材料力学-第6章梁的应力分析与强度计算 (B)

合集下载

材料力学第五版课件 主编 刘鸿文 第六章 动荷载·交变应力

材料力学第五版课件 主编 刘鸿文 第六章 动荷载·交变应力
l
解:1)求最大静应力和静变形
Q
( ) s st max
=
QL Wz
QL3 D st = 3EI
l
2)计算动荷系数
Kd =
v2 gD st
3)计算最大正应力
(s d )max
=
Kd (s st )max
=
Kd
QL Wz
内容小结
动响应=Kd × 静响应
1、构件有加速度时动应力计算
(1)直线运动构件的动应力
Kd = 1+
1+ 2h D st
= 1+ 1+ 2h ×EA
Ql
l
3)计算冲击应力
sd
=
kds st =
Q+ A
(Q )2 Q Q
h
【例6-4】圆截面直杆长度为6m,截面直径d=300mm,杆件材
料的杨氏模量E=10GPa,重物重5kN,从h=1m处自由落下。
1、求最大应力。 2、在木柱上端垫20mm厚的橡皮,杨氏模量E=8MPa。最大正 应力为多少?
1998年6月3日,德国艾舍德高速列车脱轨事故中的车轮轮缘疲劳断口
三.什么是疲劳?
只有承受交变应力作用的条件下,疲劳才发生;
三.什么是疲劳?
疲劳破坏起源于高应力或高应变的局部;
a. 静载下的破坏,取决于结构整体;
b. 疲劳破坏由应力或应变较高的局部开始,形成损伤 累积,导致破坏发生;
Q
h
解:
1、
D st =
Ql = EA
5创103 6? 103 10创103 1 创3.14 3002
=
4.25? 10- 2(mm)
4
2h

材料力学(金忠谋)第六版答案第06章

材料力学(金忠谋)第六版答案第06章

弯曲应力6-1 求图示各梁在m -m 截面上A 点的正应力和危险截面上最大正应力。

题 6-1图解:(a )m KN M m m ⋅=-5.2 m KN M ⋅=75.3max48844108.49064101064m d J x --⨯=⨯⨯==ππMPa A 37.20108.490104105.2823=⨯⨯⨯⨯=--σ (压)MPa 2.38108.4901051075.3823max =⨯⨯⨯⨯=--σ (b )m KN M m m ⋅=-60 m KN M ⋅=5.67max488331058321210181212m bh J x --⨯=⨯⨯== MPa A 73.611058321061060823=⨯⨯⨯⨯=--σ (压) MPa 2.104105832109105.67823max =⨯⨯⨯⨯=--σ (c )m KN M m m ⋅=-1 m KN M ⋅=1max48106.25m J x -⨯=36108.7m W x -⨯=cm y A 99.053.052.1=-=MPa A 67.38106.251099.0101823=⨯⨯⨯⨯=--σ (压) MPa 2.128106.2510183max =⨯⨯=-σ 6-2 图示为直径D =6 cm 的圆轴,其外伸段为空心,内径d =4cm ,求轴内最大正应力。

解:)1(32431απ-=D W x⎪⎭⎫ ⎝⎛-⨯⨯⨯=-463)64(110326π 361002.17m -⨯=3463321021.213210632m D W x --⨯=⨯⨯==ππMPa 88.521002.17109.0631=⨯⨯=-σ MPa 26.551021.2110172.1631=⨯⨯=-σ MPa 26.55max =σ6-3 T 字形截面铸铁梁的尺寸与所受载荷如图示。

试求梁内最大拉应力与最大压应力。

已知I z =10170cm 4,h 1=,h 2=。

材料力学第6章弯曲应力

材料力学第6章弯曲应力

图6.5
页 退出
材料力学
出版社 理工分社
例6.1如图6.6所示,矩形截面悬臂梁受集中力和集中力偶作用。试求Ⅰ—Ⅰ 截面和固定端Ⅱ—Ⅱ截面上A,B,C,D 4点处的正应力。
图6.6
页 退出
材料力学
出版社 理工分社
解矩形截面对中性轴的惯性矩为 对于Ⅰ—Ⅰ截面,弯矩MⅠ=20 kN·m,根据式(6.2),各点正应力分别为
页 退出
材料力学
出版社 理工分社
(1)变形几何关系 弯曲变形前和变形后的梁段分别表示于图6.4(a)和(b)。以梁横截面的对称 轴为y轴且向下为正(见图6.4(c))。以中性轴为z轴,但中性轴的位置尚待确 定。在中性轴尚未确定之前,x轴只能暂时认为是通过原点的横截面的法 线。根据弯曲平面假设,变形前相距为dx的两个横截面,变形后各自绕中性 轴相对旋转了一个角度dθ ,且仍然保持为平面。这就使得距中性层为y的纵 向纤维bb的长度变为
式中积分
是横截面对y轴和z轴的惯性积。由于y轴是横截面的对
称轴,必然有Iyz=0(见附录)。所以式(g)是自然满足的。 将式(b)代入式(e),得
式中积分∫Ay2dA=Iz是横截面对z轴(中性轴)的惯性矩。于是式(h)改写为 式中 ——梁轴线变形后的曲率。
页 退出
材料力学
出版社 理工分社
式(6.1)表明,EIz越大,则曲率 越小,故EIz称为梁的抗弯刚度。从式 (6.1)和式(b)中消去 ,得
而对于变截面梁,虽然是等截面梁但中性轴不是横截面对称轴的梁,在计算 最大弯曲正应力时不能只注意弯矩数值最大的截面,应综合考虑My/Iz的值 (参看例6.5和例6.8)。
页 退出
材料力学
出版社 理工分社
引用记号

材料力学-第6章梁的应力分析与强度计算(A)

材料力学-第6章梁的应力分析与强度计算(A)

第5章 梁的应力分析与强度计算(A)
为什么要研究截面的几何性质
第6章 梁的应力分析与强度计算(A)
为什么要研究截面的几何性质
◆ 实际构件的承载能力与变形形式有关,不同 变形形式下的承载能力,不仅与截面的大小有关, 而且与截面的几何形状有关。 ◆ 不同的分布内力系,组成不同的内力分量时, 将产生不同的几何量。这些几何量不仅与截面的 大小有关,而且与截面的几何形状有关。

A
ydA A
zC
Sy A
zdA
A
A
如果轴通过图形形心,则图形对这一 轴的静矩等于零。 如果图形对轴的静矩等于零,则这 一轴通过图形形心。
第6章 梁的应力分析与强度计算(A)
为什么要研究截面的几何性质
静矩、形心及其相互关系
S z A1 y C1 A2 y C 2 An y Cn Ai y Ci i 1 n S y A1 z C1 A2 z C 2 An z Cn Ai z Ci i 1
d
第6章 梁的应力分析与强度计算(A)
惯性矩、极惯性矩、惯性半径
例题2 y
dA
dy
已知:矩形截面b× h 求:Iy, Iz 解:取平行于x轴和y轴的微元 面积
dA bdy
A
dA
y
C z dz
h
z
I z y 2dA
h 2 h 2
3 bh y 2bdy 12
b
dA hdz
I y z dA
2 A b 2 b 2
hb z hdz 12
2
3
第6章 梁的应力分析与强度计算 (A)

材料力学第六章弯曲应力

材料力学第六章弯曲应力

但相应的最大弯矩值变为
Fl ql2
M max
4
8
375 kN m 13 kN m 388 kN m
而危险截面上的最大正应力变为
max
388103 N m 2342106 m3
165.7106
Pa
165.7
MPa
显然,梁的自重引起的最大正应力仅为
165.7 160 MPa 5.7 MPa
<2>. 相邻横向线mm和nn,在梁弯曲后仍为直线,只是
相对旋转了一个角度,且与弧线aa和bb保持正交。
根据表面变形情况,并设想梁的侧面上的横向线mm和 nn是梁的横截面与侧表面的交线,可作出如下推论(假设):
平面假设 梁在纯弯曲时,其原来的横截面仍保持为平面, 只是绕垂直于弯曲平面(纵向平面)的某一轴转动,转动后 的横截面与梁弯曲后的轴线保持正交。
力的值max为
max
M ym a x Iz
M
Iz ymax
M Wz
式中,Wz为截面的几何性质,称为弯曲截面系数(对Z轴)
(section modulus in bending),其单位为m3。
b
h d
o
z
o
z
y
y
中性轴 z 不是横截面的对称轴时(参见图c),其横截面 上最大拉应力值和最大压应力值为
A
r
(b)
M z
y d A E
A
r
y2 d A EI z M
A
r
(c)
由于式(a),(b)中的
E
r
不可能等于零,因而该两式要求:
1. 横截面对于中性轴 z 的静矩等于零,A y d A 0 ;显

车辆材料力学-第6章习题课3

车辆材料力学-第6章习题课3
• 6-13 图中所示为承受纵向载荷的人 骨受力简图。试:
1.假定骨骼为实心圆截面,确定 横截面B-B 上的最大拉、压应力 ;
2.假定骨骼中心部分(其直径为骨 骼外直径的一半)由海绵状骨质所组 成,忽略海绵状骨质承受应力的能 力,确定横截面B-B 上的最大拉 、压应力;
3.确定1、2 两种情形下,骨骼在
第五章 梁的强度问题
习题课
2020/4/21
2020/4/21
2020/4/21
第五章 梁的强度问题
习题课
2020/4/21
第五章 梁的强度问题
习题课
2020/4/21
第五章 梁的强度问题
习题课
2020/4/21
第五章 梁的强度问题
习题课 • 6-14 正方形截面杆一端固定,另一端自由,中
间部分开有切槽。杆自由端受有平行于杆轴线 的纵向力FP。若已知FP=1 kN,杆各部分尺 寸如图中所示。试求:杆内横截面上的最大正 应力,并指出其作用位置。
2020/4/21
第6章 梁的应力分析及强度计算
习题课 • 6-9 矩形截面悬臂梁左端为固定端,受力如图
所示,图中尺寸单位为mm。若已知FP1=60 kN,FP2=4 kN。求:固定端处横截面上A、 B、C、D 四点的正应力。
2020/4/21
第五章 梁的强度问题
习题课
2020/4/21
第五章 梁的强度问题
2020/4/21
第五章 梁的强度问题
习题课
2020/4/21
第五章 梁的强度问题
习题课 • 6-15 矩形截面悬臂: 1.已知FP、b、h、l 和β,求图中虚线所示截 面上点a 处的正应力; 2.求使点a 处正应力为零时的角度β值。

(参考资料)材料力学72-必做题

(参考资料)材料力学72-必做题

第二章杆件内力与内力图2-2(b)、(d)、(g)试作图示各杆的轴力图,并确定最大轴力| F N |max 。

2-3(b)试求图示桁架各指定杆件的轴力。

2-4(c)试作图示各杆的扭矩图,并确定最大扭矩| T |max 。

2-5图示一传动轴,转速n =200 r/min ,轮C为主动轮,输入功率P=60 kW ,轮A、B、D均为从动轮,输出功率为20 kW,15 kW,25 kW。

(1)试绘该轴的扭矩图。

(2)若将轮C与轮D对调,试分析对轴的受力是否有利。

2-8(a)、(c)、(e)、(g)、(h)试列出图示各梁的剪力方程和弯矩方程。

作剪力图和弯矩图,并确定|F s |max及|M |max值。

2-9(a)、(c)、(d)、(f)、(g)、(i)、(k)、(l)、(m)试用简易法作图示各梁的剪力图和弯矩图,并确定|F s |max及|M |max值,并用微分关系对图形进行校核。

2-10设梁的剪力图如图(a)(d)所示(见教材p39)。

试作弯矩图和荷载图。

已知梁上无集中力偶。

2-11(b)试用叠加法绘出图示梁的弯矩图。

2-6一钻探机的功率为10 kW,转速n =180 r/min。

钻杆钻入土层的深度l= 40m。

若土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度m,并作钻杆的扭矩图。

2-14图示起重机横梁AB承受的最大吊重F P=12kN,试绘出横梁AB的内力图。

第三章轴向拉压杆件的强度与变形计算3-1图示圆截面阶梯杆,承受轴向荷载F1=50kN与F2的作用,AB与BC段的直径分别为d1=20mm与d2=30mm,如欲使AB与BC段横截面上的正应力相同,试求荷载F2之值。

3-5变截面直杆如图所示。

已知A1=8cm2,A2=4cm2,E=200GPa 。

求杆的总伸长量。

3-7图示结构中,AB为水平放置的刚性杆,1、2、3杆材料相同,其弹性模量E=210GPa ,已知l =1m,A1=A2=100mm2,A3=150mm2,F P=20kN 。

材料力学习题第六章应力状态分析答案详解

材料力学习题第六章应力状态分析答案详解

材料⼒学习题第六章应⼒状态分析答案详解第6章应⼒状态分析⼀、选择题1、对于图⽰各点应⼒状态,属于单向应⼒状态的是(A )。

20(MPa )20d20(A )a 点;(B )b 点;(C )c 点;(D )d 点。

2、在平⾯应⼒状态下,对于任意两斜截⾯上的正应⼒αβσσ=成⽴的充分必要条件,有下列四种答案,正确答案是( B )。

(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。

3、已知单元体AB 、BC ⾯上只作⽤有切应⼒τ,现关于AC ⾯上应⼒有下列四种答案,正确答案是( C )。

(A )AC AC /2,0ττσ==;(B )AC AC /2,/2ττσ==;(C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。

4、矩形截⾯简⽀梁受⼒如图(a )所⽰,横截⾯上各点的应⼒状态如图(b )所⽰。

关于它们的正确性,现有四种答案,正确答案是( D )。

(b)(a)(A)点1、2的应⼒状态是正确的;(B)点2、3的应⼒状态是正确的;(C)点3、4的应⼒状态是正确的;(D)点1、5的应⼒状态是正确的。

5、对于图⽰三种应⼒状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。

τ(a) (b)(c)(A)三种应⼒状态均相同;(B)三种应⼒状态均不同;(C)(b)和(c)相同;(D)(a)和(c)相同;6、关于图⽰主应⼒单元体的最⼤切应⼒作⽤⾯有下列四种答案,正确答案是( B )。

(A) (B) (D)(C)解答:maxτ发⽣在1σ成45o的斜截⾯上7、⼴义胡克定律适⽤范围,有下列四种答案,正确答案是( C )。

(A)脆性材料;(B)塑性材料;(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适⽤于( C )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dx=-yd
式中的负号表示 y 坐标为正的线段产生 压缩变形; y 坐标为负的线段产生伸长 变形。
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
应用平面假定确定应变分布
dx=-yd
将线段的长度改变量除以原长dx,即 为线段的正应变,于是得到
dx d y = =-y =- dx dx
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
对称面—— 梁的横截面具有对称轴,所有相同的对 称轴组成的平面,称为梁的对称面(symmetric plane)。
梁的对称面
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
主轴平面 —— 梁的横截面没有对称轴,但是
加载平面与主轴平面一致
q
FP1
M
FP2
平面弯曲 —— 所有外力(包括力偶)都作用于梁的同一主
轴平面内时,梁的轴线弯曲后将弯曲成平面曲线,这一曲线位 于外力作用平面内。这种弯曲称为平面弯曲(plane bending)。
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
M l
FP M
怎样确定横截面上的内力分布规律呢?
第6章 梁的应力分析与强度计算(B)
应力是不可见的,但变形却是可见的,而且二 者之间通过材料的物性关系相联系。因此,为了确 定内力的分布规律,必须分析和研究杆件的变形, 必须研究材料受力与变形之间的关系,即必须涉及 变形协调与物性关系两个重要方面。二者与平衡原 理一起组成分析弹性体内力分布规律的基本方法。
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力 斜弯曲的应力计算 弯矩与轴力同时作用时横截面上的正应力 弯曲强度计算 结论与讨论
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
梁弯曲的若干定义与概念
纯弯曲时,梁横截面上正应力分析
弯曲正应力公式的应用与推广
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
梁弯曲的若干定义与概念
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力

梁的横截面
梁的轴线
梁横截面的对称轴
对称面 ——梁的横截面具有对称轴,所有相同的对 称轴组成的平面,称为梁的对称面(symmetric plane)。
平面弯曲时梁横截面上的正应力
应用平面假定确定应变分布

第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
应用平面假定确定应变分布
在横截面上建立Oyz 坐标系,其中 z 轴与中性轴重合 ( 中性轴的位置尚未 确定 ) , y 轴沿横截面高度方向并与加 载方向重合。

微段上到中性面的距离为 y处长度 的改变量,即
这就是正应变沿横截面高度方向分布的数 学表达式,其中d = dx 1
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
FP FP FP FP l
a FP
l FP
a
FP
a
l
a
FP
横向弯曲
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
梁的中性层与横截面的中性轴 —— 梁弯曲后,一些层 发生伸长变形,另一些则会发生缩短变形,在伸长层与缩 短层的交界处那一层,既不发生伸长变形,也不发生缩短 变形,称为梁的中性层或中性面(neutral surface)。中性 层与梁的横截面的交线,称为截面的中性轴 (neutral axis)。
平面弯曲时梁横截面上的正应力
应用平面假定确定应变分布
如果用相邻的两个横 截面从梁上截取长度为dx 的一微段,假定梁发生弯 曲变形后,微段的两个横 截面仍然保持平面,但是 绕各自的中性轴转过一角 度。这一假定称为平面假 定(plane assumption)。

第6章 梁的应力分析与强度计算(B)
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
纯弯曲时,梁横截面上正应力分析
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
分析梁横截面上的正应力,就是要确定梁横截面
上各点的正应力与弯矩、横截面的形状和尺寸之间的 关系。由于横截面上的应力是看不见的,而梁的变形 是可见的,应力又和变形有关,因此,可以根据梁的 变形情形推知梁横截面上的正应力分布。
都有通过横截面形心的形心主轴,所有相同的形心 主 轴 组 成 的 平 面 , 称 为 梁 的 主 轴 平 面 (plane including principal axes)。由于对称轴也是主轴, 所以对称面也是主轴平面;反之则不然。
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
纯弯曲时,梁横截面上正应力分析
平面假定
变 形 应变分布
物性关系
应力分布
静力方程
应力公式
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
第6章 梁的应力分析与强度计算(B)
Mechanics of materials
材料力学
材料力学
基础篇之六
第 6章 梁的应力分析与强度计算 (B)
第6章 梁的应力分析与强度计算(B)
应用平衡原理可以确定静定问题中梁弯曲时横截面上 的剪力和弯矩,但剪力和弯矩只是杆件横截面上连续分布 内力的简化结果。因此,仅仅确定了剪力和弯矩并不能确 定横截面上各点内力的大小。因为在一般情形下,分布内 力在各点的数值是不相等的,只有当内力在横截面上的分 布规律确定之后,才能由内力分量确定杆件横截面上内力 在各点的数值。
a
FP
l
FP
FP
FP
FP
a FP
l FP
a
FP
a
l
a
FP
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
M l FP
FP
M a
FP FP FP FP l
a FP
l FP
a
FP
a
l
a
FP
纯弯曲
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
M l FP
FP
M a
相关文档
最新文档