典型系统的阶跃响应分析

合集下载

六种典型环节的阶跃响应曲线

六种典型环节的阶跃响应曲线

六种典型环节的阶跃响应曲线
阶跃响应曲线是描述系统响应速度和稳定性的一种重要方法。

典型的
六种环节系统的阶跃响应曲线可分为惯性环节、比例环节、微分环节、积分环节、一阶惯性环节和二阶惯性环节。

下面分别介绍这六种环节
的阶跃响应曲线特点。

1. 惯性环节
惯性环节是指系统响应变化相对较慢,响应速度较慢,且响应幅值有
惯性的环节系统。

该系统的阶跃响应曲线呈现出逐渐上升并逐步趋于
平稳的特点。

2. 比例环节
比例环节是指系统的输出与输入成正比例关系的环节。

该系统的阶跃
响应曲线呈现出发生瞬间跳跃并在短时间内达到稳态值的特点。

3. 微分环节
微分环节是指系统输出与输入的导数成正比的环节。

该系统的阶跃响
应曲线呈现出瞬间跳跃并持续震荡的特点。

4. 积分环节
积分环节是指系统输出与输入的积分成正比的环节。

该系统的阶跃响应曲线呈现出发生跳跃后,曲线会不断向上弯曲,直到接近水平线的特点。

5. 一阶惯性环节
一阶惯性环节是指系统的输出与输入有一定的滞后性和时间常数的环节。

该系统的阶跃响应曲线呈现出逐渐上升并在一定时间后达到稳态值的特点。

6. 二阶惯性环节
二阶惯性环节是指系统的输出与输入存在两个相邻极点的环节。

该系统的阶跃响应曲线呈现出震荡过程中的不断衰减的特点。

综上所述,不同类型的环节系统响应速度和稳定性都有所不同,掌握不同环节的阶跃响应曲线特点有助于理解系统的动态特性和改善系统响应。

典型环节的模拟研究及阶跃响应分析

典型环节的模拟研究及阶跃响应分析

典型环节的模拟研究及阶跃响应分析实验二典型环节的模拟研究及阶跃响应分析一实验目的1.掌握各典型环节(比例、积分、比例积分、比例微分、惯性环节、比例积分微分环节等)模拟电路的构成方法,培养实验技能。

2.测试并熟悉各典型环节(比例、积分、比例积分、比例微分、惯性环节、比例积分微分环节等)的阶跃响应曲线。

3.了解参数变化对典型环节(比例、积分、比例积分、比例微分、惯性环节、比例积分微分环节等)阶跃响应的影响。

二实验任务与要求1.观测各种典型环节的阶跃响应曲线。

2.观测参数变化对典型环节阶跃响应的影响。

三实验原理本实验是利用运算放大器的基本特性(开环增益高、输入阻抗大、输出阻抗小等),设置不同的反馈网络来模拟各种环节。

典型环节原理方框图及其模拟电路如下:1、比例环节(P)。

其方框图如图2-1所示:Ui(S)Uo(S)K图1-1A 比例环节方框图图 2-1RRR1010KR10KiUUo--op5op6++10K100K图1-1B 比例环节模拟电路 R0=200K R1=100K;(200K)图 2-2U(S)0其传递函数是: ,K (2-1) Ui(S)比例环节的模拟电路图如图2-2所示,其传递函数是:U(S)R01 (2-2) ,Ui(S)R0比较式(2-1)和(2-2)得 (2-3) K,RR10当输入为单位阶跃信号,即U(t),1(t)时,,则由式(1-1)得到: U(s),1/Sii1 U(S)K,,0S所以输出响应为: (2-4) U,K(t,0)02、积分环节。

其方框图如图2-3所示。

其传递函数为:Ui(S)Uo(S)1TS图 2-3 图1-2A 积分环节方框图RC10KUiRUo--op5op610KR010K100K图1-2B 积分环节模拟电路C=1μf(2μf);R0=200K图 2-4U(S)10 (2-5) ,Ui(S)TS积分环节的模拟电路图如图2-4所示。

积分环节的模拟电路的传递函数为:US()10 (2-6) ,UiSRCS()0比较式(2-5)和(2-6)得:(2-7) T,RC0当输入为单位阶跃信号,即时,,则由式(2-5)得到:U(t),1(t)U(S),1Sii111 ,,,U(S)o2TSSTS所以输出响应为:1 (2-8) Utt(),oT3、比例积分(PI)环节。

系统阶跃响应实验报告

系统阶跃响应实验报告

一、实验目的1. 了解系统阶跃响应的基本概念和特性。

2. 掌握系统阶跃响应的测试方法。

3. 分析系统阶跃响应的动态性能指标。

4. 通过实验验证理论知识,加深对系统动态特性的理解。

二、实验原理阶跃响应是指系统在单位阶跃输入信号作用下的输出响应。

对于线性时不变系统,其阶跃响应具有以下特点:1. 稳态值:系统达到稳定状态后的输出值。

2. 超调量:系统输出在稳定前达到的最大值与稳态值之差与稳态值之比。

3. 调节时间:系统输出达到并保持在稳态值的±2%范围内的持续时间。

4. 过渡过程时间:系统输出从0%达到并保持在100%稳态值范围内的持续时间。

三、实验仪器与设备1. 自动控制系统实验箱2. 计算机及实验软件3. 阶跃信号发生器4. 数据采集卡四、实验内容1. 构建实验系统,包括一阶系统和二阶系统。

2. 分别对一阶系统和二阶系统进行阶跃响应实验。

3. 测试并记录系统的稳态值、超调量、调节时间和过渡过程时间等动态性能指标。

4. 分析实验结果,验证理论公式。

五、实验步骤1. 构建一阶系统实验电路,包括惯性环节和比例环节。

2. 将阶跃信号发生器输出接入系统输入端,通过数据采集卡采集系统输出信号。

3. 测试一阶系统的阶跃响应,记录稳态值、超调量、调节时间和过渡过程时间等动态性能指标。

4. 构建二阶系统实验电路,包括惯性环节、比例环节和积分环节。

5. 同样地,测试二阶系统的阶跃响应,记录稳态值、超调量、调节时间和过渡过程时间等动态性能指标。

6. 对比一阶系统和二阶系统的阶跃响应特性,分析实验结果。

六、实验结果与分析1. 一阶系统阶跃响应实验结果:- 稳态值:1.0- 超调量:0%- 调节时间:0.5s- 过渡过程时间:0.5s2. 二阶系统阶跃响应实验结果:- 稳态值:1.0- 超调量:10%- 调节时间:1.5s- 过渡过程时间:1.5s从实验结果可以看出,二阶系统的阶跃响应超调量较大,调节时间和过渡过程时间较长,说明二阶系统的动态性能相对较差。

系统与控制实验一_典型环节的模拟研究及阶跃响应分析

系统与控制实验一_典型环节的模拟研究及阶跃响应分析

系统与控制实验一实验内容1.比例环节:2.积分环节:比例环节传递函数为一个常数。

即:U oU i=−R fR i=−K p。

K p = 0.5,1,2时输入幅值为阶跃信号。

阶跃响应曲线如下图所示:k=2 k=1k=0.5传递函数:C(s)R(s)=−KTS实验中取R1 = 100K改变电容C的大小,分别取他C = 1μf,(0.33μf)可以得到不同的积分时间常数T,输入阶跃信号,MATLAB仿真观测T = 0.1秒(0.033秒)时输出波形并作记录。

保持num = [k] 不变,改变den = [T,0],T 为积分环节的时间常数。

(T = RC,不妨取T = 0.1s,0.033s)3.惯性环节保持num = [k]不变,改变den = [T,1],T 为惯性环节的时间18常数。

(T = RC,不妨取T = 1s , 0.1s)这里时间长度t 可以适当调整,如t = 0:0.1:10; t=0:0.1:1。

(1)k=1,T=1,2时:显然,T=1 时曲线更陡峭,变化速度更快,更早达到饱和。

(2)T=1,k=1,2T=0.1 T=0.003传递函数:C(s)R(s)=−KTS+1式中:K = R2 /R1,T = R f C(1) 保持K = R f/R1 = 1不变,MATLAB仿真T =1秒,0.1秒(既R1 = 100K,C = 10μf,1μf )时的输出波形。

(2) 保持T = R f C = 1s不变,仿真K = 1,2时的输出波形。

T=1 T=2K 为传递函数的分子系数向量,两张图阶跃响应的纵轴坐标随 k 改变做出相应变化4. 二阶振荡环节(1.)取R 1 = R 3 = 100K ,C 1 = C 2 = 1μf 即令:T = 0.1秒,调节R 2分别置阻尼比 ξ= 0.1,k=1 k=2 由一个惯性环节和一个积分环节相串联,再经过反向器引入单位负反馈而构成,由图可得: 传递函数C(s)R(s)=1R 1R 3C 1C 2S 2+R 1R 3R2C 2S +1令R 3 = R 1,C 2 = C 1C(s)R(s)=1T 2S 2+TS K+1T = R 1 C 1,K = R 2/ R 1,与二阶系统的标准形式作比较,得: ωn =1T=1/(R 1 C 1) ξ=1/(2k)=R 1/ (2R 2)同时改变C1和C2的大小 (C1 = C2),可以改变无阻尼自然频率的大小,改变R2的大小可改变ξ的大小0.5,1时观察输入同样幅度的阶跃或方波信号时间响应,读出并记录各ξ值时的超调量M p 和过渡过程时间t s (取σ=0.05)并绘制出ξ= 0.1,0.5,1三种情况时的波形➢ξ= 0.1超调量M p:0.73过渡过程时间t s:5.39 second➢ξ= 0.5超调量M p:0.16过渡过程时间t s:1.25 second➢ξ= 1超调量几乎为0;过渡过程时间1.02 second显然:随着阻尼比ξ的增大,超调量减小,过渡过程时间减小。

典型环节及其阶跃响应实验报告

典型环节及其阶跃响应实验报告

典型环节及其阶跃响应实验报告实验报告:典型环节及其阶跃响应
摘要:
本实验旨在通过对典型环节的研究,探究环节对阶跃响应的影响。

通过实验数据的收集和分析,我们成功地建立了模型,并在此基础上进行了进一步探究。

实验操作:
1. 环节参数测量
本实验分别测量了三类环节的参数:惯性环节、比例环节和一阶惯性环节。

在测量期间,我们对示波器进行了正确连接,以确保实验数据的准确性。

2. 阶跃响应测试
我们在实验中使用了脉冲信号作为输入,并记录了系统的阶跃
响应。

3. 数据分析
我们使用MATLAB软件对实验数据进行了分析,并绘制了相
应的图表。

通过对图表的观察,我们可以清晰地看到各个环节对
系统响应的影响。

结果与讨论:
通过对典型环节的实验研究,我们得出了以下结论:
1. 惯性环节会显著影响系统的阶跃响应。

惯性越大,系统的响
应越迟缓,稳态误差也增加。

2. 比例环节是最简单的环节,但是其特性并不适合所有的系统。

在一些情况下,比例环节的加入会加剧系统的振荡。

3. 一阶惯性环节的响应相对较为平滑,且稳态误差也较小。

但是在某些情况下,一阶惯性环节的响应速度可能会比较慢。

结论:
本实验成功研究了典型环节对阶跃响应的影响。

我们成功地建立了模型,并通过对实验数据的分析,得出了较为准确的结论。

我们相信,这些研究成果将会对相关学科的研究和开发产生积极的推动作用。

《自动控制》一二阶典型环节阶跃响应实验分析报告

《自动控制》一二阶典型环节阶跃响应实验分析报告

《自动控制》一二阶典型环节阶跃响应实验分析报告一、实验目的本实验旨在通过实际的一二阶典型环节阶跃响应实验,掌握自动控制理论中的基本概念和方法,并能够分析系统的动态响应特性。

二、实验原理1.一阶惯性环节:一阶惯性环节是工程实际中常见的系统模型,其传递函数为G(s)=K/(Ts+1),其中K为传递函数的增益,T为时间常数。

2.二阶惯性环节:二阶惯性环节是另一类常见的系统模型,其传递函数为G(s)=K/((Ts+1)(αTs+1)),其中K为传递函数的增益,T为时间常数,α为阻尼系数。

3.阶跃响应:阶跃响应是指给定一个单位阶跃输入,观察系统的输出过程。

根据系统的阶数不同,其响应形式也不同。

实验仪器:电动力控制实验台,控制箱,计算机等。

三、实验步骤1.将实验台上的一阶惯性环节模型接入控制箱和计算机,并调整增益和时间常数的初始值。

2.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。

3.根据记录的数据,绘制一阶惯性环节的阶跃响应图像。

4.类似地,将实验台上的二阶惯性环节模型接入控制箱和计算机,并调整增益、时间常数和阻尼系数的初始值。

5.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。

6.根据记录的数据,绘制二阶惯性环节的阶跃响应图像。

四、实验结果与分析1.一阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,随着时间的增加,输出逐渐趋于稳定。

根据实验数据,可以计算出一阶惯性环节的增益K和时间常数T的估计值。

2.二阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,相较于一阶惯性环节,二阶惯性环节的响应特性更加复杂。

根据实验数据,可以计算出二阶惯性环节的增益K、时间常数T和阻尼系数α的估计值。

五、实验结论通过本实验,我们成功地进行了一二阶典型环节阶跃响应实验,并获得了实际的响应数据。

通过对实验数据的分析,我们得到了一阶惯性环节和二阶惯性环节的估计参数值。

典型环节及其阶跃响应实验报告

典型环节及其阶跃响应实验报告

典型环节及其阶跃响应实验报告哎呀,今天我们聊聊那个“典型环节及其阶跃响应”的实验报告,听起来有点高大上,其实呢,就是看看系统对刺激的反应,咱们就像是在观察一个小宝宝对糖果的反应,立刻就咧嘴笑了,那种欢快的感觉,简直让人心都化了。

你知道的,典型环节就像是一个经典的舞蹈动作,所有的机器、设备,都要围绕着它来转。

我们这次实验就像是给这个舞蹈加点新的花样,看看能不能让它更好看,更精彩。

说到阶跃响应,嘿嘿,想象一下,你在沙滩上,突然来了一波浪,直接把你淹没,那就是阶跃嘛!一开始,水面平静,突然间,哗的一声,浪花四溅。

这个实验就是模拟这种场景,我们用一个信号,给系统一个突如其来的“惊喜”,然后看它的反应。

像小狗听到门铃声那样,瞬间就警觉起来。

我们记录下它的表现,慢慢地分析,像是侦探在拼凑案件一样,越看越有意思。

实验开始的时候,大家都是一副严肃的样子,结果一搞起来,气氛就轻松了很多。

仪器啊,数据啊,真是让人眼花缭乱,搞得我都快晕了。

但没关系,我们的目标明确,简简单单就是想知道这个系统到底是个什么样的“角色”。

一开始大家都在忙忙碌碌,结果那一瞬间的反应,真的是让人瞠目结舌,像看魔术一样,哇,原来是这样啊,真是惊喜不断。

在记录数据的时候,大家开始窃窃私语,笑声不断,有人甚至模仿起了实验设备发出的声音,笑得我差点喷出来。

你看,这个实验不只是冰冷的数字,还有一堆有趣的故事,简直是给我们这个枯燥的学习过程加了不少料。

每当设备显示出一个新的数据点,大家都像中了彩票一样,欢呼雀跃,实验室里瞬间变成了欢乐的海洋。

随着数据的增加,分析起来也变得越来越有趣。

我们开始画图,连接那些数据点,像是在给一个故事编排情节,每一条线都承载着我们的期待。

你可能觉得这有点无聊,其实不然,这过程就像是在拼拼图,一块一块的拼出来,最终看到那个完整的图案,真的是成就感满满。

每当看到图上出现那条漂亮的曲线,大家都像喝了蜂蜜水一样甜。

最终,实验结束,大家都松了一口气,互相道了声辛苦。

六个典型环节的阶跃响应曲线详解

六个典型环节的阶跃响应曲线详解

六个典型环节的阶跃响应曲线详解1. 引言在信号处理领域中,阶跃响应曲线是描述系统对单位阶跃输入信号的输出响应的一种常用方法。

通过分析阶跃响应曲线,我们可以了解系统的动态特性、稳态误差和稳定性等重要信息。

本文将详细探讨六个典型环节的阶跃响应曲线,以帮助读者更好地理解信号处理中的阶跃响应。

2. 一阶惯性环节让我们来讨论一阶惯性环节的阶跃响应曲线。

一阶惯性环节由一个惯性成分和一个系数组成,其传递函数可以表示为G(s) = k / (τs + 1),其中k为增益,τ为时间常数。

在阶跃输入信号下,一阶惯性环节的输出响应会经历一个指数衰减的过程。

初始阶段,响应曲线呈现出较大的上升斜率,接近输入信号的增量。

随着时间的推移,响应逐渐趋于稳定的平衡状态。

通过观察阶跃响应曲线的时间常数τ,我们可以推断系统的动态特性以及稳态稳定性。

3. 一阶积分环节接下来,我们将研究一阶积分环节的阶跃响应曲线。

一阶积分环节的传递函数可以表示为G(s) = k / s,其中k为增益。

与一阶惯性环节不同,一阶积分环节的阶跃响应曲线呈现出线性增长的特点。

输出信号随时间的增加而持续积分,并逐渐达到稳态。

在实际应用中,一阶积分环节常用于控制系统中,以改善系统的稳定性和对常数误差的补偿。

4. 一阶滞后环节第三个环节是一阶滞后环节,其传递函数可以表示为G(s) = k / (τs + 1),其中k为增益,τ为时间常数。

一阶滞后环节的阶跃响应曲线表现出一种惰性的特点。

初始阶段,响应曲线的上升斜率较小,逐渐接近输入信号的增量。

随着时间的推移,响应曲线逐渐逼近稳定的平衡状态。

一阶滞后环节常用于减小系统的动态响应,并提高稳态精度。

5. 二阶过阻尼环节接下来,我们将研究二阶过阻尼环节的阶跃响应曲线。

二阶过阻尼环节的传递函数可以表示为G(s) = k / (τ^2s^2 + 2ζτs + 1),其中k为增益,τ为时间常数,ζ为阻尼比。

二阶过阻尼环节的阶跃响应曲线表现出较小的震荡和较快的收敛特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制理论实验报告
姓名 焦皓阳 学号 201423010319 班级 电气F1402 同组人 周宗耀 赵博 刘景瑜 张凯
实验一 典型系统的阶跃响应分析
一、实验目的
1. 熟悉一阶系统、二阶系统的阶跃响应特性及模拟电路;
2. 测量一阶系统、二阶系统的阶跃响应曲线,并了解参数变化对其动态特性的影响;
3. 掌握二阶系统动态性能的测试方法。

二、实验内容
1. 设计并搭建一阶系统、二阶系统的模拟电路;
2. 测量一阶系统的阶跃响应,并研究参数变化对其输出响应的影响;
3. 观测二阶系统的阻尼比分别在0<ξ<1,ξ>1两种情况下的单位阶跃响应曲线;测量二阶系统的阻尼比为2
1=ξ时系统的超调量%σ、调节时间t s (Δ= ±0.05);
4. 观测系统在ξ为定值n ω不同时的响应曲线。

三、实验结果【】 1、一阶系统 电路:
传递函数
2
o(s)
1()21
R U R Ui s R CS =
+ T=1结果:
T=0.1结果:
当T=1时:可以看出此时的稳态值为ΔY=4.4293,到达稳态的时间为ΔX=5.2664,调节时间为图二的ΔX=ts=2.757
当T=0.1时:由于此时的波形的起点没有在零点,所以存在着误差,此时的误差Δ=0-Y2=0.085,此时到达稳态时间为ΔX*13/21=0.5556,调节时间为X2在ΔY*0.95-Δ时的X2-X1=ts=0.375
结论:(参数变化对系统动态特性的影响分析)
参数的变化对系统动态性能的影响:T(周期)决定系统达到稳态时间的长短。

在其他变量保持不变的情况下,当T 越小,该系统到达稳定状态所需时间就越少,系统对信号的响应也就越快。

2、二阶系统 电路:
传递函数
2
22221()1
()Uo s C R S Ui s S RxC C R =
++ (1)10n ω=,2.0=ξ结果:
由于一阶和二阶电路所用的脉冲信号的幅值没发生变化,所以到达稳态时的稳态值也没
发生变化,即稳态值为4.4293,和一阶一样初始值没在零点,存在着误差ΔY-Y2=0.0173,调节时间为最后一次穿过±5%的误差带时的X 的值-系统运行初始时的X 的值,测量得:
超调量为: ϭ% =ΔY/ 稳态值= 53.08 % 调节时间为:ts=1.4375
(2)10n ω=,707.0=ξ结果:
稳态值为4.4293,超调量为ΔY/稳态值=4.61%,超调量为最后一次进入误差带时的X-
初始时的X ,由于系统的超调量为4.61%<5%,所以当系统第一次进入-5%误差带时即进入了稳态误差的范围内,由于系统存在误差,第一次进入误差带时的Y 的值为稳态值*95%-(稳态值-Y2)=4.1565,当Y 值为4.1565时即系统进入了稳态误差范围内,此时的X 值-系统初始时的值即为稳态误差:即为0.438
超调量为: ϭ%=4.61% 调节时间为:ts=0.438
(4)1=n ω,2.0=ξ结果:
由于测量超调量时的Y2没有在稳态值,所以我们用第二张图的Y2和第一张图的Y1来算ΔY 即ΔY=6.763-4.378=2.385超调量为ΔY/稳态值=2.385/4.293=55.56%,由于系统存在误差,误差Δ=4.4293-4.378=0.0513,当进入稳态值*(1±5%)-(0.0513)=(4.1565,4.5995)从第三张图片看最后一次进入稳态误差范围时的Y 值-初始时Y 值即为ts=12.75
超调量为: 55.56% 调节时间为:12.75
(5)100n ω=,0.2ξ
=结果:
实验二 高阶系统的瞬态响应和稳定性分析
一、实验目的
1. 掌握由模拟电路到传递函数的转换;
2. 理解劳斯稳定判据;
3. 通过实验,进一步理解线性系统的稳定性仅取决于系统本身的结构和参数,与外作用及初始 条件无关;
4. 研究系统的开环增益K 或其它参数的变化对闭环系统稳定性的影响。

二、实验内容(2学时)
1. 由给定的高阶模拟系统推导出系统的传递函数;
2. 用劳斯稳定判据求解给定系统的稳定条件;
3. 观测三阶系统的开环增益K 为不同数值时的阶跃响应曲线。

三、实验结果
实验原理电路图:
开环传递函数:
510/x
()(0.11)(0.511)
R G s s s s =
++
由劳斯稳定判据可
得 Rx=42.5K 时,系统稳定。

实验结果
1.稳定系统
当K=5时,即Rx=100K
2.系统临界稳定
K=12, 即Rx=42.5K实际值取(47K)
3系统不稳定
K=20,即Rx=25K
结论:(参数变化对系统动态特性的影响分析)
-------------精选文档-----------------
有劳斯稳定判据得到的开环增益K的取值在0<K<12情况下系统是稳定的,当在等于12时系统处于临界稳定情况下,此时的系统的输出相应波动的幅值很小,但是还到达不了稳定的条件,当大于12时这时的系统会由稳态值一直震荡下去,此时系统处于不稳定的情况。

可编辑。

相关文档
最新文档