矩阵键盘键信号检测电路设计-EDA课程设计说明书
单片机课程设计---4×4矩阵式键盘识别显示电路的设计

《单片机原理及应用》课程设计题目:4×4矩阵式键盘与单片机连接与编程专业:测控技术与仪器班级:机电082-1 姓名:学号:指导老师:组员:( 2011.7 .13)目录第1节引言 (2)1.1 4*4矩阵式键盘系统概述 (2)1.2 本设计任务和主要内容 (3)第2节系统主要硬件电路设计 (4)2.1 单片机控制系统原理 (4)2.2 单片机主机系统电路 (5)2.2.1 时钟电路 (8)2.2.2 复位电路 (8)2.2.3 矩阵式键盘电路 (8)2.3 译码显示电路 (9)第3节系统软件设计 (13)3.1 软件流程图 (13)3.2 系统程序设计 (14)第4节结束语 (17)参考文献 (18)第一节引言矩阵式键盘乃是当今使用最为广泛的键盘模式,该系统以N个端口连接控制N*N个按键,即时在LED数码管上。
单片机控制的据这是键盘显示系统,该系统可以对不同的按键进行实时显示,其核心是单片机和键盘矩阵电路部分,主要对按键与显示电路的关系、矩阵式技术及设备系统的硬件、软件等各个部分进行实现。
1.1 4*4矩阵式键盘识别显示系统概述矩阵式键盘模式以N个端口连接控制N*N个按键,实时在LED数码管上显示按键信息。
显示按键信息,既降低了成本,又提高了精确度,省下了很多的I/O端口为他用,相反,独立式按键虽编程简单,但占用I/O口资源较多,不适合在按键较多的场合应用。
并且在实际应用中经常要用到输入数字、字母、符号等操作功能,如电子密码锁、电话机键盘、计算器按键等,至少都需要12到16个按键,在这种情况下如果用独立式按键的话,显然太浪费I/O端口资源,为了解决这一问题,我们使用矩阵式键盘。
矩阵式键盘简介:矩阵式键盘又称行列键盘,它是用N条I/O线作为行线,N条I/O线作为列线组成的键盘。
在行线和列线的每个交叉点上设置一个按键。
这样键盘上按键的个数就为N*N个。
这种行列式键盘结构能有效地提高单片机系统中I/O口的利用率。
实验一 矩阵键盘检测

实验一矩阵键盘检测一、实验目的:1、学习非编码键盘的工作原理和键盘的扫描方式。
2、学习键盘的去抖方法和键盘应用程序的设计。
二、实验设备:51/AVR实验板、USB连接线、电脑三、实验原理:键盘接口电路是单片机系统设计非常重要的一环,作为人机交互界面里最常用的输入设备。
我们可以通过键盘输入数据或命令来实现简单的人机通信。
1、按键的分类一般来说,按键按照结构原理可分为两类,一类是触点式开关按键,如机械式开关、导电橡胶式开关等;另一类是无触点式开关按键,如电气式按键,磁感应按键等。
前者造价低,后者寿命长。
目前,微机系统中最常见的是触点式开关按键(如本学习板上所采用按键)。
按键按照接口原理又可分为编码键盘与非编码键盘两类,这两类键盘的主要区别是识别键符及给出相应键码的方法。
编码键盘主要是用硬件来实现对键的识别,非编码键盘主要是由软件来实现键盘的识别。
全编码键盘由专门的芯片实现识键及输出相应的编码,一般还具有去抖动和多键、窜键等保护电路,这种键盘使用方便,硬件开销大,一般的小型嵌入式应用系统较少采用。
非编码键盘按连接方式可分为独立式和矩阵式两种,其它工作都主要由软件完成。
由于其经济实用,较多地应用于单片机系统中(本学习板也采用非编码键盘)。
2、按键的输入原理在单片机应用系统中,通常使用机械触点式按键开关,其主要功能是把机械上的通断转换成为电气上的逻辑关系。
也就是说,它能提供标准的TTL 逻辑电平,以便与通用数字系统的逻辑电平相容。
此外,除了复位按键有专门的复位电路及专一的复位功能外,其它按键都是以开关状态来设置控制功能或输入数据。
当所设置的功能键或数字键按下时,计算机应用系统应完成该按键所设定的功能。
因此,键信息输入是与软件结构密切相关的过程。
对于一组键或一个键盘,通过接口电路与单片机相连。
单片机可以采用查询或中断方式了解有无按键输入并检查是哪一个按键按下,若有键按下则跳至相应的键盘处理程序处去执行,若无键按下则继续执行其他程序。
基于EDA的矩阵键盘设计

学号 14082101445 成绩:信息学院《EDA技术及应用》课程论文题目:基于FPGA的矩阵键盘设计作者罗诗雨班级 08-1BF 系别信息学院专业自动化完成时间 2010年12月12日1 绪论随着人们生活水平的提高,19世纪兴起的数字电路以其先天的便捷、稳定的优点在现代电子技术电路中占有越来越重要的地位。
数字电路与模拟电路相比有显而易见的稳定性。
近年来,数字电路又有了巨大的发展。
可编程逻辑器件(PAL、GAL等)的发展和普及最终使IC的设计面向了用户(这是模拟电路无法做到的),而这毫无疑问会给用户带来巨大的便捷,从而奠定它在电子电路中的对位。
FPGA是英文Field Programmable Gate Array的缩写,即现场可编程门阵列,它是在PAL、GAL、EPLD等可编程器件的基础上进一步发展的产物。
它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
FPGA采用了逻辑单元阵列LCA(Logic Cell Array)这样一个新概念,内部包括可配置逻辑模块CLB (Configurable Logic Block)、输出输入模块IOB(Input Output Block)和内部连线(Interconnect)三个部分。
此次设计即为基于FPGA的矩阵键盘设计。
1.1 4×4矩阵键盘的工作原理在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。
这样,一个端口(如P1口)就可以构成4*4=16个按键,比之直接将端口线用于键盘多出了一倍,而且线数越多,区别越明显,比如再多加一条线就可以构成20键的键盘,而直接用端口线则只能多出一键(9键)。
由此可见,在需要的键数比较多时,采用矩阵法来做键盘是合理的。
1.2矩阵键盘的功能特点在键盘中按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式,在矩阵键盘中每条水平线和垂直线在交叉处不直接相连,而是通过一个按键相连接,这样在由N条水平线和M条垂直线最多可以有N *M 个按键,大大的减少了对于芯片I/O的占用。
矩阵键盘键信号检测电路设计EDA课程设计说明书

课程设计说明书题目EDA技术及应用系(部)专业(班级)姓名学号指导教师起止日期EDA技术课程设计任务书系(部):专业:指导教师:目录引言 (5)一、绪论 (5)1.1 FPGA概况 (5)1.2 此课题的研究意义 (6)二、矩阵键盘接口电路的原理及总体设计 (6)2.1 矩阵键盘接口电路的原理 (6)2.2 总体设计 (8)三、各模块的设计及仿真 (8)3.1 键盘扫描电路 (8)3.2 键盘译码电路和按键标志位产生电路 (11)3.3 时钟产生模块 (16)3.4 键盘接口电路顶层电路实现 (18)四、硬件测试 (19)五、实验设备 (19)六、总结 (20)参考文献 (20)矩阵键盘键信号检测电路设计引言人类文明已进入到高度发达的信息化社会。
信息化社会的发展离不开电子信息产品开发技术、产品品质的提高和进步。
电子信息产品随着科学技术的进步,其电子器件和设计方法更新换代的速度日新月异。
实现这种进步的主要原因就是电子设计技术和电子制造技术的发展,其核心就是电子设计自动化(EDA,Electronic Design Automation)技术,EDA技术的发展和推广应用又极大地推动了电子信息产业的发展。
为保证电子系统设计的速度和质量,适应“第一时间推出产品”的设计要求,EDA技术正逐渐成为不可缺少的一项先进技术和重要工具。
目前,在国内电子技术教学和产业界的技术推广中已形成“EDA热”,完全可以说,掌握EDA技术是电子信息类专业学生、工程技术人员所必备的基本能力和技能。
此设计主要利用VHDL硬件描述语言在EDA平台Quartus II上设计一个4×4阵列键盘扫描电路,将行扫描信号输入阵列键盘,读取列信号的值,输出按键编码,从而判断出按键按下的位置。
并且进行模拟仿真,下载到EDA实验箱进行硬件验证。
一、绪论1.1 FPGA概况早期的可编程逻辑器件只有可编程只读存储器(PROM)、紫外线可擦除只读存储器(EPROM)和电可擦除只读存储器(E2PROM)三种。
实验6 矩阵键盘的检测

实验6 矩阵键盘的检测一、实验目的1、掌握七段数码管显示的软件译码方法;2、掌握矩阵键盘的使用。
二、实验内容矩阵键盘来控制数码管显示:实验板上电时,数码管不显示,顺序按下4*4矩阵键盘后,在数码管上依次显示0-F,6个数码管同时静态显示即可。
三、实验方法和手段多媒体教学、演示、讲练结合、软件仿真、实物焊接四、实验条件实验指导书、计算机、Proteus软件、Keil C51软件、耗材、电烙铁五、实验学时2学时六、实验步骤1、Proteus设计电路原理图(1)按照图6-1,在Proteus软件中绘制好电路原理图。
图6-1 电路原理图说明:矩阵键盘行线接P3口低4位(第一行P3.0),列线接P3口高4位(第一列接P3.4)。
(2)电路原理图中所需要的元件见表6-1。
表6-1 元件列表元件名称型号数量Proteus中的名称单片机芯片AT89C51 1个AT89C51 晶振12MHz 1个CRYSTAL电容22PF 2个CAP电解电容22uF/16V 1个CAP-ELEC电阻1K 1个RES排阻1K 1个RESPACK_8 六位一体共阴极数码管1个7SEG-MPX6_CC 锁存芯片74HC573 2个74HC573按键开关16个BUTTON 2、编程控制在Keil软件中进行程序编制,完成目标:顺序按下4*4矩阵键盘后,6个数码管同时静态依次显示0-F。
将下面的参考程序补充完整,也可自行编写新程序。
参考程序代码如下:3、仿真调试将生成的HEX文件加载到Proteus中,进行软件仿真,查看效果。
4、实物调试(1)程序烧制(2)使用焊接成功的电路板,通电调试,查看效果。
七、思考题1、如果采用双数码管显示按键值(0-15),应如何修改程序代码?2、如果行线接P3口低4位,列线接P2口低4位,程序代码如何修改?。
矩阵键盘电路设计

学号: 2课程设计题目矩阵键盘电路设计教学院计算机学院专业计算机应用技术班级姓名指导教师2010 年01 月12 日前言.................................................................... 第一章需求分析.........................................................功能描述.........................................................功能分析......................................................... 第二章系统的原理及分析.................................................用到的知识点的介绍,知识点使用的总体思路第三章详细设计.........................................................硬件设计系统结构图,元器件的选择等软件设计所设计的软件关键模块的程序流程第四章测试............................................................运行结果分析等第五章总结............................................................. 参考文献................................................................ 附录关键程序代码........................................................矩阵键盘又称行列键盘,它是用四条I/O线作为行线,四条I/O线作为列线组成的键盘。
在行线和列线的每个交叉点上设置一个按键。
4×4矩阵键盘EDA设计

else if(Clk4EN) begin
case(KeyOut) 4'b1110 : KeyTmp1[3:0] <= KeyDone;//扫描过程中消抖 4'b1101 : KeyTmp1[7:4] <= KeyDone; 4'b1011 : KeyTmp1[11:8] <= KeyDone; 4'b0111 : KeyTmp1[15:12] <= KeyDone; default : KeyTmp1 <= 16'hffff;//清零
2021/7/23
9
7/23/2021
硬件设计
8段数码管原理图
2021/7/23
11
硬件设计
2021/7/23
12
2021/7/23
软件设计
module matrix_keyboard(Clock,nRST,nEN,pEN,INT,KeyVal,KeyIn,KeyOut);
input
Clock;//系统时钟
KeyVal <= 8'hf2;
else if(pFlag[7])
KeyVal <= 8'hfa;
else if(pFlag[8])
KeyVal <= 8'hf9;
else if(pFlag[9])
KeyVal <= 8'hf6;
else if(pFlag[10])KeyVal <= 8'hf3;
else if(pFlag[11])KeyVal <= 8'hfb;
)
EDA矩阵键盘

实验十五矩阵键盘接口电路的设计一、实验目的1、了解普通4×4键盘扫描的原理。
2、进一步加深七段码管显示过程的理解。
3、了解对输入/输出端口的定义方法。
一、实验原理实现键盘有两种方案:一是采用现有的一些芯片实现键盘扫描;再就是用软件实现键盘扫描。
作为一个嵌入系统设计人员,总是会关心产品成本。
目前有很多芯片可以用来实现键盘扫描,但是键盘扫描的软件实现方法有助于缩减一个系统的重复开发成本,且只需要很少的CPU 开销。
嵌入式控制器的功能能强,可能充分利用这一资源,这里就介绍一下软键盘的实现方案。
图15-1 简单键盘电路通常在一个键盘中使用了一个瞬时接触开关,并且用如图15-1 所示的简单电路,微处理器可以容易地检测到闭合。
当开关打开时,通过处理器的I/O 口的一个上拉电阻提供逻辑1;当开关闭合时,处理器的/IO 口的输入将被拉低得到逻辑0。
可遗憾的是,开关并不完善,因为当它们被按下或者被释放时,并不能够产生一个明确的1 或者0。
尽管触点可能看起来稳定而且很快地闭合,但与微处理器快速的运行速度相比,这种动作是比较慢的。
当触点闭合时,其弹起就像一个球。
弹起效果将产生如图15-2 所示的好几个脉冲。
弹起的持续时间通常将维持在5ms∼30ms 之间。
如果需要多个键,则可以将每个开关连接到微处理器上它自己的输入端口。
然而,当开关的数目增加时,这种方法将很快使用完所有的输入端口。
图15-2 按键抖动键盘上阵列这些开关最有效的方法(当需要5 个以上的键时)就形成了一个如图15-3 所示的二维矩阵。
当行和列的数目一样多时,也就是方型的矩阵,将产生一个最优化的布列方式(I/O 端被连接的时候)。
一个瞬时接触开关(按钮)放置在每一行与线一列的交叉点。
矩阵所需的键的数目显然根据应用程序而不同。
每一行由一个输出端口的一位驱动,而每一列由一个电阻器上拉且供给输入端口一位。
图15-3 矩阵键盘键盘扫描的实现过程如下:对于4×4键盘,通常连接为4行、4列,因此要识别按键,只需要知道是哪一行和哪一列即可,为了完成这一识别过程,我们的思想是,首先固定输出4行为高电平,然后输出4列为低电平,在读入输出的4行的值,通常高电平会被低电平拉低,如果读入的4行均为高电平,那么肯定没有按键按下,否则,如果读入的4行有一位为低电平,那么对应的该行肯定有一个按键按下,这样便可以获取到按键的行值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计说明书题目EDA技术与应用系(部)专业(班级)姓名学号指导教师起止日期EDA技术课程设计任务书系(部):专业:指导教师:目录引言 (5)一、绪论 (5)1.1 FPGA概况 (5)1.2 此课题的研究意义 (6)二、矩阵键盘接口电路的原理与总体设计 (6)2.1 矩阵键盘接口电路的原理 (6)2.2 总体设计 (8)三、各模块的设计及仿真 (8)3.1 键盘扫描电路 (8)3.2 键盘译码电路和按键标志位产生电路 (11)3.3 时钟产生模块 (16)3.4 键盘接口电路顶层电路实现 (18)四、硬件测试 (19)五、实验设备 (19)六、总结 (20)参考文献 (20)矩阵键盘键信号检测电路设计引言人类文明已进入到高度发达的信息化社会。
信息化社会的发展离不开电子信息产品开发技术、产品品质的提高和进步。
电子信息产品随着科学技术的进步,其电子器件和设计方法更新换代的速度日新月异。
实现这种进步的主要原因就是电子设计技术和电子制造技术的发展,其核心就是电子设计自动化(EDA,Electronic Design Automation)技术,EDA技术的发展和推广应用又极大地推动了电子信息产业的发展。
为保证电子系统设计的速度和质量,适应“第一时间推出产品”的设计要求,EDA技术正逐渐成为不可缺少的一项先进技术和重要工具。
目前,在国内电子技术教学和产业界的技术推广中已形成“EDA热”,完全可以说,掌握EDA技术是电子信息类专业学生、工程技术人员所必备的基本能力和技能。
此设计主要利用VHDL硬件描述语言在EDA平台Quartus II上设计一个4×4阵列键盘扫描电路,将行扫描信号输入阵列键盘,读取列信号的值,输出按键编码,从而判断出按键按下的位置。
并且进行模拟仿真,下载到EDA实验箱进行硬件验证。
一、绪论1.1 FPGA概况早期的可编程逻辑器件只有可编程只读存储器(PROM)、紫外线可擦除只读存储器(EPROM)和电可擦除只读存储器(E2PROM)三种。
由于结构的限制,它们只能完成简单的数字逻辑功能。
其后出现了一类结构上稍复杂的可编程芯片,即可编程逻辑器件(PLD),它能够完成各种数字逻辑功能。
典型的PLD由一个“与”门和一个“或”门阵列组成,而任意一个组合逻辑都可以用“与—或”表达式来描述,所以PLD能以乘积和的形式完成大量的组合逻辑功能。
这一阶段的产品主要有PAL(可编程阵列逻辑)和GAL(通用阵列逻辑)。
PAL由一个可编程的“与”平面和一个固定的“或”平面构成,或门的输出可以通过触发器有选择地被置为寄存状态。
PAL器件是现场可编程的,它的实现工艺有反熔丝技术、EPROM技术和E2PROM技术。
还有一类结构更为灵活的逻辑器件是可编程逻辑阵列(PLA),它也由一个“与”平面和一个“或”平面构成,但是这两个平面的连接关系是可编程的。
PLA器件既有现场可编程的,也有掩膜可编程的。
在PAL的基础上又发展了一种通用阵列逻辑(GAL、Generic ArrayLogic),如GAL16V8、GAL22V10等。
它采用了EPROM工艺,实现了电可擦除、电可改写,其输出结构是可编程的逻辑宏单元,因而它的设计具有很强的灵活性,至今仍有许多人使用。
这些早期的PLD器件的一个共同特点是可以实现速度特性较好的逻辑功能,但其过于简单的结构也使它们只能实现规模较小的电路。
为了弥补这一缺陷,20世纪80年代中期,Altera和Xilinx分别推出了类似于PAL结构的扩展型CPLD(Complex Programmable Logic Dvice)和与标准门阵列类似的FPGA(FieldProgrammable Gate Array),它们都具有体系结构和逻辑单元灵活、集成度高以及适用范围宽等特点。
这两种器件兼容了PLD和通用门阵列的优点,可实现较大规模的电路,编程也很灵活。
与门阵列等其他ASIC(Application Specific IC)相比,它们又具有设计开发周期短、设计制造成本低、开发工具先进、标准产品不需测试、质量稳定以及可实时在线检验等优点,因此被广泛应用于产品的原型设计和产品生产(一般在10 000件以下)之中。
几乎所有应用门阵列、PLD和中小规模通用数字集成电路的场合均可应用FPGA和CPLD 器件。
1.2 此课题的研究意义近年来EDA技术在电子领域引发的技术革命,推动着电子技术的迅猛发展,为世人所瞩目,而FPGA 为代表的可编程逻辑器件的应用,更是受到业内人士的普遍关注。
伴随着大规模集成电路和计算机技术的高速发展,在设计工业自动化,仪器仪表,计算机设计与应用、通信、国防等领域的电子系统中,FPGA 技术的含量正以惊人的速度提升。
将尽可能大的完整的电子系统在单一FPGA芯片中实现已成为现实,电子类新技术项目的开发也更多地依赖于FPGA技术的应用。
作为FPGA研究课题之一的矩阵键盘控制接口电路的设计,在FPGA设计中是一个经常被提到的话题,就像是利用PFGA设计数字中一样,虽然简单,但是却是一个很有研究意义的话题,涉及到怎么样才能是FPGA资源更加充分利用,现在很多电子产品都涉及到按键,小的有独立按键,大的有N*N的矩阵键盘,独立按键由于案件的个数少,也就没必要考虑资源的利用问题了。
而矩阵键盘,由于按键多,对整个系统的影响大,所以肯定要考虑资源的利用问题,而且还要考虑一下电路里面的时序问题。
本次设计要求设计一个4*4矩阵键盘,也就是行为4,列为4,一共可以设计16个按键。
其中设计方法为:一般判断键盘中有没有按键按下是通过行线送入扫描信号,然后从列线中读取状态得到的,其方法是依次给行线送入低电平,检查列线的输入。
如果列线信号高电平,则代表低电平信号所在的行中无按键按下,反之,则有,则在低电平信号所在的行和出现低电平的交叉处有按键按下。
二、矩阵键盘接口电路的原理与总体设计2.1 矩阵键盘接口电路的原理在键盘中按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式。
在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。
这样,一个端口就可以构成4*4=16个按键,比之直接将端口线用于键盘多出了一倍,而且线数越多,区别越明显,比如再多加一条线就可以构成20键的键盘,而直接用端口线则只能多出一键(9键)。
由此可见,在需要的键数比较多时,采用矩阵法来做键盘是合理的。
矩阵式结构的键盘显然比直接法要复杂一些,识别也要复杂一些,列线通过电阻接正电源,并将行线所接的FPGA的I/O口作为输出端,而列线所接的I/O口则作为输入。
这样,当按键没有按下时,所有的输出端都是高电平,代表无键按下。
行线输出是低电平,一旦有键按下,则输入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了。
行列式键盘的电路原理如图2.1.1所示:+5v+5V图2.1.1 行列式键盘的电路原理图设置扫描信号为keydrv3~keydrv0,列线按键输入信号keyin3~keyin0与按键位置的关系如表2.1.1所示:2.2总体设计本次设计在EDA开发平台QUARTUSⅡ9.0上利用VHDL语言设计矩阵键盘控制接口电路。
由行列式键盘原理就可以知道,要正确的完成键盘输入工作必须有按键扫描电路产生keydrv3~keydrv0信号,同时还必须有按键译码电路从keydrv3~keydrv0信号和keyin3~keyin0信号中译码出按键的值。
此外,一般还需要一个按键发生信号用于和其他模块接口,通知其他模块键盘上有按键动作发生,并可以从键盘上读取按键的键值。
由于各个模块需要的时钟频率是不一样的,因此时钟产生模块就是用于产生各个模块需要的时钟信号。
此课题的实验一共有三个模块,分别为:扫描电路模块、时钟产生模块、键盘译码电路和按键标志位产生电路。
扫描模块中是为了产生扫描信号,来利用扫描信号来扫描键盘中中是否有按键按下。
键盘译码电路和按键标志位产生电路是为了配合扫描模块来扫描电路中是否有按键按下,而且还要求它来产生按键标志信号,以便和外部电路握手。
时钟产生电路是为了产生不同频率的信号,来驱动上面两个电路的运转。
三、各模块的设计及仿真3.1 键盘扫描电路键盘扫描电路是用于产生keydrv3~keydrv0信号,其变化的顺序依次是1110---1101---1011---0111---……周而复始地扫描。
其停留在某个状态的时间大约为10ms。
更短的停留时间是没有必要的,因为人按键的时间大约为10ms,不可能有更快的按键动作发生;另外,更短的停留时间还容易采集到抖动信号,会干扰判断,而太长的停留时间则会使某些较快的按键东走丢失。
键盘扫描电路的外部接口电路如图3.1.1所示,其中clk_scan是周期为10ms的扫描时钟,keydrv 为输出到键盘的扫描信号,宽度为4位。
图3.1.1 键盘扫描电路的外部接口电路图其VHDL描述如下:LIBRARY ieee;USE ieee.std_logic_1164.all;ENTITY key_scan IS-- {{ALTERA_IO_BEGIN}} DO NOT REMOVE THIS LINE!PORT(clk_scan : IN STD_LOGIC; --扫描时钟,周期10mskeydrv : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) --输出扫描信号);-- {{ALTERA_IO_END}} DO NOT REMOVE THIS LINE!END key_scan;-- Architecture BodyARCHITECTURE key_scan_architecture OF key_scan ISCONSTANT s0 :STD_LOGIC_VECTOR (3 DOWNTO 0):="1110" ;--定义状态机编码CONSTANT s1 :STD_LOGIC_VECTOR (3 DOWNTO 0):="1101" ;CONSTANT s2 :STD_LOGIC_VECTOR (3 DOWNTO 0):="1011" ;CONSTANT s3 :STD_LOGIC_VECTOR (3 DOWNTO 0):="0111" ;SIGNAL present_state:STD_LOGIC_VECTOR(3 DOWNTO 0);--状态机现态SIGNAL next_state:STD_LOGIC_VECTOR(3 DOWNTO 0);--状态机次态BEGIN--状态更新进程PROCESS(clk_scan)BEGINIF(clk_scan'event and clk_scan='1') thenpresent_state<=next_state;END IF;END PROCESS;--状态译码PROCESS (present_state)BEGINCASE present_state ISWHEN s0=>next_state<=s1;WHEN s1=>next_state<=s2;WHEN s2=>next_state<=s3;WHEN s3=>next_state<=s0;--多余状态处理WHEN OTHERS=>next_state<=s0;END CASE;END PROCESS;--输出译码keydrv<=present_state;END key_scan_architecture;以上程序采用一个状态机来实现扫描电路。