变压器初、次级线圈匝数比的计算
变压器初级和次级线圈匝数比的计算

变压器初级和次级线圈匝数比的计算正激式开关电源输出电压一般是脉动直流的平均值,而脉动直流的平均值与控制开关的占空比有关,因此,在计算正激式开关电源变压器初、次级线圈的匝数比之前,首先要确定控制开关的占空比D,把占空比D确定之后,根据(1-77)式就可以计算出正激式开关电源变压器的初、次级线圈的匝数比:Uo = Ua =nUi× Ton/T = Upa×D ——整个周期(1-77)由(1-77)可以求得:n=Uo/Ui*T ——变压器匝数比(1-97)上式中,n为正激式开关电源变压器次级线圈与初级线圈的匝数比,即:n = N2/N1 ;Uo为输出直流电压,Ui为变压器初级输入电压,D为控制开关的占空比。
在正常输出负载的情况下,正激式开关电源控制开关的占空比D较好取值为0.5左右。
这样,当负载比较轻的时候,占空比D会小于0.5,虽然储能滤波电感会出现断流,储能滤波电容充电时间缩短,放电时间增加,但由于输出电流比较小,储能滤波电容充、放电的电流也很小,所以在电容两端产生的电压纹波不会增大,反而减小;当输出负载比较重的时候,控制开关的占空比D会大于0.5,此时流过储能滤波电感的电流为连续电流,输出电流增大,储能滤波电容充电的时间增加,放电的时间缩短,因此,电容两端产生的电压纹波也不会增大很多。
因此,如果正激式开关电源电路中的储能滤波电感和储能滤波电容充电以及控制开关占空比,三者取得合适,输出电压纹波会很小。
正激式开关电源变压器次级反电动势能量吸收反馈线圈N3绕组与初线圈N1绕组的匝数比n一般为1 :1 ,即:N3/N1 = 1。
如果n大于1,反馈线圈N3绕组与整流二极管D3的限幅保护作用就会增强,但流过反馈线圈N3绕组和整流二极管D3的电流也会增大,从而会增加损耗;如果n小于1,反馈线圈N3绕组与整流二极管D3的限幅保护作用就会减弱,尖峰脉冲很容易把电源开关管击穿。
正激式开关电源变压器次级反电动势能量吸收反馈线圈N3绕组匝数的计算与限幅稳压二极管的计算方法是很相似的,不过线圈匝数与稳压二极管的击穿电压正好相反,击穿电压取得越高限幅保护的作用反而越弱。
高频变压器匝数计算

高频变压器参数计算一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S ⑴Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ⑵μ ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l ⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:E L =⊿Ф / ⊿t * N ⑷E L = ⊿i / ⊿t * L ⑸⊿Ф ----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S 可得下式:N = ⊿i * L / ( B * S ) ⑹且由⑸式直接变形可得:⊿i = E L * ⊿t / L ⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系:Q L = 1/2 * I2 * L ⑼Q L -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D)) ⑽N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特)N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压:200--- 340 V输出直流电压:23.5V输出电流: 2.5A * 2输出总功率:117.5W2.确定初次级匝数比:=100V正向电流(10A)的肖特基二极管两个,若初次级匝次级整流管选用VRRM数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = V IN(max) / (V RRM * k / 2) ⑾------ 最大输入电压 k ----- 安全系数N1 ----- 初级匝数 VIN(max)N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.63.计算功率场效应管的最高反峰电压:Vmax = V in(max) + (Vo+Vd)/ N2/ N1 ⑿----- 输入电压最大值 Vo ----- 输出电压Vin(max)Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V) 4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/V in(min)+N1/N2*(Vo+Vd) ⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。
变压器初、次级线圈匝数比的计算

变压器初、次级线圈匝数比的计算
解析大功率LED透镜LED透光板用PMMA工程师必备LED照明设计的架构选择手册专题详解LED用透镜相关知识点痛并快乐着的中国中国LED产业市场2011年度IC产业十大最新预测你问我答之PCB设计技巧疑难解析变压器初、次级线圈匝数比的计算我国彩电业“缺芯少屏”的时代即将结束
1-6-3-2-2.变压器初、次级线圈匝数比的计算
正激式开关电源输出电压一般是脉动直流的平均值,而脉动直流的平均值与控制开关的占空比有关,因此,在计算正激式开关电源变压器初、次级线圈的匝数比之前,首先要确定控制开关的占空比D,把占空比D确定之后,根据(1-77)式就可以计算出正激式开关电源变压器的初、次级线圈的匝数比:
Uo = Ua =nUi× Ton/T = Upa×D —— 整个周期(1-77)
由(1-77)可以求得:
n=Uo/Ui*T —— 变压器匝数比(1-97)
上式中,n为正激式开关电源变压器次级线圈与初级线圈的匝数比,即:n = N2/N1 ;Uo为输出直流电压,Ui为变压器初级输入电压,D为控制开关的占空比。
在正常输出负载的情况下,正激式开关电源控制开关的占空比D最好取值为0.5左右。
这样,当负载比较轻的时候,占空比D会小于0.5,虽然储能滤波电感会出现断流,储能滤波电容充电时间缩短,放电时间增加,但由于输出电流比较小,储能滤波电容充、放电的电流也很小,所以在电容两端产生的电压纹波不会增大,反而减小;当输出负载比较重的时候,控制开关的占。
小型变压器的简易计算

小型变压器的简易计算:1,求每伏匝数每伏匝数=55/铁心截面例如,铁心截面=3.5╳1.6=5.6平方厘米故,每伏匝数=55/5.6=9.8匝2,求线圈匝数初级线圈n1=220╳9.8=2156匝次级线圈n2=8╳9.8╳1.05=82.32 可取为82匝次级线圈匝数计算中的1.05是考虑有负荷时的压降3,求导线直径要求输出8伏的电流是多少安?这里我假定为2安。
变压器的输出容量=8╳2=16伏安变压器的输入容量=变压器的输出容量/0.8=20伏安初级线圈电流I1=20/220=0.09安导线直径d=0.8√I初级线圈导线直径d1=0.8√I1=0.8√0.09=0.24毫米次级线圈导线直径d2=0.8√I2=0.8√2=1.13毫米经桥式整流电容滤波后的电压是原变压器次级电压的1.4倍。
小型变压器的设计原则与技巧小型变压器是指2kva以下的电源变压器及音频变压器。
下面谈谈小型变压器设计原则与技巧。
1.变压器截面积的确定铁芯截面积a是根据变压器总功率p确定的。
设计时,若按负载基本恒定不变,铁芯截面积相应可取通常计算的理论值即a=1.25 。
如果负载变化较大,例如一些设备、某些音频、功放电源等,此时变压器的截面积应适当大于普通理论计算值,这样才能保证有足够的功率输出能力。
2.每伏匝数的确定变压器的匝数主要是根据铁芯截面积和硅钢片的质量而定的。
实验证明每伏匝数的取值应比书本给出的计数公式取值降低10%~15%。
例如一只35w电源变压器,通常计算(中夕片取8500高斯)每伏应绕7.2匝,而实际只需每伏6匝就可以了,这样绕制后的变压器空载电流在25ma左右。
通常适当减少匝数后,绕制出来的变压器不但可以降低内阻,而且避免因普通规格的硅钢片经常发生绕不下的麻烦,还节省了成本,从而提高了性价比。
3.漆包线的线径确定线径应根据负载电流确定,由于漆包线在不同环境下电流差距较大,因此确定线径的幅度也较大。
一般散热条件不太理想、环境温度比较高时,其漆包线的电流密度应取2a/mm2(线径)。
高频变压器匝数计算

高频变压器参数计算一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S ⑴Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ⑵μ ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l ⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:E L =⊿Ф / ⊿t * N ⑷E L = ⊿i / ⊿t * L ⑸⊿Ф ----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S 可得下式:N = ⊿i * L / ( B * S ) ⑹且由⑸式直接变形可得:⊿i = E L * ⊿t / L ⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系:Q L = 1/2 * I2 * L ⑼Q L -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D)) ⑽N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特)N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压:200--- 340 V输出直流电压:23.5V输出电流: 2.5A * 2输出总功率:117.5W2.确定初次级匝数比:=100V正向电流(10A)的肖特基二极管两个,若初次级匝次级整流管选用VRRM数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = V IN(max) / (V RRM * k / 2) ⑾------ 最大输入电压 k ----- 安全系数N1 ----- 初级匝数 VIN(max)N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.63.计算功率场效应管的最高反峰电压:Vmax = V in(max) + (Vo+Vd)/ N2/ N1 ⑿----- 输入电压最大值 Vo ----- 输出电压Vin(max)Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V) 4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/V in(min)+N1/N2*(Vo+Vd) ⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。
推挽式开关电源变压器参数的计算

0.4.推挽式开关电源变压器参数的计算推挽式开关电源使用的开关变压器有两个初级线圈,它们都属于励磁线圈,但流过两个线圈的电流所产生的磁力线方向正好相反,因此,推挽式开关电源变压器属于双激式开关电源变压器;另外,推挽式开关电源变压器的次级线圈会同时被两个初级线圈所产生的磁场感应,因此,变压器的次级线圈同时存在正、反激电压输出;推挽式开关电源有多种工作模式,如:交流输出、整流输出、直流稳压输出,等工作模式,各种工作模式对变压器的参数要求会有不同的要求。
1-8-1-4-1.推挽式开关电源变压器初级线圈匝数的计算由于推挽式变压器的铁心分别被流过变压器初级线圈N1绕组和N2两个绕组的电流轮流进行交替励磁,变压器铁心的磁感应强度B,可从负的最大值-Bm,变化到正的最大值+Bm,因此,推挽式变压器铁心磁感应强度的变化范围比单激式变压器铁心磁感应强度的变化范围大好几倍,并且不容易出现磁通饱和现象。
推挽式变压器的铁心一般都可以不用留气隙,因此,变压器铁心的导磁率比单激式变压器铁心的导磁率高出很多,这样,推挽式变压器各线圈绕组的匝数就可以大大的减少,使变压器的铁心体积以及变压器的总体积都可以相对减小。
推挽式开关电源变压器的计算方法与前面正激式或反激式开关电源变压器的计算方法大体相同,只是对变压器铁心磁感应强度的变化范围选择有区别。
对于具有双向磁极化的变压器铁心,其磁感应强度B的取值范围,可从负的最大值-Bm变化到正的最大值+Bm。
关于开关电源变压器的计算方法,请参考前面“1-6-3.正激式变压器开关电源电路参数计算”中的“2.1 变压器初级线圈匝数的计算”章节中的内容。
根据(1-95)式:(1-150)式和(1-151)式就是计算双激式开关电源变压器初级线圈N1绕组匝数的公式。
式中,N1为变压器初级线圈N1或N2绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯);Ui为加到变压器初级线圈N1绕组两端的电压,单位为伏;τ = T on,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒);F为工作频率,单位为赫芝,一般双激式开关电源变压器工作于正、反激输出的情况下,其伏秒容量必须相等,因此,可以直接用工作频率来计算变压器初级线圈N1绕组的匝数;F 和τ取值要预留20%左右的余量。
反激变压器 ccm模式次级电流计算公式

反激变压器ccm模式次级电流计算公式摘要:1.反激变压器简介M 模式下反激变压器的设计步骤3.计算变压器初级与次级匝数比M 模式反激变压器的电流计算公式5.实例分析正文:一、反激变压器简介反激变压器是一种用于变换交流电压的电子元件,其工作原理是利用磁场感应原理,通过变换线圈的匝数比例来实现输入电压与输出电压的变换。
反激变压器广泛应用于各种电子设备中,如电源适配器、充电器等。
二、CCM 模式下反激变压器的设计步骤1.确定电源规格:输入电压范围、输出电压与负载电流等。
2.工作频率和最大占空比:根据实际需求设定,以确保变压器的效率和性能。
3.计算变压器初级与次级匝数比:根据输入输出电压比例和变压器效率,合理选择初级与次级线圈的匝数。
三、计算变压器初级与次级匝数比在CCM 模式下,变压器的初级与次级匝数比可以通过以下公式计算:(np/nsn)= V1/V2 * (fo/f2) * (1/η)其中,n 为匝数比,V1 和V2 分别为输入和输出电压,fo 和f2 分别为工作频率和最大占空比,η为变压器效率。
四、CCM 模式反激变压器的电流计算公式在CCM 模式下,反激变压器的次级电流计算公式为:I2 = I1 * (V1/V2) * (f2/fo)其中,I1 和I2 分别为初级和次级电流,V1 和V2 分别为输入和输出电压,fo 和f2 分别为工作频率和最大占空比。
五、实例分析假设输入电压范围为120-265Vac,输出电压分别为125V、27.5V、31.6V 和48V,负载电流分别为0.6A。
工作频率为50kHz,最大占空比为0.45。
变压器效率为90%。
根据以上参数,可计算得到初级与次级匝数比为1:20。
反激变压器设计步骤及变压器匝数计算

1、确定电源规格、、输入电压范围Vin=85—265Vac;、输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A;、变压器的效率ŋ=0、902、工作频率与最大占空比确定、取:工作频率fosc=100KHz, 最大占空比Dmax=0、45、T=1/fosc=10us、Ton(max)=0、45*10=4、5usToff=10-4、5=5、5us、3、计算变压器初与次级匝数比n(Np/Ns=n)、最低输入电压Vin(min)=85*√2-20=100Vdc(取低频纹波为20V)、根据伏特-秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n、n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)]n=[100*0、45]/[(5+1、0)*0、55]=13、644、变压器初级峰值电流的计算、设+5V输出电流的过流点为120%;+5v与+12v整流二极管的正向压降均为1、0V、+5V输出功率Pout1=(V01+Vf)*I01*120%=6*10*1、2=72W+12V输出功率Pout2=(V02+Vf)*I02=13*1=13W变压器次级输出总功率Pout=Pout1+Pout2=85W1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/Ip1=2*Pout/[ŋ(1+k)*Vin(min)*Dmax]=2*85/[0、90*(1+0、4)*100*0、45]=3、00AIp2=0、4*Ip1=1、20A5、变压器初级电感量的计算、由式子Vdc=Lp*dip/dt,得:Lp= Vin(min)*Ton(max)/[Ip1-Ip2]=100*4、5/[3、00-1、20]=250uH6、变压器铁芯的选择、根据式子Aw*Ae=Pt*106/[2*ko*kc*fosc*Bm*j*ŋ],其中:Pt(变压器的标称输出功率)= Pout=85WKo(窗口的铜填充系数)=0、4Kc(磁芯填充系数)=1(对于铁氧体),变压器磁通密度Bm=1500 Gsj(电流密度): j=5A/mm2;Aw*Ae=85*106/[2*0、4*1*100*103*1500Gs*5*0、90]=0、157cm4考虑到绕线空间,选择窗口面积大的磁芯,查表:EER2834S铁氧体磁芯的有效截面积Ae=0、854cm2它的窗口面积Aw=148mm2=1、48cm2EER2834S的功率容量乘积为Ap =Ae*Aw=1、48*0、854=1、264cm4 >0、157cm4故选择EER2834S铁氧体磁芯、7、变压器初级匝数及气隙长度的计算、1)、由Np=Lp*(Ip1-Ip2)/[Ae*Bm],得:Np=250*(3、00-1、20)/[85、4*0、15] =35、12 取Np=36由Lp=uo*ur*Np2*Ae/lg,得:气隙长度lg=uo*ur*Ae*Np2/Lp=4*3、14*10-7*1*85、4mm2*362/(250、0*10-3mH)=0、556mm 取lg=0、6mm2)、当+5V限流输出,Ip为最大时(Ip=Ip1=3、00A),检查Bmax、Bmax=Lp*Ip/[Ae*Np]=250*10-6*3、00/[85、4 mm2*36]=0、2440T=2440Gs <3000Gs因此变压器磁芯选择通过、8、变压器次级匝数的计算、Ns1(5v)=Np/n=36/13、64=2、64 取Ns1=3Ns2(12v)=(12+1)* Ns1/(5+1)=6、50 取Ns2=7故初次级实际匝比:n=36/3=129、重新核算占空比Dmax与Dmin、1)、当输入电压为最低时: Vin(min)=100Vdc、由Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n,得:Dmax=(Vout+Vf)*n/[(Vout+Vf)*n+ Vin(min)]=6*12/[6*12+100]=0、4182)、当输入电压为最高时: Vin(max)=265*1、414=374、7Vdc、Dmin=(Vout+Vf)*n/[(Vout+Vf)*n+ Vin(max)]=6*12、00/[6*12、00+374、7]=0、1610、重新核算变压器初级电流的峰值Ip与有效值Ip(rms)、1)、在输入电压为最低Vin(min)与占空比为Dmax条件下,计算Ip值与K值、设Ip2=k*Ip1、实际输出功率Pout'=6*10+13*1=73W1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout'/ŋ(1)K=1-[Vin(min)* Ton(max)]/(Ip1*Lp) (2)由(1)(2)得:Ip1=1/2*{2*Pout'*T/[ŋ* Vin(min)*Ton(max)]+Vin(min)* Ton(max)/Lp}=0、5*{2*73*10/[0、90*100*4、18]+100*4、18/250、0}=2、78AK=1-100*4、18/[2、78*250]=0、40Ip2=k*Ip1=2、78*0、40=1、11A2)、初级电流有效值Ip(rms)=[Ton/(3T)*(Ip12+Ip22+Ip1*Ip2)]1/2=[0、418/3*(2、782+1、112+2、78*1、11)] 1/2=1、30A11、次级线圈的峰值电流与有效值电流计算:当开关管截止时, 变压器之安匝数(Ampere-Turns NI)不会改变,因为∆B并没有相对的改变、因此开关管截止时,初级峰值电流与匝数的乘积等于次级各绕组匝数与峰值电流乘积之与(Np*Ip=Ns1*Is1p+Ns2*Is2p)、由于多路输出的次级电流波形就是随各组负载电流的不同而不同, 因而次级电流的有效值也不同、然而次级负载电流小的回路电流波形,在连续时接近梯形波,在不连续时接近三角波,因此为了计算方便,可以先计算负载电流小的回路电流有效值、1)、首先假设+12V输出回路次级线圈的电流波形为连续,电流波形:1/2*[Is2p +Is2b]*toff/T=I02 (3)Ls1*[Is2p –Is2b]/toff=V02+Vf (4)Ls2/Lp=(Ns2/Np)2 (5)由(3)(4)(5)式得:Is2p=1/2*{2*I02/[1-D]+[V02+Vf]*[1-D]*T*Np2/[Ns22*Lp]}=0、5*{2*1/[1-0、418]+[12+1]*[1-0、418]*10*362/[72*250]}=5、72AIs2b =I01/[1-D]-1/2*[V01+Vf]*[1-D]*Np2/[Ns22*Lp]=1/0、582-0、5*13*0、582*10*362/[72*250]=-2、28A <0因此假设不成立、则+12V输出回路次级线圈的电流波形为不连续, 电流波形、令+12V整流管导通时间为t’、将Is2b=0代入(3)(4)(5)式得:1/2*Is2p*t’/T=I02(6)Ls1*Is2p/t’=V02+Vf(7)Ls2/Lp=(Ns2/Np)2 (8)由(6)(7)(8)式得:Is2p={(V02+Vf)*2*I02*T*Np2/[Lp*Ns22]}1/2={2*1*[12+1]*10*362/[72*250]} 1/2=5、24At’=2*I02*T/ Is2p=2*1*10/5、24=3、817us2)、+12V输出回路次级线圈的有效值电流:Is2(rms)= [t’/(3T)]1/2*Is2p=[3、817/3*10] 1/2*5、24=1、87A3)、+5v输出回路次级线圈的有效值电流计算:Is1rms= Is2(rms)*I01/I02=1、87*10/1=18、7A12、变压器初级线圈与次级线圈的线径计算、1)、导线横截面积:前面已提到,取电流密度j=5A/mm2变压器初级线圈:导线截面积= Ip(rms)/j=1、3A/5A/mm2=0、26mm2变压器次级线圈:(+5V)导线截面积= Is1(rms)/j=18、7A/5A/mm2=3、74 mm2(+12V)导线截面积= Is2(rms)/j=1、87A/5A/mm2=0、374mm22)、线径及根数的选取、考虑导线的趋肤效应,因此导线的线径建议不超过穿透厚度的2倍、穿透厚度=66、1*k/(f)1/2 k为材质常数,Cu在20℃时k=1、=66、1/(100*103)1/2=0、20因此导线的线径不要超过0、40mm、由于EER2834S骨架宽度为22mm,除去6、0mm的挡墙宽度,仅剩下16、0mm的线包宽度、因此所选线径必须满足每层线圈刚好绕满、3)、变压器初级线圈线径:线圈根数=0、26*4/[0、4*0、4*3、14]=0、26/0、1256=2取Φ0、40*2根并绕18圈,分两层串联绕线、4)、变压器次级线圈线径:+5V: 线圈根数=3、74/0、1256=30取Φ0、40*10根并绕3圈, 分三层并联绕线、+12V: 线圈根数=0、374/0、1256=3取Φ0、40*1根并绕7圈, 分三层并联绕线、5)、变压器绕线结构及工艺、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器初、次级线圈匝数比的计算
变压器初、次级线圈匝数比的计算
正激式开关电源输出电压一般是脉动直流的平均值,而脉动直流的平均值与控制开关的占空比有关,因此,在计算正激式开关电源变压器初、次级线圈的匝数比之前,首先要确定控制开关的占空比D,把占空比D 确定之后,根据(1-77)式就可以计算出正激式开关电源变压器的初、次级线圈的匝数比:
Uo = Ua =nUi 乘以Ton/T = Upa 乘以D 整个周期(1-77)
由(1-77)可以求得:
n=Uo/Ui*T 变压器匝数比(1-97)
上式中,n 为正激式开关电源变压器次级线圈与初级线圈的匝数比,即:n = N2/N1 ;Uo 为输出直流电压,Ui 为变压器初级输入电压,D 为控制开关的占空比。
在正常输出负载的情况下,正激式开关电源控制开关的占空比D 最好取值为0.5 左右。
这样,当负载比较轻的时候,占空比D 会小于0.5,虽然储能滤波电感会出现断流,储能滤波电容充电时间缩短,放电时间增加,但由于输出电流比较小,储能滤波电容充、放电的电流也很小,所以在电容两端产生的电压纹波不会增大,反而减小;当输出负载比较重的时候,控制开关的占空比D 会大于0.5,此时流过储能滤波电感的电流为连续电流,输出电流增大,储能滤波
电容充电的时间增加,放电的时间缩短,因此,电容两端产生的电压纹波也不会增大很多。
因此,如果正激式开关电源电路中的储能滤波电感和储能滤波电容充电以及控制开关占空比,三者取得合适,输出电压纹波会很小。
正激式开关电源变压器次级反电动势能量吸收反馈线圈N3 绕组与初线圈N1 绕组的匝数比n 一般。