物质投递设备:通过集成探杆、线轮、物品仓、软梯等装备,并搭载相关投放设备,可执行物资横向运输、线路牵引、传单投递、物资投递等。警用安防无人机无人机能利用承载的高灵敏度照相机可以进行不间断的画面拍摄,获取影像资料,并将所获得信息和图像传送回地面。应用于反恐维稳,如遇到突发事件、灾难性暴力事件,可迅速达到实时现场视频画面传输,传供指挥者进行科学决策和判断;成为一种不可多得的重要工具。无人机能进一步提高公安干警的响应、决策、评估效率,推动公安的信息化建设进程。 5.农业领域应用,利用多旋翼无人机替代人进行喷洒农药,具有成本低、效率高,减少农药对人体伤害等优势;除了喷洒农药,无人机还可以用来检测水稻长势,这项研究已经开发出了成熟产品。无人机装载光谱传感器,在稻田上空飞一圈,就可以记录下水稻颜色深浅,人们可以此来判断水稻生长情况,对后续农药、肥料喷洒提供参考。无人机还能用来研究土地荒漠化变化历程、植被变迁、土壤盐渍化检测等方面,对农林植物进行病虫害监测和预警。 6.交通领域应用,交警在执法过程中用上了无人机,用于抓拍违法行为。无人机能对监控盲区的违法行为进行补充抓拍,在交通拥堵的情况下,无人机可以率先赶到现场勘察,通过图传功能将交通状况传回指挥中心,便于远程指挥疏导。 7.环保领域应用,无人机可用来观测空气、土壤、植被和水质状况,也可实时跟踪和监测突发环境污染事件的发展;监测企业工厂的废气与废水排放,寻找污染源。 8.救生医疗应用,当发生洪水时,无人机可携带救生绳或救生圈,将其投到需要者身边。当有人在登山过程中突发疾病,无人机可携带急救药品飞到患者身边。 9.电力行业应用,电力无人机应用优势具备防雨水功能的无人机可在大雨、中雪天气飞行,不受恶劣天气影响,可随时巡航,有利于加大重点区段的特巡力度,增加大负荷运行下设备检测次数。无人机机动灵活,机身轻巧可靠,结构紧凑、性能卓越,使用不受地理条件、环境条件限制,特别适合在复杂环境执行任务,可定期对线路通道内树木、违章建筑等情况进行重点排查、清理,确保输电通道安全。傻瓜式自主飞行。无人机系统具备全自动一

机械毕业设计1085六旋翼农用无人机设计说明书

本科毕业设计题目:六旋翼农用无人机设计 学院:工学院 姓名: 学号: 专业: 年级: 指导教师: 二零一四年五月

摘要 本次设计主题为“六旋翼农用无人机模型设计”,结合我国当前农业机械化发展现状,通过对命题的分析得到了更加清晰开阔的设计思路,设计作品具有系统性、实用性和创新性。 针对多旋翼农用无人机,本文确定了“六旋翼农用喷药、航拍功能无人机”的设计说明书,介绍了无人机的设计过程,主要通过概念性论述,经过对无人机结构研究、分析的整体把握,以结构、动力、控制三部分进行设计,并结合实际通过对多旋翼农用无人机设想进行结构改进、设计优化以提高设计的应用性,这种方法对类似产品的设计制造同样具有借鉴作用。 设计方案包括无人机整体机架、喷药机构等,并给出了CAD设计图、整体装配图PRO/E等内容,确保无人机结构简单、适用灵活、便于普及、成本低廉等。 关键词:六旋翼农用无人机模型;CAD;PRO/E

Abstract The design theme for the "six rotor UAV model design of agricultural", combining the current situation of agriculture mechanization development, through the analysis of the proposition of the design ideas more clearly open, design work is systematic, practical and innovative. For multi rotor agricultural UAV, the "design specification of six rotor agricultural spraying, aerial functional UAV", introduces the design process of UAV, mainly through the concept of exposition, according to the study, no machine structure analysis in whole, to structure, power, control three parts design, combined with the the actual rotor UAV based on agricultural ideas for optimization design of structure improvement, so as to improve the application of design, this method also has a good effect on the design and manufacture of similar products. Design includes the UAV the whole machine, spraying device, and gives the design drawings, the overall assembly drawing etc., ensure that the UAV has the advantages of simple structure, flexible application, convenient, low cost etc... Keywords: six rotor UAV model design of agricultural;CAD;PRO/E

华测P500V六旋翼无人机介绍-1

华测P500V六旋翼无人机介绍 产品简介 华测P500V六旋翼无人机系统的机体和云台完全采用特殊的专业碳纤维材料制造,拥有更轻的重量和更高的强度,可折叠式支臂设计更方便运输。 华测P500V六旋翼无人机,可用于林业深林防火、中小面积航测、执行侦察、监视、搜索、协调指挥、通讯、空投等多种空中任务。 产品特点 华测P500V六旋翼无人机系统引入了2.0B CAN总线系统,AAHRS(姿态、高度及航向参考系统)集成了加速度计、陀螺仪、磁力计、气压计、湿度计、温度计等多种高精度传感器和卓越的控制算法设计,飞行器的操控因而变得非常简单,即使操作者毫无遥控飞行的经验,也能够在很短的时间内学会安全地操控飞行。 华测P500V六旋翼无人机系统可以通过遥控器人工操控飞行,也可以借助独一无二的GPS Vigapoint系统执行自动驾驶飞行和拍摄任务。 基于模块化的设计理念,华测P500V六旋翼无人机可以灵活地更换机载任务设备以适应不同的作战任务要求。从高分辨率的数码相机、高清视频摄像机、微光夜视摄像机到军用级的红外热成像摄像机。基于华测P500V六旋翼无人机更大的载重,除图像和视频设备之外,还可以搭载根据用户需要定制的更多种任务设备,如空气采样设备,空中投放设备等,从而完成更多样化的任务。

华测P500V六旋翼无人机拥有优秀的安全设计,任何时候只要停止遥控器操作,飞行器就会自动悬停在空中。如果遥控器信号中断时间超过30秒或者电池电量过低,飞行器就会自动缓慢迫降到地面或按照预定方案自动应对。 遥控信号受到干扰时,飞行器可以自动按原路返航。飞控系统可以完整记录所有飞行相关数据信息,用于准确诊断飞行器故障判断飞行器事故原因。 华测P500V六旋翼无人机的动力系统拥有业内最强的野外环境适应性,可以在最高5级风下正常工作。经过专业机构的严格高压电磁环境测试,华测P500V六旋翼无人机被确认在高压电磁环境下具有良好的抗干扰性和安全性,通过专业机构的EMC电磁环境兼容认证. 技术参数

四旋翼无人机毕业设计

四旋翼无人机毕业设计 目录 摘要 ............................................................................................. 错误!未定义书签。Abstract ................................................................................................ 错误!未定义书签。1绪论 .. (1) 1.1研究背景及意义 (1) 1.2 国内外四旋翼飞行器的研究现状 (1) 1.2.1国外四旋翼飞行器的研究现状 (1) 1.2.2国内四旋翼飞行器的研究现状 (3) 1.3 本文研究内容和方法 (4) 2 四旋翼飞行器工作原理 (5) 2.1 四旋翼飞行器的飞行原理 (5) 2.2 四旋翼飞行器系统结构 (5) 3 四旋翼飞行器硬件系统设计 (7) 3.1 微惯性组合系统传感器组成 (7) 3.1.1 MEMS陀螺仪传感器 (7) 3.1.2 MEMS加速度计传感器 (7) 3.1.3 三轴数字罗盘传感器 (8) 3.2 姿态测量系统传感器选型 (8) 3.3 电源系统设计 (10) 3.4 其它硬件模块 (10) 3.4.1 无线通信模块 (10) 3.4.2 电机和电机驱动模块 (11) 3.4.3 机架和螺旋桨的选型 (12) 3.4.4 遥控控制模块 (13) 4 四旋翼飞行器姿态参考系统设计 (15) 4.1 姿态参考系统原理 (15) 4.2 传感器信号处理 (16) 4.2.1 加速度传感器信号处理 (16) 4.2.2 陀螺仪信号处理 (16) 4.2.3 电子罗盘信号处理 (17) 4.3 坐标系 (17) 4.4 姿态角定义 (18) 4.5 四元数姿态解算算法 (19) 4.6 校准载体航向角 (27) 5 四旋翼飞行器系统软件设计 (29) 5.1 系统程序设计 (29) 5.1.1 姿态参考系统软件设计 (29) 5.1.2 PID控制算法设计 (30)

多旋翼无人机系统组成6

6. 电池 多旋翼无人机上用的电池为锂聚合物电池 ( Li-polymer,又称高分子锂电池),一般简称为锂电。锂聚合物电池具有能量密度高、小型化、超薄化、轻量化,以及高安全性和低成本等多种明显优势,是一种新型电池。在形状上,锂聚合物电池具有超薄化特征,可以配合各种产品的需要,制作成各种形状与容量的电池,外包装为铝塑包装,有别于液态锂电的金属外壳,内部质量隐患可立即通过外包装变形而显示出来,比如鼓胀。 下面就以一块22.2V,10000mAh航拍动力电池为例说明,它一般是由6片额定电压为3.7V、容量10000mAh锂电芯串联而成,即常说的6S1P。也可以是6S2P,即由12片5000mAh的电池并联加串联组成的。这里要说明的是,6S1P要比6S2P 安全系数要高,因为1P要比2P的结构简单一倍,当然1P价格也要更高。 图2.21 22.2V,10000mAh航拍电池 无人机用锂电中,单片电芯电压3.7V是额定电压,是从平均工作电压获得。单片锂电芯的买际电压为2.75-4.2V,锂电上标示的电容量是4.2V放电至2.75V 所获得的电量,例如容量为10000mAh的电池如果以10000mA的电流放电可持续放电1小时,如果以5000mA电流放电则可以持续放电2小时。锂电必须保持在2.75-4.2V这个电压范围内使用。如电压低于2.75V则属于过度放电,锂电会膨胀,内部的化学液体会结晶,这些结晶有可能会刺穿内部结构层造成短路,甚至会让锂电电压变为零。充电时单片电压高于4.2V属于过度充电,内部化学反应过于激烈,锂电会鼓气膨胀,若继续充电会膨胀、燃烧。所以一定要用符合安全标准的正规充电器对电池进行充电,同时严禁对充电器进行私自改装,这可能会造成很严重的后果。

浅谈系留六旋翼无人机

技术平台 浅谈系留六旋翼无人机 曾文元,张瀚成,张?菲,李昊天,周祥辰 (西北工业大学自动化学院,陕西?西安?710072) 摘?要:近年来,随着现代航空技术、微处理技术、机器人技术及网络技术的发展,多旋翼无人机在众多领域都得到了广泛的应用。本文对系留六旋翼无人机的机身主体、动力系统、控制系统、系留缆绳的构成等知识进行了简要介绍,通过制定的方案制作实物,使得系留无人机实现了长航时滞空执行任务。 关键词:系留缆绳;六旋翼无人机;飞行控制 0?引言 随着MEMS技术、无刷电机技术、微处理技术的发展,多旋翼无人机被广泛应用于影视航拍,救生医疗,监测侦查等领域。多旋翼具有垂直起降,机械结构简单,易维护等优点,同时存在着续航时间短的缺点。针对于系留六旋翼无人机而言,增加一根提供动力的系留缆绳,解决了续航时间短的问题。 1?机身主体简介 系留六旋翼无人机机身由机架、起落架、云台组成。 机架作为六旋翼设备的承载平台,是实现功能的基础。我们应当在机架能提供足够的有效载荷的情况下,尽可能减轻机身质量。我们使用的是飞越T960机架,轴距为960mm,碳纤维材料,质量较轻,架构牢固,预留的空间多,自身可以进行器件布局。从使用材料上说,市面上使用的机架材料较多的是碳纤维。 起落架的作用是支撑多旋翼的重力,避免螺旋桨与地面接触,减小起飞或者降落时地面产生的影响。我们使用的是机体配套的飞越机架。 云台的作用是减小在飞行过程中因外部影响造成的相机抖动,同时也可以平稳转动,有利于目标侦查及图像稳定传输。云台由电机和控制电路组成,由电机旋转完成摄像头的转动,可以根据拍照需求让摄像头从不同角度进行拍摄。 2?动力系统简介 动力系统由螺旋桨、电池、电机、电调构成。 螺旋桨是产生推力的部件,有正桨和反桨之分。桨叶一般用四个数字表示,前两位为直径,后两位是螺距。桨叶的材料对桨叶的性能有很大的影响,我们采用的是碳纤维1855桨,这个桨具有噪音小、适用于高KV值电机、硬度大、刚性好等优点。 电池主要用于提供电能,市面上较多选用锂电池。锂电池有1S、2S、3S、6S等种类。我们选择了格氏6S 电池,正常电压在24V左右。对于电池而言,电池内阻要小,这样大电流放电能力就强。其次,电池的容量是用毫安时来表示的,随着放电过程的进行,输出电压会非线性下降。电池过度放电会导致电池被损伤,所以需要对无人机的当前电量进行检测,地面站软件mission planner上会显示当前电压状况。过度充电对电池也有一定的损伤。 电机主要以无刷电机为主。电机一边固定在机架 计该容器壁厚奠定基础,避免压力容器筒体存在屈服失效、出现裂痕、腐蚀严重等质量问题,这就需要技术人员关注压力容器极限状态,旨在通过设计提高压力容器可靠性。 5.2?科学应用受压材料 受压材料质量直接影响压力容器机械强度可靠性,为此需技术人员依据该容器设计压力、腐蚀环境等客观因素合理选择受压材料。除保障受压材料质量外,还需设计人员遵循国家标准,合理选择该容器介质,降低介质对受压材料的消极影响,同时压力容器内部结构需设计得科学、合理,达到提高该容器机械强度可靠性的目的。 6?结束语 综上所述,基于压力容器应用领域及工艺环节存 在差异性,该容器在设计进程中的可靠性指标、维修性指标、安全性指标不尽相同,以此为基础所设计的内部结构、容器壁厚,以及该容器生产制造所需受压材料均有区别,这就要求设计人员从实际出发,在累积压力容器设计及制造经验基础上,关注该容器极限运行情况,科学应用受压材料,遵循国家规范及经济性、安全性并行原则,积极创新设计压力容器,为提高压力容器机械强度可靠性奠定基础。 参考文献: [1]崔健,郭树平,李肖蔚.压力容器的机械强度可靠性设计分析[J].技术与市场,2016,23(5):224-224. [2]宋冲,白宇.对压力容器的机械强度可靠性设计的探讨[J].商品与质量,2016(3):107-107,108. [3]黄胜.对压力容器的机械强度可靠性设计的探讨[J].山东工业技术,2015(24):44.

多旋翼无人机知识手册

[键入文字] V1.1版 翎航智能科技工作室 培训 教材 多旋翼无人机知识手册

前言 随着多旋翼无人机的应用日趋广泛,多旋翼无人机的入门门槛越来越低,“到手飞”、个人航拍机等对操作人员的要求几乎是零,对毫无基本常识和经验的人来说也可以操作。但这些都为人身和财产安全埋下了巨大的隐患,出于以上考虑,本教材阐述了多旋翼无人机的基本原理、总结了飞行过程中的注意事项、操作方法、以及如何规避风险。这是一本适合飞行初学者的教材,旨在普及航空知识、和飞行常识等基本理论,根据经验提出在飞行中应该注意的问题和如何规避风险、应急处置等。 本教材的材料有些基于无人机方面的书籍,有些则基于航模飞行的经验,很多都是十分难得的第一手资料,因此可以作为飞行初学者的基础教程,也可以作为以拓宽知识面、开拓思路为主要目的的广大无人机爱好者的学习资料。 由于水平有限,时间仓促,书中疏漏之处在所难免,敬请读者朋友批评指正,以使我们在再版时修订。 作者

目录 前言................................................................................................... - 2 - 目录................................................................................................... - 3 - 第一章绪论 ....................................................................................... - 4 - 第二章系统组成及原理.................................................................... - 7 - 第三章飞行器 ................................................................................. - 18 - 第四章操作方法实例...................................................................... - 26 - 第五章其他细节 ............................................................................. - 45 - 第六章多旋翼无人机的作用与意义 .............................................. - 53 - 第七章与多旋翼无人机有关的航空法规及航空气象 ................... - 54 - 总结................................................................................................... - 66 - 参考文献 ........................................................................................... - 66 -

旋翼无人机的组成部分

旋翼无人机的组成部分 1、动力系统 (1)电动机 小型四旋翼无人机(轴距250mm左右)大都选用KV2000左右(配5-6寸桨)的电机。 (2)电子调速器 电子调速器用于驱动无刷直流电机,比较重要的参数是工作电流,刷新频率,重量。一般而言,当前市场上的大部分电子调速器的刷新频率都大于400hz。 (3)电调连接板 电调连接板,其本质为一块电源配电板,用于简化电池与电调、电调与飞控之间的电气连接,同时可以避免导线拆装时的反复焊接。 (4)桨叶 桨叶与电机的搭配主要是从机架大小、能否提供足够动力这两方面进行考虑。 (5)电池 现在几乎所有的四旋翼无人机都使用锂电池,主要考量电池的容量、放电速率、自身重量。如:ACE格瑞普2200mAh锂电池,充电倍率20C,重量186g,尺寸25mm*34mm*105mm 2、支撑和外观系统 支撑和外观系统(机架)是指无人机的承载平台,所有设备都是用机架承载起来飞上天上的,所以无人机的机架好坏,很大程度上决定了这部无人机的使用寿命。衡量一个机架的好坏,可以从坚固程度、使用方便程度、元器件安装是否合理等等方面考察。 现在常见的无人机,多数指多轴飞行器的形式,机架的组成大同小异,主要由中心板、力臂、脚架组成,有结构简单的特点。 多轴飞行器的轴数,从两轴开始,到十多轴都有,但常见的还是以4、6、8轴为主。轴数越多、螺旋桨越多、机架的负载就越大,但相对地结构也就变得越复杂。 3、飞控制系统 (1)飞控原理 四旋翼飞行器的控制系统分为两个部分:飞行控制系统和无刷直流电机调速系统。飞行控制系统通过IMU惯性测量单位(由陀螺传感器和加速度传感器组成)检测飞行姿态,通过无线通讯模块与地面遥感器通讯。4个无刷直流电机调速系统总线与飞行控制器通信,通过

相关文档
最新文档