第4章多自由度系统的振动题解
第4章 振动系统的运动微分方程

(d)
分析杆 AB ,列写 AB 的运动微分方程,如图(c)
m2 &x&C = − X A
(e)
m2 &y&C = −YA − m2 g
(f)
1 12
m2l 2ϕ&&
=
X
A
l 2
cosϕ
+ YA
l 2
sin ϕ
(g)
运动学方程
xC
=
xA
+
l 2
sin
ϕ
,
x&C
=
x& A
+
l ϕ& cosϕ 2
yC
=
−
l cosϕ , 2
y& C
=
l ϕ& sinϕ 2
&x&C
=
&x&A
−
l ϕ& 2 2
sin ϕ
+
l ϕ&& cosϕ 2
(h)
&y&C
=
l ϕ&& sin ϕ 2
+
l ϕ& 2 2
cos ϕ
(i)
上述 9 个方程包含 &x&A ,ε , &x&C , &y&C ,ϕ&&, X A ,YA , F, N 等 9 个未知量,由上述 9 个方程消去
解:系统具有两个自由度,选图示 AB 与铅垂线的夹角ϕ 及圆轮中心 A 的位移 xA 为广
义坐标。
分析圆轮 A ,受力图如图(b)所示。列写圆轮 A 的运动微分方程:
结构动力学课后习题答案

结构动力学课后习题答案结构动力学是研究结构在动态载荷作用下的响应和行为的学科。
它涉及到结构的振动、冲击响应、疲劳分析等方面。
课后习题是帮助学生巩固课堂知识、深化理解的重要手段。
以下内容是结构动力学课后习题的一些可能答案,供参考:习题1:单自由度系统自由振动分析解答:对于一个单自由度系统,其自由振动的频率可以通过以下公式计算:\[ f = \frac{1}{2\pi}\sqrt{\frac{k}{m}} \]其中,\( k \) 是系统的刚度,\( m \) 是系统的总质量。
系统自由振动的振幅随着时间的衰减可以通过阻尼比 \( \zeta \) 来描述,其衰减系数 \( \delta \) 可以通过以下公式计算:\[ \delta = \sqrt{1-\zeta^2} \]习题2:单自由度系统受迫振动分析解答:当单自由度系统受到周期性外力作用时,其受迫振动的振幅可以通过以下公式计算:\[ A = \frac{F_0}{\sqrt{(k-m\omega^2)^2+(m\zeta\omega)^2}} \] 其中,\( F_0 \) 是外力的幅值,\( \omega \) 是外力的角频率。
习题3:多自由度系统模态分析解答:对于多自由度系统,可以通过求解特征值问题来得到系统的模态。
特征值问题通常表示为:\[ [K]{\phi} = \lambda[M]{\phi} \]其中,\( [K] \) 是系统的刚度矩阵,\( [M] \) 是系统的质量矩阵,\( \lambda \) 是特征值,\( {\phi} \) 是对应的特征向量,即模态形状。
习题4:结构的冲击响应分析解答:对于结构的冲击响应分析,通常需要考虑冲击载荷的持续时间和冲击能量。
结构的冲击响应可以通过冲击响应谱(IRF)来分析,它描述了结构在不同频率下的响应。
冲击响应分析的结果可以用来评估结构的耐冲击性能。
习题5:疲劳分析解答:结构的疲劳分析需要考虑结构在重复载荷作用下的寿命。
《振动力学》习题集(含问题详解)

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
两个自由度体系的自由振动

根据达朗伯原理,列平衡方程
y1 r1 0 m1 y2 r2 0 m2
(a)
r2 与结构的位移 y1 、 y2 之间 图10-30c中,结构所受的力 r1 、 满足刚度方程。
r1 k11 y1 k12 y2 r2 k 21 y1 k 22 y2
Y1 和 Y不全为零的解答,则: 2 k12 k11 2 m1 0 D 2 k22 m2 k21
(4-3a)
式(4-3a)称为频率方程或特征方程,可求频率。
将式(4-3a)展开:
Hale Waihona Puke (k11 m1 )(k22 m2 ) k12k21 0
2 2
2 2
(4-3b)
(4-2)
Y11 k12 Y21 k11 12 m1
(4-5a)
这个比值确定的振动形式:第一圆频率1相对应 的振型,称为第一振型或基本振型。 同样,由
第二振 型中质 点1的振 幅
2
得:
Y12 k12 2 Y22 k11 2 m1
第二振型中质 点2的振幅
(4-5b)
求出的两个振型分别如图10-31b、c
在一般情况下,两个自由振动体系的自由振动可 看作是两个频率及其主振型的组合振动,即,
方程(41)的全 解
y1 (t ) AY 1 11 sin(1t 1 ) A2Y 12 sin(2t 2 ) y2 (t ) AY 1 21 sin(1t 1 ) A2Y22 sin(2t 2 )
1
2
2 (11m1 22m2 ) (1122m1m2 1221m1m2 ) 0
(11m1 22 m2 ) (11m1 22 m2 ) 2 4(11 22 12 21 )m1m2 1 2 2
第四章两自由度系统的振动介绍

第四章两自由度系统的振动介绍第四章是关于两自由度系统的振动的介绍。
在这一章中,我们将探讨两自由度系统的振动模型、动力学方程,并讨论其解析解和数值解。
此外,我们还将介绍两自由度系统的模态分析、共振现象以及一些相关的应用。
两自由度系统是一种具有两个自由度的振动系统,它由两个具有质量和弹性的物体通过柔性连接件或刚性连接件相互连接而成。
这些物体可以是质点、弹性体或刚体等,而连接件可以是弹性杆、弹簧、细梁等。
在两自由度系统中,每个物体都可以做平动或转动运动,因此系统具有两个自由度。
例如,双摆锤、双弹簧振子等都属于两自由度系统。
两自由度系统的动力学方程可以由拉格朗日方程或牛顿第二定律得到。
得到动力学方程后,我们可以通过解方程得到系统的解析解,以获得系统的振动特性。
在分析解时,通常要求系统的运动是简谐振动或近似简谐振动。
另一种求解两自由度系统的方法是数值解法。
数值解法可以通过数值积分来近似求解动力学方程,这种方法常用于求解复杂的系统,或者对系统参数进行优化等情况。
分析解和数值解法可以用来研究两自由度系统的固有振动频率、振型和动态响应等。
通过模态分析,我们可以得到系统的固有频率,并确定每个模态的振型。
对于实际工程问题,模态分析可以帮助我们了解系统的共振情况,并设计出合适的控制策略,以求减小共振现象的发生。
共振是两自由度系统中一个重要而常见的振动现象。
当外力的频率与系统的固有频率接近时,系统会发生共振现象。
共振的发生会导致系统振幅的急剧增加,并且可能对系统的稳定性产生不利影响。
因此,在设计过程中,需要避免共振现象的发生,并采取合适的措施来控制共振。
此外,两自由度系统的振动也有许多实际应用。
例如,双摆锤可以用来研究天体运动和天文学现象;双弹簧振子可以用来研究建筑物或桥梁的振动特性;双振子可以用来研究分子振动和分子动力学等。
总而言之,两自由度系统的振动是一种普遍且重要的物理现象。
通过对两自由度系统进行建模和分析,我们可以深入了解系统的振动特性,并在实际应用中进行优化和改进。
第四章多自由度系统

j 1
j 1
js
js
r 1, 2, , n
(4.2 15)
因而有
n (kij
j1
lr
mij
)
u jr usr
lr mis
kis
js
i 1, 2, , n; r 1, 2, , n
(4.2 16)
对于某个确定的r,方程(4.2-16)是一个以 ujr/usr(j=1,2,…,s-1,s+1,…,n)为变量的n个非 齐次方程,取其中的n-1个方程求解,就得 到ujr/usr(j=1,2,…,s-1,s+1,…,n)的值,是使第s 个比值为1得到的,这些值是确定的。从而 得到
对于线性系统,系统的动能可表示为
T
1 2
n i 1
n
mijqi q j
j 1
(4.1 6)
或
T 1 qT M q
2
(4.1 7)
式中mij是广义质量。质量矩阵[M]是实对 称矩阵,通常是正定矩阵,只有当系统中 存在着无惯性自由度时,才会出现半正定
的情况。q为广义速度向量。
n
- f (t) f (t)
kij u j
j1
n
mij ui
j1
i 1, 2,..., n
(4.2-4) (4.2-5)
方程表明,时间函数和空间函数是可以分离 的,方程左边与下标i无关,方程右边与时间 无关。因此,其比值一定是一个常数。
f(t)是时间的实函数,比值一定是一个实数,
把势能函数在系统平衡位置近旁展为Taylor级 数,有
n U 1 n n 2U
U
第4章-多自由度系统振动分析的数值计算方法(25页)

第4章 多自由度系统振动分析的数值计算方法用振型叠加法确定多自由度系统的振动响应时,必须先求得系统的固有频率和主振型。
当振动系统的自由度数较大时,这种由代数方程求解系统固有特性的计算工作量很大,必须利用计算机来完成。
在工程中,经常采用一些简单的近似方法计算系统的固有频率及主振型,或将自由度数较大的复杂结构振动问题简化为较少阶数的振动问题求解,以得到实际振动问题的近似分析结果。
本章将介绍工程上常用的几种近似解法,适当地选用、掌握这类实用方法,无论对设计研究或一般工程应用都将是十分有益的。
§4.1 瑞利能量法瑞利(Rayleigh )能量法又称瑞利法,是估算多自由系统振动基频的一种近似方法。
该方法的特点是:①需要假定一个比较合理的主振型;②基频的估算结果总是大于实际值。
由于要假设主振型,因此,该方法的精度取决于所假设振型的精度。
§4.1.1 第一瑞利商设一个n 自由度振动系统,其质量矩阵为[]M 、刚度矩阵为[]K 。
多自由度系统的动能和势能一般表达式为{}[]{}{}[]{}/2/2TTT x M x U x K x ⎫=⎪⎬=⎪⎭&& (4.1.1)当系统作某一阶主振动时,设其解为{}{}(){}{}()sin cos x A t x A t ωαωωα=+⎫⎪⎬=+⎪⎭&(4.1.2)将上式代入式(4.1.1),则系统在作主振动时其动能最大值max T 和势能最大值max U 分别为{}[]{}{}[]{}2max max /2/2TTT A M A U A K A ω⎫=⎪⎬=⎪⎭(4.1.3)根据机械能守恒定律,max max T U =,即可求得{}[]{}{}[]{}()2I TTA K A R A A M A ω== (4.1.4)其中,()I R A 称为第一瑞利商。
当假设的位移幅值列向量{}A 取为系统的各阶主振型{}i A 时,第一瑞利商就给出各阶固有频率i ω的平方值,即{}[]{}{}[]{}2(1,2,,)Ti i i Ti i A K A i n A M A ω==L(4.1.5)在应用上式时,我们并不知道系统的各阶主振型{}i A ,只能以假设的振型{}A 代入式(4.1.4),从而求出的相应固有频率i ω的估计值。
第四章 多自由度系统

(1)
2 为方程的解,代入( ),得 设 {q} = { A} sin(ωt + ϕ ) 为方程的解,代入(1),得([ K ] − ω [ M ]) { A} = {0}
[K ] − ω2 [M ] = 0
系统有n个大于零的正实根, 当 [ K ] > 0 时,系统有n个大于零的正实根, 对应固有频率
求系统的柔度矩阵[D]。 求系统的柔度矩阵 。
F1
F2
F3
EI
分析
m1
m2
m3
x
y
以三个集中质量m 离开其静平衡位置的垂直位移y 以三个集中质量m1、m2、m3离开其静平衡位置的垂直位移y1、y2、y3为 系统的广义坐标(见上图)。 系统的广义坐标(见上图)。
F1
EI
F2
F3
m1
m2
m3
x
y
由材料力学得知,当简支梁受力作用时, 由材料力学得知,当简支梁受力作用时,其挠度计算公式为 : Pbx 2 y= (l − x2 − b2 ) , ( 0 ≤ x ≤ a ) 6 EIl 根据柔度影响系数的定义, 根据柔度影响系数的定义,我们首先在坐 处作用一单位力,则在坐标y 标y1处作用一单位力,则在坐标y1、y2、y3处 产生的挠度即分别为d 产生的挠度即分别为d11、d21、d31。
3k 则刚度矩阵为 [ K ] = − k 0
−k 4k −3k
0 −3k 7k
线弹性系统的刚度矩阵对称
第一节 运动微分方程的建立
2.柔度影响系数和位移方程 柔度影响系数和位移方程
柔度影响系数d 单位外力所引起的系统位移, 柔度影响系数 ij——单位外力所引起的系统位移,即系统第j个坐标上
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题4-1 在题3-10中,设m 1=m 2=m ,l 1=l 2=l ,k 1=k 2=0,求系统的固有频率和主振型。
解:由题3-10的结果22121111)(l g m l g m m k k +++=,2221l gm k -=,2212l g m k -=,22222l gm k k += 代入m m m ==21,021==k k ,l l l ==21 可求出刚度矩阵K 和质量矩阵M⎥⎦⎤⎢⎣⎡=m m M 00;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=l mg lmg l mg l mg K 3 由频率方程02=-M p K ,得0322=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=mp l mgl mg lmgmp lmg B 0242222242=+-∴l g m p l g m p m l g p )22(1-=∴ ,lgp )22(2+= 为求系统主振型,先求出adjB 的第一列⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=l mg mp lmg adjB 2分别将频率值21p p 和代入,得系统的主振型矩阵为⎥⎦⎤⎢⎣⎡-=112)1(A⎥⎦⎤⎢⎣⎡+=112)2(A题4-1图4-2 题4-2图所示的均匀刚性杆质量为m 1,求系统的频率方程。
解:设杆的转角θ和物块位移x 为广义坐标。
利用刚度影响系数法求刚度矩阵k 。
设0,1==x θ,画出受力图,并施加物体力偶与力2111,k k ,由平衡条件得到,222111a k b k k +=, a k k 221-=设1,0==x θ,画出受力图,并施加物体力偶与力2212,k k ,由平衡条件得到, 12k a k 2-=, a k k 222= 得作用力方程为⎥⎦⎤⎢⎣⎡=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡--++⎭⎬⎫⎩⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡0000312222221221x a k a k a k a k b k x m a m θθ由频率方程02=-M K p ,得031222222212221=----+p m a k ak a k p a m a k b k4-3 题4-3图所示的系统中,两根长度为l 的均匀刚性杆的质量为m 1及m 2,求系统的刚度矩阵和柔度矩阵,并求出当m 1=m 2=m 和k 1=k 2=k 时系统的固有频率。
解:如图取21,θθ为广义坐标,分别画受力图。
由动量矩定理得到,l l k l l k I 43434343211111θθθ+-= 224343434322211122l l k l l k l l k I θθθθ--= 题4-3图 题4-2图整理得到,016916922112111=-+θθθl k l k I 0)4169(1692222112122=++-θθθl k l k l k I则刚度矩阵和柔度矩阵分别得,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--=221212121241169169169169k l k l k l k l k l K ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+===-2222222122144491641l k l k l k l k l k adj K K K ∆ 系统的质量矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=222121487003100l m l m I IM 由频率方程02=-M K p ,并代入已知条件得,048716131691693116922222222=----p ml kl kl kl p ml k l 整理得到03248131122224=+-mk m k p p ,求得m k p 6505.01=,m k p 6145.22=。
用刚度影响系数法求解刚度矩阵。
令0,121==θθ,分别由两杆的受力图,列平衡方程为21211116943l k l k k =⎪⎭⎫⎝⎛=;2121169l k k -=同理,令0,121==θθ得到212221222216941692l k l k l k l k k +=+⎪⎭⎫⎝⎛=212112169l k k k -==∴⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--=222121212141169169169169l k l k l k l k l k k4-4 题4-4图所示,滑轮半径为R ,绕中心的转动惯量为2mR 2,不计轴承处摩擦,并忽略绕滑轮的绳子的弹性及质量,求系统的固有频率及相应的主振型。
解:如图选x 1,x 2,x 3为广义坐标。
利用刚度影响系数法求刚度矩阵k 。
设0,1321===x x x ,画出受力图,并施加物体312111,,k k k ,由平衡条件得到,k k =11, 021=k ,kR k -=31设0,1312===x x x ,画出受力图,并施加物体322212,,k k k ,由平衡条件得到,12k = 0, k k =22,kR k =32设0,1213===x x x ,画出受力图,并施加物体332313,,k k k ,由平衡条件得到,kR k -=13,kR k =23,2332kR k =则刚度矩阵和质量矩阵分别得,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2200kR kR kR kR k kR k K ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22000000mR m m M 由频率方程02=-M K p ,得0220022222=-----p mR kR kRkRkR mp k kR mp k展开为0)2()(22222=--R k mp p mp k m ,解出频率为01=p ,mkp =2,mk p 23= 由特征矩阵M K B 2p -=的伴随矩阵的第一列,题4-4图⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------=)()22)(()22)((2222222222222)1(mp k kR p mR kR mp k R k R k p mR kR mp k adj B 并分别代入频率值,得系统的主振型矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=R R 101111111A4-5 三个单摆用两个弹簧联结,如题4-5图所示。
令m 1=m 2=m 3=m 及k 1=k 2=k 。
试用微小的角1θ、2θ和3θ为坐标,以作用力方程方法求系统的固有频率及主振型。
解:如图选321,,θθθ为广义坐标。
利用刚度影响系数法求刚度矩阵K 。
设0,1321===θθθ,画出受力图,并施加物体于312111,,k k k ,由平衡条件得到,mgl kh k +=211, 221kh k -=,031=k设0,1312===θθθ,画出受力图,并施加物体322212,,k k k ,由平衡条件得到,212kh k -=, mgl kh k +=2222,232kh k -=题4-5图设0,1213===θθθ,画出受力图,并施加物体332313,,k k k ,由平衡条件得到,013=k ,223kh k -=,mgl kh k +=233则刚度矩阵和质量矩阵分别得,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+--+=mgl kh kh kh mgl kh kh kh mgl kh 2222222020K ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=222000000ml ml ml M 特征矩阵:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+---+=2222222222222 0 2 0l mp mgl kh kh kh l mp mgl kh kh kh l mp mgl kh B由频率方程02=-M K p ,得=B 0,00202222222222222=-+---+---+p ml mgl kh kh kh p ml mgl kh kh kh p ml mgl kh展开为,()()()()[]()()()()()()[]()()()03 2 222222222222222222222222222222222222=-+--+=--+-+-+=-+-----+-+-+l mp mgl kh l mp mgl l mp mgl kh kh l mp mgl kh l mp mgl kh l mp mgl kh l mp mgl kh kh kh l mp mgl kh l mp mgl kh l mp mgl kh 0]4)(4))[((4222222222=+-+--h k p ml mgl kh p ml mgl p ml mgl解出频率为lgp =1,222ml kh l g p +=,2233ml kh l g p +=。
由特征矩阵M K B 2p -=的伴随矩阵的第一列,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--+-+=42222242222222)1()())(2(h k p ml mgl kh kh h k p ml mgl kh p ml mgl kh adj B并分别代入频率值,得系统的主振型矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111201111A4-6 题4-6图所示的简支梁的抗弯刚度为EJ ,本身质量不计,以微小的平动x 1、x 2和x 3为坐标,用位移方程方法求出系统的固有频率及主振型。
假设m 1=m 2=m 3=m 。
解:如图取广义坐标,用柔度影响系数法求柔度矩阵。
首先,仅在质量1m 处施加竖直单位力F=1,其余各质量块处不受力,则1m 产生的静挠度是11δ;2m 处产生的静挠度是21δ;3m 处产生的静挠度是31δ。
则由材料力学知识,得到EJ l 7689311=δ,EJ l 76811321=δ,EJl 7687331=δ同理可得到其它柔度矩阵的各列,最后得到柔度矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=911711161171197683EJ l ∆ 得到系统的位移方程为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧321332100000091171116117119768x x x m m mEJ l x x x 题4-6图由系统的特征矩阵I M L 21p -=∆,得频率方程0=L ,即 091171116117119=---λααααλααααλα其中231,768pEJ ml ==λα,展开频率方程为0)1432)(2(22=+--ααλλαλ解出αλαλαλ444.0,2,556.31321===。
由特征矩阵的伴随矩阵的第一列⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------=)16(7121)9(1177121)9)(16(222λαααλααααλαλαL adj ,分别代入特征值,得到主振型为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000.1000.1000.1414.1000.0414.1000.1000.1000.1A 。
4-7 如题4-7图所示,用三个弹簧连接的四个质量块可以沿水平方向平动,假设m 1=m 2=m 3=m 4=m 和k 1=k 2=k 3=k ,试用作用力方程计算系统的固有频率及主振型。