认识三角形(1)

合集下载

《认识三角形》(第一课时)教学设计

《认识三角形》(第一课时)教学设计

认识三角形(第一课时)教学目标1、能说出三角形各部分的名称以及与底相对应的高3、通过折,画的方式找到三角形的高,感受三角形高的含义,知道高的标注方法4、在从现实到抽象的过程中培养学生的空间观念5、感受空间几何与现实生活的密切联系,激发学习兴趣,并感受数学的实际价值教学重点认识三角形各部分的名称;通过操作,理解认识三角形的特性;动手寻找三角形的高,体会高的含义和作用。

教学难点对三角形的概念的理解和掌握;在三角形中寻找高的操作过程,以及对“高”的意义和作用的理解和体会。

教具多媒体课件、三角形等实物教具。

教学过程一、走进生活感知空间图形(1)认识三角形的构成及定义课件展示生活中运用了三角形的建筑物体,引导学生观察分析,找到其中学过的图形师:1、看看在这些建筑上运用了哪些我们认识的图形?2、说说在我们生活中有哪些图形是三角形?如屋顶、三角尺、红领巾、三明治等。

3、看一看我们生活中的三角形。

二、探究学习--认识三角形1、给三角形下定义说说什么样的图形叫做三角形?直接定义:像这样由3条线段围成的图形就是三角形。

老师引导:这4个图形能叫三角形么?请说明理由加深对定义的理解:线段、围拢同学看,我们在构图的时候,画三角形主要用了三条什么?(线段),因此,我们通常这样来定义三角形。

由三条线段()成的图像叫做三角形。

(组、连、围)请选一字填空,并说说理由组和连都没有准确说明三条线段连接的方法,围字却说明了:三条线段不在同一直线,而且首尾相连,组成封闭图形。

全班齐读定义。

2、体会、认识、理解、运用三角形的特性1、请同学们任意画一个三角形,讨论三角形有几条边,几个角,几个顶点?让学生自由发言,反馈学生对三角形的已有认知情况,特别是要复习到三角形的各部分的名称:三条边,三个角,三个顶点,学生每说到一个“点”上,就让同学们去指一指,或者摸一摸,将动脑,动口,动手集合起来,从而强化学生的感受和认识.1)师示范指边,角,顶点。

2)抽生上来指边,角,顶点3)师指,生说名称4)师说名称,生写名称在相应位置。

北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

1.三角形内角和定理:三角形三个内角的和等于180°.
2.三角形内角和定理的应用:①在三角形中,已知任意两个内角的度数可以 求出第三个内角的度数;②已知三角形三个内角的关系,可以求出各个内角 的度数;③求一个三角形中各角之间的关系.
3.三角形按角分类:
直角三角形:有一个角是直角的三角形 锐角三角形:三个角都是锐角的三角形 钝角三角形:有一个角是钝角的三角形
∠A、∠C的公共边是
.
,∠A的对边是
栏目索引
,
图4-1-3 答案 ∠B;BC;AC 解析 △ABC中,AB与BC的夹角是∠B,∠A的对边是BC,∠A、∠C的公共 边是AC.
1 认识三角形
知识点二 三角形三个内角之间的关系
栏目索引
4.(2017广西南宁中考)如图4-1-4,△ABC中,∠A=60°,∠B=40°,则∠C等于
其所在直 直角三角形
线)的交
点位置 钝角三角形
交点在三角形内 交点在直角顶点处 交点在三角形外
三条中线交于三 角形内一点(这一 点称为三角形的 重心)
交点在三角形内
共同点
每个三角形都有三条高、三条中线、三条角平分线,它们(或它们所在的直线) 都分别交于一个点,它们都是线段
1 认识三角形
栏目索引
知识拓展
(1)得到线段垂直;(2)得到角相等 (1)得到线段相等; (2)得到面积相等
得到角相等
1 认识三角形
栏目索引
线段 的位置
锐角三角形 直角三角形
钝角三角形
三条高全在三角形内
三条中线全在三
角形内 一条高在三角形内,另外两条
与两直角边重合
三条角平分线全 在三角形内
三角形内一条,三角形外两条

三角形的认识和特征

三角形的认识和特征

三角形的认识和特征三角形是几何学中最基本的形状之一,它具有独特的特征和性质。

在本文中,我们将深入探讨三角形的认识和特征,从而更好地理解和运用这一重要的几何概念。

一、三角形的定义三角形是由三条线段构成的多边形,其中每两条线段之间都相交于一个顶点,并且这三条线段的非共线部分不相交。

三角形有三个顶点和三条边,它可以是等边三角形、等腰三角形或一般三角形。

二、三角形的分类根据边的长度,三角形可以分为以下三种类型:1. 等边三角形:三条边的长度完全相等,每个内角均为60度。

2. 等腰三角形:至少两条边的长度相等,对应的两个内角也相等。

3. 一般三角形:三条边的长度各不相等,内角也各不相等。

根据角的大小,三角形可以分为以下三种类型:1. 钝角三角形:三个内角中存在一个大于90度的角。

2. 直角三角形:一个内角为90度,其他两个内角分别为锐角。

3. 锐角三角形:三个内角均小于90度。

三、三角形的性质三角形具有许多重要的特征和性质,下面是其中一些:1. 内角和定理:三角形的三个内角之和恒为180度。

2. 外角和定理:三角形的外角之和等于360度。

3. 等角定理:等腰三角形的底角(即两条等边所对的角)相等。

4. 等腰三角形的性质:等腰三角形的两底角相等,两腰边相等,且对边也相等。

5. 等边三角形的性质:等边三角形的三个内角均为60度,且三条边相等。

6. 锐角三角形的性质:锐角三角形的三个内角均小于90度。

7. 直角三角形的性质:直角三角形的一个内角为90度,满足勾股定理。

8. 斜边和底角定理:在锐角三角形中,斜边最大,底角所对边最大。

四、三角形的应用三角形在实际应用中具有广泛的用途,包括测量、设计和工程等领域。

下面是一些常见的应用:1. 三角测量:利用三角形的性质可以进行测量,例如测量距离、高度和角度等。

2. 三角形的相似性:相似三角形的性质可以在测绘和设计中用于缩放和比例。

3. 三角形的几何元素:三角形的顶点、边和角等几何元素可以应用于建筑、城市规划和景观设计等领域。

认识三角形(1)课件

认识三角形(1)课件

新知讲解
三角形按内 角的大小分 类
锐角三角形 (三个内角都是锐角的三角形)
直角三角形 (有一个内角是直角的三角形)
钝角三角形 (有一个内角是钝角的三角形)
练一练
1、如果一个三角形的三个内角比是3:4:5,那么这个三 角形是______锐__角_____三角形。
2、如图,BD⊥AC,说出图中的锐角三角形、直角三角形和
认识三角形
——第一课时
浙教版 八年级上
学习目标
1、结合具体实例,进一步认识三角形的概念及基本 要素。 2、理解三角形三边关系的性质,并会初步应用它们 来解决问题。 3、通过观察、操作、想象、推理、交流等活动,发 展空间观念和推理能力。
导入新课
你能举出生活中看到的三角形例子吗? 雨伞、衣架、小红旗……
钝角三角形。
C
D
锐角三角形:△ABC 直角三角形:△ABD、△BCD
A
钝角三角形:没有
B
1.为什么有人喜欢 斜穿人行横道?
两点之间线段最短
拿出草稿纸,在纸上画出任意一个 三角形,动手量一量,算一算,叠 一叠,探究三角形任何两边和的数 量关系,把你的发现与小组同学交 流。
思考探究
新知讲解
在△ABC中,利用你发现的规律填空: A
A
b
c
B
C
a
(1)说出图中所有的三角形,以及每一个三角形的三条边和三
个内角。
(2)若∠A=40°,∠C=60°,求∠ABC的度数。
C D
A
B
(1)△ABC,△ABD、△BCD (边、角口述)
(2)∠A、∠C、∠ABC是△ABC的内角,根据三角形内角和为
180°,可知:∠ABC=180°-∠A-∠C=80°

七年级数学上册第一章三角形1认识三角形第1课时课件鲁教版五四制

七年级数学上册第一章三角形1认识三角形第1课时课件鲁教版五四制

至D. 因为∠ACE =∠A, 所以CE∥AB,
所以∠DCE =∠B,
又因为 ∠ACE+∠DCE +∠ACB =180°,
所以 ∠A+∠B+∠C=180°.
三角形分类
锐角三角形 (三个内角都是锐角)
直角三角形 (有一个内角是直角)
钝角三角形 (有一个内角是钝角)
【探究新知】
“直角三角形ABC”用“Rt△ABC”表示.
C
此图中有几个三角形? 你能表示出来吗?
DE B
6个,△ABD, △ADE, △AEC, △ABE, △ADC, △ABC.
【想一想】
三角形的三个内角有什么关系? 三角形三个内角的和等于180°. 小学里,是用什么方法得到三角形内角和为180°的 结论的?
将一个三角形的三个角撕下来,拼在一起,可以得到 三角形的内角和为180°.
三边可表示为AB,BC,AC,顶点A所对的边BC也 可表示为a,顶点B所对的边AC也可表示为b,顶点 C所对的边AB也可表示为c.
【揭示新知】
1.当表示三角形时,字母没有先后顺序.
2.如图,我们把BC(或a)叫做A的对边,把AB(或c)、 AC(或b)叫做A的邻边.
A
c
b
B
a
C
如果我说三角形有三要素,
3.(苏州·中考)△ABC的内角和为( )
(A)180°
(B)360°
(C)540°
(D)720°
【解析】选A.根据三角形的内角和为180°,得△ABC
的内角和为180°,故A正确.
通过本课时的学习,需要我们掌握: 1.三角形的概念. 2.三角形的内角和为180°. 3.三角形的任意两边之和大于第三边,任意两边之 差小于第三边. 4.直角三角形两个锐角互余.

八年级上册数学 1.1认识三角形(一) 基础训练(含答案)

八年级上册数学 1.1认识三角形(一) 基础训练(含答案)

第1章三角形的初步知识1.1 认识三角形(一)(第1题)1.如图,图中共有__6__个三角形,以AD为边的三角形有△ABD,△ADE,△ADC,以E为顶点的三角形有△ABE,△ADE,△AEC,∠ADB是△ABD的内角,△ADE的三个内角分别是∠ADE,∠AED,∠DAE.2.三角形的两边长分别是2和3,若第三边的长是奇数,则第三边的长为__3__;若第三边的长是偶数,则三角形的周长为7或9.3.在现实生活中,有些人为抄近路而践踏了草坪,这是一种不文明的现象,我们应予以制止或劝解.请你用数学知识解释这一现象的原因:两点之间线段最短.4.(1)已知在△ABC中,AB=6,BC=4,则边AC的长可能是(B)A. 11B. 5C. 2D. 1(2)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为(B)A. 9B. 12C. 7或9D. 9或125.在三个内角互不相等的△ABC中,最小的内角为∠A,则在下列四个度数中,∠A最大可取(B)A. 30°B. 59°C. 60°D. 89°6.若一个三角形三个内角的度数之比是2∶3∶7,则这个三角形一定是(C)A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定(第7题)7.如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围.(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.【解】(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°.又∵∠A=55°,∴∠C=180°-∠AEC-∠A=70°.8.若a,b,c是三角形的三边长,则化简|a-b-c|+|a+c-b|-|c-a-b|=(B)A. 3a-b-cB. -a-b+3cC. a+b+cD. a-3b+c【解】∵a+b>c,b+c>a,a+c>b,∴原式=b+c-a+a+c-b-a-b+c=-a -b+3c.9.三角形纸片上有100个点,连同三角形的顶点共103个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,则这样的三角形共有201个.【解】从最大的三角形纸片计数,任意选中纸片内一点,沿顶点与该点连线剪开,可以得到3个小三角形,即增加了2个小三角形.同理,再从中任取一点,剪开,也是增加了2个三角形,因此每多取一个点,三角形就增加2个,所以共有100×2+1=201(个)三角形.10.各边长都是整数,且最大边长为8的三角形共有多少个?【解】∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;5,5,8;5,6,8;5,7,8;5,8,8;6,6,8;6,7,8;6,8,8;7,7,8;7,8,8;8,8,8.故各边长都是整数,且最大边长为8的三角形共有20个.(第11题)11.在农村电网改造中,四个自然村分别位于如图所示的A,B,C,D处,现计划安装一台变压器,使到四个自然村的输电线路的总长最短,那么这个变压器应安装在AC,BD 的交点E处,你知道这是为什么吗?【解】如图,另任取一点E′(异于点E),分别连结AE′,BE′,CE′,DE′.在△BDE′中,DE′+BE′>D B.在△ACE′中,AE′+CE′>A C.∴AE′+BE′+CE′+DE′>AC+BD,即AE+BE+CE+DE最短.12.观察并探求下列各问题:(1)如图①,在△ABC中,P为边BC上一点,则BP+PC__<__AB+AC(填“>”“<”或“=”).(2)将(1)中的点P移到△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.(3)将(2)中的点P变为两个点P1,P2,得图③,试观察比较四边形BP1P2C的周长与△ABC 的周长的大小,并说明理由.(第12题)【解】(1)BP+PC<AB+A C.理由:三角形两边的和大于第三边.(2)△BPC的周长<△ABC的周长.理由如下:如解图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM,在△PMC中,PC<PM+MC,两式相加,得BP+PC<AB+AC,∴BP+PC+BC<AB+AC+BC,即△BPC的周长<△ABC的周长.(第12题解)(3)四边形BP1P2C的周长<△ABC的周长.理由如下:如解图②,分别延长BP1,CP2交于点M.由(2)知,BM+CM<AB+A C.又∵P1P2<P1M+P2M,∴BP1+P1P2+P2C<BM+CM<AB+AC,∴BP1+P1P2+P2C+BC<AB+AC+BC,即四边形BP1P2C的周长<△ABC的周长.。

认识三角形教案(20篇)

认识三角形教案(20篇)

认识三角形教案(20篇)熟悉三角形教案(1)活动目标:1、培育幼儿对图形的爱好和数学活动常规。

2、初步进展幼儿的观看力、分析力量和概括力量。

3、感知并说出三角形的基本特征,能找出和三角形相像的物体。

活动预备:多媒体、课件各一,图形若干。

活动分析:观看、对比是孩子们探究的过程,利用图形的对比引领幼儿感知三角形的基本特征,作为本次活动的重点。

活动中运用课件直观、形象的特征,利用多种嬉戏形式,采纳引发法、提示法,引领幼儿进一步掌控并概括三角形的基本特征,从而突破难点部分。

活动的结束之际,组织幼儿进一步从生活环境中找出像三角形的物体,作为活动的延长环节,自然结束。

活动过程:一、导入。

采纳观看法,利用课件中图形宝宝的口吻引出三角形。

二、绽开。

1、采纳嬉戏法引领幼儿在众图形中查找三角形。

2、引领幼儿观看三种三角形的共同特征,发觉三角形有三条边、三个角。

3、动手操作:a、幼儿从图形筐中找出三角形,分别数出边、角的数量,进一步掌控三角形特征;b、观看并说出三角形像什么。

4、嬉戏“猜猜我是谁”。

组织幼儿依据图形慢慢露出部分猜想出图形,进一步巩固幼儿对图形特征的熟悉。

5、嬉戏“捉迷藏”幼儿从简洁的画面中找出三角形。

6、引领幼儿观看并找出活动室中那些物品像三角形。

三、延长。

请幼儿到生活环境中进一步查找三角形的踪迹。

熟悉三角形教案(2)活动背景:不同外形的三角形,使得幼儿很感爱好。

利用动手操,将3根一样长或不一样长的小棍,拼做三角形,使幼儿进一步熟悉到了有三个角,三条边的就是三角形。

活动目标:1、熟悉三角形,知道三角开有三条边,三个角,复习手口一样点数。

2、培育幼儿的观看和比较力量。

3、激活幼儿学习图形的爱好。

4、体会数学的生活化,体悟数学嬉戏的乐趣。

5、能与伙伴合作,并试试记录结果。

教学重点、难点:1、熟悉三角形,并知道三角形有很多外形2、区分三角形与正方形活动预备:PPT课件、教具实物(三角形的彩纸或吹塑纸,等边三角形,等腰三角形,直角三角形,锐角三角形,钝角三角形各1张。

七下数学课件:认识三角形(第1课时三角形的三边关系)

七下数学课件:认识三角形(第1课时三角形的三边关系)
数学(苏科版)
七年级 下册
第七章 平面图形的认识(二)
7.4 认识三角形
第一课时 三角形的三边关系
学习目标
学习目标
1、理解三角形及其边、角、顶点的概念。
2、三角形的两种分类方法。
3、理解三角形的三边关系,并会利用这个不等量关系判断已知的三条线段
能否组成三角形,及已知三角形的两边会求第三边的取值范围。
D、2cm +4cm<7cm,不能组成三角形.
故选:A.
判断三角形三边关系
长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木
棒允许连接,但不允许折断),得到的三角形的最长边长为()
A.4
B.5
C.6
D.7
【详解】
①长度分别为5、3、4,能构成三角形,且最长边为5;
②长度分别为2、6、4,不能构成三角形;
以下列各组线段的长为边,能组成三角形的是( )
A.3cm,6cm,8cm
B.3cm,2cm,6cm
C.5cm,6cm,12cm D.2cm,7cm,4cm
【详解】
解:根据三角形的三边关系,得,
A、3cm +6cm>8cm,能组成三角形;
B、3cm +2cm<6cm,不能组成三角形;
C、5cm +6cm <12cm ,不能组成三角形;
等边三角形
(5)等腰直角三角形不是等腰三角形.( ×)
等腰直角三角形的两直角边相等
观察与思考
任意画一个△ABC,从A点出发,沿三角形的边到点B,有几条
线路可以选择?各线路的长有什么关系?能证明你的结论吗?
对任意一个△ABC,若把其中两个顶点看成顶点(点A,点
B),由两点之间线段最短,可得:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考题:
若等腰 ⊿ ABC周长为26,AB=6 ,求 它的腰长.
2、有3、5、7、10的四根彩色线形木 条,要摆出一个三角形,有(B)种摆 法。 A、1 B、2 C、3 D、4
课本26页 第2题
本节课你有什么收获?
1. 学习了三角形的概念, 及三角形的基本要素,重 点研究了三角形3边间的 关系. 2. 从三角形3边关系的研 究中可知:三角形的3边长 度相互制约---- -三角形的 任意两边之和大于第三边.
a-b____c; b-c____a; c-a____b
(3)通过以上的计算你认为三角形的三边 存在怎样的关系?
任意两边之和大于第三边
A
c
b
你知 道为 什么 吗?
C
B
两点之间线段最短!
a
任意两边之差小于第三边
A
a
b
B
c
C
第三边大于两边之差,小于两 边之和。
1、三条线段的长度分别为:
(1)3、8、10 (2)5、2、7
A
c
B
b a
C
三角形的三要素:
顶点: 三角形有三个顶点,顶点A,顶点B,顶点C. 角:三角形有三个角:∠A,∠B,∠C. 边: 三角形有三边 , AB、BC、AC.
顶点A所对的边BC也可表示为a, 顶点B所对的边AC也可表示为b , 顶点C所对的边AB也可表示为c.
说一说:∠B 的对边是_______.
有长度分别为2cm,3cm,4cm和5cm的 小木棒各两根,任取其中3根,你可以搭 出几种不同的三角形?请用小木棒实际摆 一摆,验证你的结论。
为什么呢?
(1)任意画一个三角形,量出它的三边 长度,并填空: a=______;b=_______;c=______ (2)计算并比较: a+b____c; b+c____a; c+a____b
观察后来写一写

请聪明的你表示这些三角形。
A
B
D
E
C
知识再现:
知识再现
(1)
(2)
(3)
所有内角都是锐角的三角形————
锐角三角形 有一个内角是直角的三角形———— 直角三角形
有一个内角是钝角的三角形————
钝角三角形




⑤ 锐角三角形
③ ⑤
⑥ 直角三角形 ① ④ ⑥
⑦ 钝角三角形 ② ⑦
布置作业:
课本28页 1 、 3
第2题做在一④



这些三角形中,有等腰三角形吗?
1.下面的三角形中,有锐角三角形, 直角三角形,钝角三角形吗?
2.图中有等腰三角形吗?
△HKG △MNK
图中共有几个三角形?请分别把它们 表示出来,并指出它们是锐角三角 形,直角三角形还是钝角三角形。
现在,我们将准备好的5根长度分别为 3cm、4cm、 5cm、6cm、9cm的小棒拿出 来,任意取出3根小木棒首尾相接搭三角形
初中数学七年级下册 (苏科版)
认识三角形
说一说:
日常生活中,有关三角 形的实例
一只小猫
如图是用三根细木棒组成的图形, ( 你认为是三角形的图形为 D )
A
定义
B
C
D
由不在同一直线上的三条线段首尾 顺次相接所组成的图形叫做三角形.
记法:
用符号“△”表示三角形, 右图三角形记作:△ABC
(3)5、5、11 (4)13、12、20
能组成三角形的有( B )组。 A、1 B、2 C、3 D、4 技巧: 比较较小的两边之和与最长边的大 小即可
有两根长度分别为4㎝和7㎝的木棒, (1)第三边在什么范围内? (2)用长度为2 ㎝的木棒能与它们组 成三角形吗?为什么? 用长度为11㎝的木棒呢? (3)如果第三边是奇数,那么第三边可 能是哪几个数? (4)如果周长是奇数,那么第三边可能是 哪几个数?
相关文档
最新文档