五年级下册数学知识点总结新完整版

合集下载

小学五年级下册数学知识点汇总(推荐5篇)

小学五年级下册数学知识点汇总(推荐5篇)

小学五年级下册数学知识点汇总(推荐5篇)第一篇:小学五年级下册数学知识点汇总小学五年级下册数学知识点汇总3篇1一、旋转、平移时针旋转1小时是30度二、因数与倍数1、如果a×b=c(a、b、c都是不为0的整数),那么a、b就是c得因数,c就是a、b的倍数。

2、一个数的因数个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数是无限的,其中最小的倍数是它本身,没有最大倍数。

3、奇数与偶数:自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

偶数:个位是0,2,4,6,8的数。

奇数:个位不是0,2,4,6,8的数。

4、倍数特征:2的倍数的特征:各位是0,2,4,6,8。

3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。

5的倍数的特征:各位是0,5。

5、质数与合数:质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

1不是质数,也不是合数。

1既不是质数也不是合数。

6、奇数与偶数的运算规律偶数+偶数=偶数奇数+奇数=奇数奇数+偶数=奇数偶数-偶数=偶数奇数-奇数=奇数奇数-偶数=奇数偶数个偶数相加是偶数,奇数个奇数相加是奇数。

偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数7、质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。

8、分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。

9、100以内的质数表:2、3、5、7、11、13、17、1923、29、31、37、41、43、47、5359、61、67、71、73、79、83、89、97三、长方体的认识、表面积、体积和容积1.长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。

五年级(下册)数学各单元知识点整理

五年级(下册)数学各单元知识点整理

五年级下册数学各单元知识点整理一、图形的变换(平移、旋转、轴对称)1、教会学生:平移:弄清向什么方向(上、下、左、右),平移了几格。

旋转:清楚围绕哪一点,向什么方向(顺时针或逆时针),旋转了几度。

轴对称:对折,完全重合。

(对称轴)2、轴对称的意义:把一个图形沿着某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形成轴对称。

3、图形旋转的性质:图形旋转,对应点、对应线段都旋转相同的度数。

4、图形旋转特征:旋转后,形状、大小都没有变化,只是位置变了。

5、对称轴用虚线表示,对应点到对称轴的距离相等。

二、因数和倍数(记住定义和方法,是判断和解答问题的关键)1、因数和倍数的意义:如果A×B=C(A、B、C都是不为0的整数),那么A、B就是C的因数,C就是A、B的倍数。

2、因数和倍数的关系:因数和倍数是两个不同的概念,但又是相互依存的,不能单独存在。

3、找一个数的因数的办法:(1)列乘法算式;(2)列除法算式;4、找一个数的倍数的办法:就是用这个数,依次与非零自然数相乘,所得的数就是这个数的倍数。

5、因数的特点:一个数的最小因数是1;最大的因数是它本身;因数的个数是有限的。

(13页)6、倍数的特点:一个数的最小倍数是它本身;一个数没有最大的倍数;倍数的个数是无限的。

(14页)5、 2的倍数的特征:个位是0、2、4、6、8的数都是2的倍数。

7、奇数、偶数的意义:在自然数中,是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数。

8、 5的倍数的特征:个位是0或者5的数都是5的倍数。

9、既是2和5的倍数,又是3的倍数的特征:个位必须是0,其它各数位之和是3的倍数。

最小的是30。

(19页)(22页)10、 3的倍数的特征:一个数各个数位上的和是3的倍数,这个数就是3的倍数。

11、质数和合数的定义:一个数,如果只有1和他本身两个因数,这样的数叫做质数(也叫素数);一个数,如果除了1和他本身,还有别的因数,这样的数叫做合数。

五年级下册数学知识点归纳总结

五年级下册数学知识点归纳总结

北师大五年级下册数学知识点总结第一单元:分数加减法一、分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数.2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位.二、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母.2、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1.②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1.③由整数部分和分数部分组成的分数叫做带分数.2、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变.②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变.三、分数的基本质分数的分子和分母同时乘或除以相同的数0除外,分数的大小不变,这叫做分数的基本性质.2、分数的大小比较:①同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大.③异分母分数,先化成同分母分数分数单位相同,再进行比较.依据分数的基本性质进行变化四、约分最简分数1、最简分数:分子和分母只有公因数1的分数叫做最简分数.2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分.并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止注意:分数加减法中,计算结果能约分的,一般要约分成最简分数.五、分数和小数的互化:1.小数化分数:1小数表示的就是十分之几,百分之几,千分之几…….的数,所以可以直接写成分母10,100,1000 ……的分数,再化简.2小数化分数,原来有几位小数,就在1后面写几个0作分母,把原来的小数去掉小数点作分子;化成分数后,能约分的要约成最简分数.2. 分数化小数:1分母是10,100,1000……的分数可以直接写成小数.直接去掉分母,看分母中1后面有几个0,就在分子中从最后一位起向左数出几位,点上小数点.2根据分数与除法的关系,分数的分子相当于除法中的被除数,分数的分母相当于除法中的除数.当分子除以分母除不尽时,要根据需要按”四舍五入法”保留几位小数.3.什么样的分数才能化成有限小数首先是一个最简分数,其次把分母分解质因数.如果分母中除了2和5以外,不含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数.六、分数的加法和减法1、分数加减法1分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位.2分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同.在计算过程,整数的运算律对分数同样适用.3同分母分数加、减法:同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数.4异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分.根据算式特点来选择方法.计算结果必须是最简分数.可以是假分数,不用特别化成带分数.1、小数化分数:将小数化成分母是10、100、1000…的分数,能约分的要约分.具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分.2、分数化小数:1用分子除以分母,除不尽的按要求保留几位小数.一般保留三位小数.2一个最简分数,如果分母中除了2和5以外,不含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数.3、分数和小数比较大小:一般把分数变成小数后比较更简便.常用分数小数互化:11/2=;21/4=;3/4=;31/5=;2/5=;3/5=;4/5=;41/8=;3/8=;5/8=;7/8=;51/20=;1/25=;1/50=;第二单元:长方体一一、认识长方体、正方体,了解各部分的名称.1、表面平平的部分称为面;两面相交便形成了一条棱;而三条棱又交于一点,这个点叫作顶点.2、左面的面叫左面,右面的面叫右面,上面的面叫上面,下面的面叫下面或叫底面,前面的面叫前面,后面的面叫后面.3、长方体有12条棱,这12条棱中有4条长、4条宽和4条高.正方体的12条棱的长度都相等.4、正方体是特殊的长方体.因为正方体可以看成是长、宽、高都相等的长方体.5、长方体的棱长总和=长+宽+高×4或长×4+宽×4+高×4长方体的宽=棱长总和÷4-长-高长方体的长=棱长总和÷4-宽-高长方体的高=棱长总和÷4-宽-长棱长总和÷4=长+宽+高;正方体的棱长总和=棱长×12 正方体的棱长=棱长总和÷12二、展开与折叠知识点:正方体展开图共11种1—4—1型6个2—3—1型3个2—2—2型1个楼梯形 3-3型1个注意:1田字型与凹字型的全错.2正方体展开至少和最多都只剪开7条棱.三、长方体、正方体的表面积1、长方体或正方体6个面和总面积叫做它的表面积.2、长方体和正方体表面积的计算方法:长方体的表面积6个面=长×宽×2+长×高×2+宽×高×2上下面前后面左右面S长=长×宽+长×高+宽×高×2无底或无盖长方体表面积= 长×宽+长×高+宽×高×2无底又无盖长方体表面积=长×高+宽×高×2正方体的表面积6个面=棱长×棱长×6 S正=棱长×棱长×6一个面的面积四、露在外面的面1、在观察中,通过不同的观察策略进行观察.如:一种是看每个纸箱露在外面的面,再加到一起;另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起.2、发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律.3、求露在外面的面的面积=棱长×棱长×露在外面的面的个数.一个面的面积第三单元分数乘法一、分数乘整数1、意义:分数乘整数意义同整数乘法意义相同,就是求几个相同加数的和的简便运算.2、计算方法:分母不变,分子和整数相乘的积作分子.能约分的要约成最简分数.3、计算时,应该先约分再计算.二、整数乘分数1、意义:求一个数的几分之几是多少.2、理解打折的含义.例如:九折,是指现价是原价的十分之九.补充知识点:1、打几折就是指现价是原价的百分之几十,例如八五折,是指现价是原价的百分之八十五.现价=原价×折扣原价=现价÷折扣折扣=现价÷原价2、买一赠一打几折:出一个货品的钱拿两个货品,即1÷2=,五折买三赠一打几折:出三个货品的钱拿四个货品,即3÷4=,七五折三、分数乘分数1、计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分.结果是最简分数.2、比较分数相乘的积与每一个乘数的大小:真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数.乘数乘以<1的数,积<乘数;乘数乘以=1的数,积=乘数;乘数乘以>1的数,积>乘数;4、求一个数的几分之几是多少,用乘法.即已知整体和部分量相对应的分率,求部分量,用乘法四、倒数1、如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数.倒数是对两个数来说的,并不是孤立存在的.2、当互为倒数的两个数分别作为长方形的长和宽时,长方形的面积是1.3、1的倒数仍是1.0没有倒数,是因为0不能作除数.4、求一个数的倒数的方法:把这个数的分子、分母调换位置;其中整数可以看成分母是1的分数.第四单元:长方体二一、体积与容积的概念1、体积:物体所占空间的大小叫作物体的体积.从外部测量2、容积:容器所能容纳入体的体积叫做物体的容积.从内部测量注意:①同一个容器,体积大于容积;当容器壁很薄时,容积近等于体积.如果容器壁忽略不计时,容积等于体积.②几个物体拼在一起时,它们的体积不发生改变它们占空间的大小没有发生变化二、体积单位1、认识体积、容积单位常用的体积单位:立方米m3、立方分米dm3、立方厘米cm3常用的容积单位:升、毫升、1升=1立方分米、1毫升=1立方厘米2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义:①手指头、苹果、火柴盒体积较小,可用厘米3作单位②西瓜、粉笔盒体积稍大,可以用分米3作单位③矿泉水瓶、墨水瓶可以用毫升作单位④热水瓶等较大盛液体容器、冰箱可用生升作单位⑤我们饮用的自来水用“立方米”作单位.三、长方体、正方体体积的计算方法1、长方体的体积=长×宽×高,长用a表示,宽用b表示,高用h表示,体积用V表示,体积可表示为V=abh2、正方体的体积=棱长×棱长×棱长,如果棱长用a表示,体积可表示为V=a×a×a3、如果底面积S表示,高用h表示,那么长方体正方体的体积=底面积×高V=Sh补充知识点:长方体的体积=横截面面积×长4、能利用长方体正方体的体积及其他两个条件求出问题.如:长方体的高=体积÷长÷宽长=体积÷高÷宽宽=体积÷高÷长注意:计算体积时,单位一定要统一;表面积与体积表示的意义不一样,单位不同,无法比较大小四、体积单位的换算1、体积、容积单位之间的进率:相邻体积、容积单位间进率为10001米3=1000分米3 1分米3=1000厘米31升=1分米3 1毫升=1厘米3 1升=1000毫升2、体积、容积单位之间的换算方法:体积、容积单位之间的换算,由高级单位化成低级单位乘进率,由低级单位化成高级单位除以进率.五、有趣的测量1、不规则物体体积的测量方法:一般都是把不规则物体的体积转化成可通过测量计算的水的体积注意液面是“升高了”还是“升高到”2、注意:在测量体积较小的不规则物体的体积时,要先测量出更多数量物体的体积,再算出一个物体的体积方案二:将石头放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积.2测量一粒黄豆的体积可以用测量石块体积的方法测量出100粒黄豆的体积,再除以100,计算出一粒黄豆的体积.3、不规则物体体积的计算方法:现在液体体积减去原来液体体积第五单元:分数除法一、分数除以整数1、意义:分数除以整数,就是求这个数的几分之几是多少.2、计算方法:分数除以整数0除外等于乘这个数的倒数.二、一个数除以分数1、意义:一个数除以分数的意义与整数除法的意义相同.2、计算方法:除以一个数0除外等于乘这个数的倒数.三、比较商与被除数的大小除数小于1,商大于被除数;除数等于1,商等于被除数;除数大于1,商小于被除数.四、分数除法的实际运用1、列方程“求一个数的几分之几是多少”的方法:1、解方程法:设未知数,这里的单位“1”未知,所以设单位“1”为x,再根据分数乘法的意义列出等量关系式解这个方程.2、算术方法:用部分量除以它所占整体的几分之几对应量÷对应分率=标准量2、判断单位“1”:①一般来说,某个数的几分之几,“某个数”就是单位“1”②数比谁多几分之几或少几分之几,“比”字后面的数量就是单位“1”③谁是谁的几分之几,“是”字后面的数量就是单位“1”第六单元确定位置一、确定物体的位置:1、方向:先确定正方向,再量角度.2、距离:根据单位长度,测量计算.3、根据方向和距离确定物体位置的方法:1以某一点为观测中心,标出方向,上北、下南、左西、右东;将观测点与物体所在的位置连线;用量角器测量角度,最后得出结论在哪个方向上.2用直尺测量两点之间的图上距离.例如:下面是一个平面图:①以学校为观测点,丁丁家的位置是西偏北45°,距离学校1800米.②以学校为观测点,青青家的位置是东偏北26°,距离学校1500米.二、位置的相对性:两个物体位置的相对性,是以这两个不同地点为观测点,描述对方所在地的方向时,方向正好相反,角度和距离不变.三、简单的路线图1、能描述简单的路线图.2描述路线:应先确定观测点,描述每一段的方向和距离,观测点发生变化时,物体所在的方向也会发生变化.合理安放方向标四、注意:1、在表述物体所在的方向时,一般说与物体所在方向离得近夹角较小的方位.2、确定观测点:从哪里出发,哪里就是观测点;“在”字后面为观测点.第七单元:用方程解决问题一、方程的含义:1、含有未知数的等式称为方程.2、所有的方程都是等式,但等式不一定都是等式.3、使方程左右两边相等的未知数的值,叫做方程的解.求方程的解的过程叫做解方程.方程的解是一个数;解方程是一个计算过程.二、解方程1、原理:天平平衡.等式左右两边同时加、减、乘、除相同的数0除外,等式依然成立.2、解方程的方法:方法一:利用天平平衡原理即等式的性质解方程;方法二:利用加、减、乘、除运算数量关系解方程.3、加、减、乘、除运算数量关系式:加法:和=加数+加数一个加数=和-两一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数×因数一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数除数=被除数÷商三、常用数量关系式:1、路程=速度×时间速度=路程÷时间时间=路程÷速度2、总价=单价×数量单价=总价÷数量数量=总价÷单价3、总产量=单产量×数量单产量=总产量÷数量数量=总产量÷单价4、被减数-减数=差减数=被减数-差被减数=差+减数大数-小数=相差数大数-相差数=小数小数+相差数=大数5、因数×因数=积一个因数=积÷另一个因数6、被除数÷除数=商除数=被除数÷商被除数=商×除数一倍量×倍数=几倍量几倍量÷倍数=一倍量几倍量÷一倍量=倍数7、工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率四、相遇问题:1、特点:必须是同时完成的.可根据不同的行程进行分析.2、计算:路程=速度和×相遇时间速度和=路程÷相遇时间相遇时间=路程÷速度和速度1=路程÷相遇时间-速度2五、列方程解应用题的一般步骤:1、弄清题意,找出未知数,并用x表示.解设2、找出应用题中数量之间的相等关系,列方程.找关系3、解方程.列4、检验,写出答案.验第八单元:数据的表示和分析一、条形统计图1、优点:很容易看出各种数量的多少.2、注意:画条形统计图时,直条的宽窄必须相同.取一个单位长度表示数量的多少要根据具体情况而确定;二、折线统计图1、用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来.2、优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况.3、注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定.三、复式条形统计图1、制作方法:与单式条形统计图的制作方法基本相同,只是要表示两组数据,需要用不同颜色或线条的直条来表示,并在制图日期下面注明图例.2、特点:复式条形统计图不但能表示出两组数据数量多少,还可以比较两组数据相对数量的多少.3、读图方法:可以运用横向、纵向、总和、对比等不同的方法观察,还能反映两组数据的变化趋势.四、复式折线统计图1、制作方法:复式折线统计图的制作与复式条形统计图的制作原理是一样的,都是用一个长度单位表示一定的数量,不同的是条形统计图是用直条的高度表示数量的大小,而折线统计图是用点的位置的高低来表示数量的大小.2、特点:复式折线统计图能表示两组数据的多少和数量的增减变化情况,还能反映两组数据的变化趋势.五、平均数的再认识1、意义:一组数据中所有数据之和除以数据的个数就得到这组数据的平均数.它是反映数据集中趋势的一项指标.2、求平均数的方法:总数量÷总份数=平均数3、注意:为了防止极端数据的影响,比赛时一般采取去掉一个最大值和一个最小值两个极端数字再算平均值.。

最新人教版五年级数学下册全册知识要点

最新人教版五年级数学下册全册知识要点

人教版五年级数学(下册)知识要点图形变换的基本方式是平移、对称和旋转。

1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。

(2)圆有无数条对称轴。

(3)对称点到对称轴的距离相等。

(4)轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。

(5)对称图形包括轴对称图形和中心对称图形。

平行四边形(除棱形)属于中心对称图形。

2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点,角度和方向。

(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。

等边三角形绕中点旋转120度与原来重合。

旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。

3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

五年级数学下册知识点归纳总结【6篇】

五年级数学下册知识点归纳总结【6篇】

五年级数学下册知识点归纳总结【6篇】五年级数学下册知识点归纳总结【6篇】学习需要具备跨文化、多样性和包容性的能力,需要尊重和理解不同的文化、信仰和价值观。

知识和技能需要具备可持续性和环境友好性,需要尊重生态环境和可持续发展原则。

下面就让小编给大家带来五年级数学下册知识点归纳总结,希望大家喜欢!五年级数学下册知识点归纳总结篇11、函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。

2、向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。

3、不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。

高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。

考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。

4、立体几何知识:20年已经变得简单,20年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。

5、解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。

五年级数学下册知识点归纳总结

五年级数学下册知识点归纳总结

五年级数学下册知识点归纳总结第一单元:图形的变换1、艺术家们利用几何学中平移、对称和旋转变转,设计了许多美丽的镶嵌图案。

2、如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

3、轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。

4、图形或物体绕着一个点或一条轴运动的现象叫做旋转。

5、旋转三要素:点、方向、角度(如绕点O顺时针旋转90度)6、旋转的性质:(1)其中对应点到旋转中心的距离相等;(2)旋转前后图形的大小和形状没变,位置变了;(3)两组对应点分别与旋转中心的连线所成的角叫旋转角;(4)旋转中心是唯一不动的点。

第二单元:因数和倍数1. 因数和倍数:在整数乘法里,如果a×b=c,那么a和b是c 的因数,c是a和b的倍数。

2. 为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。

但是0也是整数。

3. 一个数的最小因数是1,最大因数是它本身。

一个数的因数的个数是有限的。

4. 一个数的最小倍数是它本身,没有最大的倍数。

一个数的倍数的个数是无限的。

如果两个整数(a、b)都是另一个整数(c)的倍数,那么这两个整数的和(a+b)也是另一个整数(c)的倍数。

5. 个位上是0、2、4、6、8的数都是2的倍数。

个位上是0、5的数都是5的倍数。

个位上是0数既是2的倍数,也是5的倍数。

一个数各个数位上的数的和是3的倍数,这个数就是3的倍数。

6. 自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

7. 最小的奇数是1,最小的偶数是0。

最小的质数是2,最小的合数是4。

8. 四则运算中的奇偶规律:奇数+奇数=偶数奇数-奇数=偶数奇数×奇数=奇数偶数+偶数=偶数偶数-偶数=偶数偶数×偶数=偶数奇数+偶数=奇数奇数-偶数=奇数奇数×偶数=偶数偶数-奇数=奇数9. 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);如果除了1和它本身还有别的因数,这样的数叫做合数。

五年级下册数学知识点归纳(完整版)

五年级下册数学知识点归纳(完整版)

五年级下册数学知识点归纳第一单元:观察物体-站在任意位置,最多只能看到长方体的3个面。

-从不同位置观察物体,看到的形状可能不同。

-从一个或两个方向看到的图形无法确定立体图形的形状。

-从物体的右面观察,看到的不一定和从左面看到的完全相同。

第二单元:因数和倍数-被除数是除数的倍数,商是整数且没有余数。

-因数和倍数相互依存,不能单独存在。

-数的因数个数有限,最小因数是1,最大因数是数本身。

-数的倍数个数无限,最小倍数是数本身,没有最大倍数。

-特定数字的倍数特征,如2的倍数末位为0、2、4、6、8;3的倍数各位数之和是3的倍数等。

-自然数可分为偶数和奇数两类,偶数是2的倍数,奇数不是2的倍数。

第三单元:长方体和正方体-长方体的长、宽、高是相交于一个顶点的三条棱的长度。

-最多有6个面是长方形,最少4个面是长方形,最多有2个面是正方形。

-正方体是长、宽、高都相等的长方体,是特殊的长方体。

-正方体的6个面相同,12条棱相等。

-长方体和正方体都有6个面,8个顶点,12条棱,相对的面完全相同,相对的棱长度相等。

-长方体的棱长总和为4×(长+宽+高),正方体的棱长总和为棱长×12。

-表面积是长方体或正方体6个面的总面积。

-长方体的表面积为(长×宽+长×高+宽×高)×2,正方体的表面积为棱长×棱长×6。

-体积是物体所占空间的大小,长方体的体积为长×宽×高,正方体的体积为棱长×棱长×棱长。

第四单元:分数的意义和性质-分数表示整体中的一份或几份,分子表示份数,分母表示分数单位。

-分数的大小可以通过分子与分母的比较确定。

-分数可以是真分数(小于1)、假分数(大于或等于1)或带分数(整数和真分数组成)。

-分数的分子和分母同时乘或除以相同的数时,分数的大小不变。

-两个数的最大公因数与最小公倍数的积等于这两个数的乘积。

五年级下册数学知识点归纳总结

五年级下册数学知识点归纳总结

五年级下册数学知识点归纳总结第一单元图形的变换第二单元因数和倍数第三单元长方体和正方体1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体特点:(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:3、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷124、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-abS=2(ah+bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)贴墙纸正方体的表面积=棱长×棱长×6 S=a×a×6 用字母表示:S= 6a²生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。

注意1:用刀分开物体时,每分一次增加两个面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级下册数学知识点
总结新
HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
五年级下册知识点班级姓名学号
一图形的变换
轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

旋转的性质:图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变;两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;旋转中心是唯一不动的点。

画出对称图形
按旋转的角度画出旋转图形
二因数和倍数
1、整除:被除数、除数和商都是自然数,并且没有余数。

大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

找因数的方法:
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数的个数是无限的,最小的倍数是它本身。

2、自然数按能不能被2整除来分:奇数偶数
奇数:不能被2整除的数
偶数:能被2整除的数。

最小的奇数是1,最小的偶数是0.
个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。

3、自然数按因数的个数来分:质数、合数、1.
质数:有且只有两个因数,1和它本身
合数:至少有三个因数,1、它本身、别的因数
1:只有1个因数。

“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4。

20以内的质数:有8个(2、3、5、7、11、13、17、19)
100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、
43、47、53、59、61、67、71、73、79、83、89、97
4、分解质因数
用短除法分解质因数(一个合数写成几个质数相乘的形式)
5、公因数、最大公因数
几个数公有的因数叫这些数的公因数。

其中最大的那个就叫它们的最大公因数。

用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)
几个数的公因数只有1,就说这几个数互质。

两数互质的特殊情况:
⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;
⑷2和所有奇数互质;⑸质数与比它小的合数互质;
如果两数是倍数关系时,那么较小的数就是它们的最大公因数。

如果两数互质时,那么1就是它们的最大公因数。

6、公倍数、最小公倍数
几个数公有的倍数叫这些数的公倍数。

其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)
如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。

如果两数互质时,那么它们的积就是它们的最小公倍数。

三长方体和正方体
【概念】
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

在一个长方体中,相对面完全相同,相对的棱长度相等。

2、两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体有12条棱,它们的长度都相等,所有的面都完全相同。

4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

5、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。

长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4
长=棱长总和÷4-宽-高 a=L÷4-b-h
宽=棱长总和÷4-长-高 b=L÷4-a-h
高=棱长总和÷4-长-宽 h=L÷4-a-b
正方体的棱长总和=棱长×12 L=a×12
正方体的棱长=棱长总和÷12 a=L÷12
6、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2 S=2(ab+ah+bh)-ab S=2(ah+bh)+ab
无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)
正方体的表面积=棱长×棱长×6 S=a×a×6
6、物体所占空间的大小叫做物体的体积。

长方体的体积=长×宽×高 V=abh
长=体积÷宽÷高 a=V÷b÷h
宽=体积÷长÷高b=V÷a÷h
高=体积÷长÷宽 h= V÷a÷b
正方体的体积=棱长×棱长×棱长 V=a×a×a
7、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

常用的容积单位有升和毫升也可以写成L 和ml 。

1升=1立方分米 1毫升=1立方厘米 1升=1000毫升
8、a 3读作“a 的立方”表示3个a 相乘,(即a ·a ·a )
【体积单位换算】 高级单位
低级单位 低级单位
高级单位 进率: 1立方米=1000立方分米=1000000立方厘米
1立方分米=1000立方厘米=1升=1000毫升
1立方厘米=1毫升
1平方米=100平方分米=10000平方厘米
1平方千米=100公顷=1000000平方米
重量单位进率,时间单位进率,长度单位进率
四 分数的意义和性质
分数的产生
分数的意义 分数与意义 :把单位1平均分成几份,表示其中的一份或几份
分数与除法 :分子(被除数),分母(除数),分数值(商)
真分数 真分数小于1
真分数与假分数 假分数 假分数大于1或等于1.
带分数 (整数部分和真分数)
假分数化带分数、整数(分子除以分母,商作整数部分 余数
作分子)
分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍
数,
分数的基本性质 分数的大小不变。

通分、通分子:化成分母不同,大小不变的分数(通分)
最大公因数
约 分 求最大公因数
最简分数 分子分母互质的分数(最简真分数、最简假分数)
约分及其方法
最小公倍数
×进率 ÷进率
通 分 求最小公倍数
分数比大小 (通分、通分子、化成小数)
通分及其方法
小数化分数 小数化成分母是10、100、1000的分数再化简
分数和小数的互化
分数化小数 分子除以分母,除不尽的取近似值
最简分数的分母只含有质因数2和5,这个分数一定能化成有限小数。

分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

21= 41= 43= 51= 52= 53= 5
4= 81= 83= 85= 87= 201= 25
1=。

五 分数的加法和减法
同分母分数加、减法 (分母不变,分子相加减 )
分数数的加法和减法 异分母分数加、减法 (通分后再加减)
分数加减混合运算
带分数加减法: 带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。

六 统计与数学广角
众数 一组数据中出现次数最多的数叫众数。

众数能够反映一组数据的集中情况。

统计 在一组数据中,众数可能不止一个,也可能没有众数。

复式折线统计图
综合应用 打电话的最优方案
中位数的求法:1、按大小排列。

2、如果数据的个数是单数,那么最中间的那个数就是中位数;
如果数据的个数是双数,那么最中间的那两个数的平均数就是中位
数。

平均数的求法:总数÷总份数=平均数
七 数学广角
数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次
4~9个物体,保证能找出次品需要测的次数是2次
10~27个物体,保证能找出次品需要测的次数是3次 28~81个物体,保证能找出次品需要测的次数是4次 82~243个物体,保证能找出次品需要测的次数是5次
244~729个物体,保证能找出次品需要测的次数是6次。

相关文档
最新文档