2018届高考三角函数复习讲义 精品推荐

合集下载

2018版高考数学(理)(人教)大一轮复习讲义第四章三角函数解三角形4.1

2018版高考数学(理)(人教)大一轮复习讲义第四章三角函数解三角形4.1
π A.6 π B.3 C.3 D. 3
答案 解析
如图,等边三角形ABC是半径为r的圆O的内接三角形,
2π 则线段AB所对的圆心角∠AOB= , 3 作OM⊥AB,垂足为M, π 在Rt△AOM中,AO=r,∠AOM= , 3 3 ∴AM= 2 r,AB= 3r,∴l= 3r, 3r l 由弧长公式得 α=r= r = 3.
题型三 三角函数的概念 命题点1 三角函数定义的应用
例3 (1)(2016· 广州模拟)若角 θ 的终边经过点 P(- 3,m)(m≠0)且 sin θ 6 2 -4 = 4 m,则 cos θ 的值为________. 答案 解析
由题意知 r= 3+m2,
2 m ∴sin θ= 2= 4 m, 3+m ∵m≠0,∴m=± 5,∴r= 3+m2=2 2,
数值;已知角α的三角函数值,也可以求出点P的坐标.
(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周
期性写出角的范围.
跟踪训练3 (1)已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α >0.则实数a的取值范围是
答案 解析
A.(-2,3]
B.(-2,3)
C.[-2,3)
答案 解析
6π θ 2π 2kπ ∵θ= 7 +2kπ(k∈Z),∴3= 7 + 3 (k∈Z),
2π 2kπ 3 18 依题意 0≤ 7 + 3 ≤2π,k∈Z,∴-7≤k≤ 7 ,
2π 20π 34π θ ∴k=0,1,2,即在[ 0,2π] 内与3角的终边相同的角为 7 , 21 , 21 共三个.
圆的圆心的初始位置在(0,1),此时圆上一点P的位 置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心 → 的坐标为________________. (2-sin 2,1-cos 2) 几何画板展示 位于C(2,1)时, OP π π kπ- ,kπ+ (k∈Z) 3 3 (2)(2017· 合肥调研)函数y=lg(3-4sin2x)的定义域为___________________.

2018届高考数学理科全国通用一轮总复习课件:第三章 三角函数、解三角形 3-5-1 精品

2018届高考数学理科全国通用一轮总复习课件:第三章 三角函数、解三角形 3-5-1 精品

4
[1 2sin2( )] 4
2sin2( ) 1 7 .
4
9
命题方向2:三角恒等变换的变“形”问题
【典例3】(2015·滨州模拟)在△ABC中,C=120°,
tanA+tanB= 2 3 ,则tanAtanB的值为 ( )
3
A. 1
B. 1
C. 1
D. 5
4
3
2
3
【解题导引】根据A+B=180°-C=60°,先求出tan(A+B)
7
,所以上式=
1 2
7
1 1 2
3.
7
答案:3
【加固训练】
(2016·枣庄模拟)设α为锐角, cos( ) 4 ,则sin(2 )
65
12
的值为
.
【解析】设α+ =β,因为α为锐角, cos( ) 4 ,
6
65
所以 cos 4 ,sin 3,cos 2 7 ,sin 2 24,
4
(1)求a,θ的值.
(2)若 f( ) 2, ( ,),求sin( ) 的值.
45
2
3
【解析】(1)因为y=(a+2cos2x)是偶函数,所以g(x)
=cos(2x+θ)为奇函数,而θ∈(0,π),故θ= ,
2
所以f(x)=-(a+2cos2x)sin2x,代入( ,0)得a=-1.所
3.(2016·芜湖模拟)已知 cos( ) sin 4 3,
6
5
则 sin( 7 ) 的值是 ( )
6
A. 2 3
B. 2 3
C. 4
D. 4
5
5

2018版高考数学文人教A版大一轮复习配套课件:第四章

2018版高考数学文人教A版大一轮复习配套课件:第四章

sin α 化,利用cos α=tan α 可以实现角 α 的弦切互化. (2)应用公式时注意方程思想的应用:对于 sin α+cos α,sin αcos α, sin α-cos α 这三个式子, 利用(sin α± cos α)2=1± 2sin αcos α, 可以知 一求二. (3)注意公式逆用及变形应用: 1=sin2α+cos2α,sin2α=1-cos2α, cos2α=1-sin2α.
解析 (1)对于 α∈R,sin(π+α)=-sin α 都成立. 1 (4)当 k 为奇数时,sin α=3, 1 当 k 为偶数时,sin α=-3. 答案 (1)× (2)√ (3)√ (4)×
2.(2017· 泰安模拟)sin 600° 的值为( 1 3 A.-2 B.- 2
解析
) 1 C.2 3 D. 2
3 (3)(2016· 全国Ⅲ卷)若 tan α= ,则 cos2α+2sin 2α=( 4 64 48 16 A.25 B.25 C.1 D.25
5 解析 (1)∵sin α=-13,且 α 为第四象限角, 12 sin α 5 2 ∴cos α= 1-sin α= ,∴tan α= =- ,故选 D. 13 cos α 12 5π 3π (2)∵ <α< ,∴cos α<0,sin α<0 且 cos α>sin α, 4 2 ∴cos α-sin α>0. 1 3 2 又(cos α-sin α) =1-2sin αcos α=1-2×8=4, 3 ∴cos α-sin α= . 2
答案 B
sin α+cos α 5.(必修 4P22B3 改编)已知 tan α=2,则 的值为________. sin α-cos α

2018版高考数学理人教大一轮复习讲义教师版文档第四章

2018版高考数学理人教大一轮复习讲义教师版文档第四章

1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝⎛⎭⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的初步性质如下表:4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .为正弦线;有向线段OM 为余弦线;有向线段【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦. 2.任意角的三角函数的定义(推广)设P (x ,y )是角α终边上异于顶点的任一点,其到原点O 的距离为r ,则sin α=y r ,cos α=xr ,tan α=yx (x ≠0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.( × ) (2)角α的三角函数值与其终边上点P 的位置无关.( √ ) (3)不相等的角终边一定不相同.( × ) (4)终边相同的角的同一三角函数值相等.( √ ) (5)若α∈(0,π2),则tan α>α>sin α.( √ )(6)若α为第一象限角,则sin α+cos α>1.( √ )1.角-870°的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限答案 C解析 由-870°=-1 080°+210°,知-870°角和210°角终边相同,在第三象限. 2.(教材改编)已知角α的终边与单位圆的交点为M (12,y ),则sin α等于( )A.32 B .±32C.22D .±22答案 B解析 由题意知|r |2=(12)2+y 2=1,所以y =±32.由三角函数定义知sin α=y =±32.3.(2016·潍坊二模)集合{α|k π+π4≤α≤k π+π2,k ∈Z }中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1 (n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C. 4.已知在半径为120 mm 的圆上,有一段弧长是144 mm ,则该弧所对的圆心角的弧度数为________rad. 答案 1.2解析 由题意知α=l r =144120=1.2 rad.5.函数y =2cos x -1的定义域为________. 答案 ⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ) 解析 ∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影所示).∴x ∈⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ).题型一 角及其表示例1 (1)若α=k ·180°+45°(k ∈Z ),则α在( ) A .第一或第三象限 B .第一或第二象限 C .第二或第四象限D .第三或第四象限(2)已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为________________.答案 (1)A (2)(2k π+π4,2k π+56π)(k ∈Z )解析 (1)当k =2n (n ∈Z )时,α=2n ·180°+45°=n ·360°+45°,α为第一象限角; 当k =2n +1 (n ∈Z )时,α=(2n +1)·180°+45°=n ·360°+225°,α为第三象限角. 所以α为第一或第三象限角.故选A.(2)在[0,2π)内,终边落在阴影部分角的集合为⎝⎛⎭⎫π4,56π, ∴所求角的集合为⎝⎛⎭⎫2k π+π4,2k π+56π(k ∈Z ). 思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角.(2)利用终边相同的角的集合S ={β|β=2k π+α,k ∈Z }判断一个角β所在的象限时,只需把这个角写成[0,2π)范围内的一个角α与2π的整数倍的和,然后判断角α的象限.(1)终边在直线y =3x 上的角的集合是__________________.(2)(2017·广州调研)若角θ的终边与6π7角的终边相同,则在[0,2π]内终边与θ3角的终边相同的角的个数为________.答案 (1){α|α=π3+k π,k ∈Z } (2)3解析 (1)在(0,π)内终边在直线y =3x 上的角为π3,∴终边在直线y =3x 上的角的集合为 {α|α=π3+k π,k ∈Z }.(2)∵θ=6π7+2k π(k ∈Z ),∴θ3=2π7+2k π3(k ∈Z ), 依题意0≤2π7+2k π3≤2π,k ∈Z ,∴-37≤k ≤187,∴k =0,1,2,即在[0,2π]内与θ3角的终边相同的角为2π7,20π21,34π21共三个.题型二 弧度制例2 (1)(2016·成都模拟)若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________. 答案2解析 设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2. (2)已知扇形的圆心角是α,半径是r ,弧长为l . ①若α=100°,r =2,求扇形的面积;②若扇形的周长为20,求扇形面积的最大值,并求此时扇形圆心角的弧度数. 解 ①S =12lr =12αr 2=12×59π×4=109π.②由题意知l +2r =20,即l =20-2r , S =12l ·r =12(20-2r )·r =-(r -5)2+25, 当r =5时,S 的最大值为25.当r =5时,l =20-2×5=10,α=lr=2(rad).即扇形面积的最大值为25,此时扇形圆心角的弧度数为2 rad. 思维升华 应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决. (3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.(1)将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是 ( )A.π3B.π6 C .-π3D .-π6(2)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为( ) A.π6 B.π3 C .3D. 3答案 (1)C (2)D解析 (1)将表的分针拨快应按顺时针方向旋转,为负角,故A 、B 不正确;又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.(2)如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r , ∴l =3r ,由弧长公式得α=l r =3rr = 3.题型三 三角函数的概念 命题点1 三角函数定义的应用例3 (1)(2016·广州模拟)若角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,则cos θ的值为________.(2)点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为 ( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-32,-12 C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,12 答案 (1)-64(2)A 解析 (1)由题意知r =3+m 2, ∴sin θ=m 3+m 2=24m , ∵m ≠0,∴m =±5,∴r =3+m 2=22, ∴cos θ=-322=-64.(2)由三角函数定义可知Q 点的坐标(x ,y )满足 x =cos2π3=-12,y =sin 2π3=32. ∴Q 点的坐标为(-12,32).命题点2 三角函数线例4 函数y =lg(2sin x -1)+1-2cos x 的定义域为__________________. 答案 [2k π+π3,2k π+5π6)(k ∈Z )解析 要使原函数有意义,必须有⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎨⎧sin x >12,cos x ≤12,如图,在单位圆中作出相应的三角函数线,由图可知,原函数的定义域为[2k π+π3,2k π+5π6) (k ∈Z ).思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.(1)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0.则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3](2)满足cos α≤-12的角α的集合为________.答案 (1)A (2){α|2k π+23π≤α≤2k π+43π,k ∈Z }解析 (1)∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3. (2)作直线x =-12交单位圆于C 、D 两点,连接OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为{α|2k π+23π≤α≤2k π+43π,k ∈Z }.6.数形结合思想在三角函数中的应用典例 (1)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于C (2,1)时,OP →的坐标为________.(2)(2017·合肥调研)函数y =lg(3-4sin 2x )的定义域为________.思想方法指导 在坐标系中研究角就是一种数形结合思想,利用三角函数线可直观得到有关三角函数的不等式的解集. 解析 (1)如图所示,过圆心C 作x 轴的垂线,垂足为A ,过P 作x 轴的垂线与过C 作y 轴的垂线交于点B .因为圆心移动的距离为2,所以劣弧PA =2,即圆心角∠PCA =2, 则∠PCB =2-π2,所以PB =sin(2-π2)=-cos 2,CB =cos(2-π2)=sin 2,所以x P =2-CB =2-sin 2,yP =1+PB =1-cos 2, 所以OP →=(2-sin 2,1-cos 2). (2)∵3-4sin 2x >0, ∴sin 2x <34,∴-32<sin x <32. 利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈⎝⎛⎭⎫k π-π3,k π+π3(k ∈Z ). 答案 (1)(2-sin 2,1-cos 2) (2)⎝⎛⎭⎫k π-π3,k π+π3(k ∈Z )1.下列与9π4的终边相同的角的表达式中正确的是 ( )A .2k π+45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C解析 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.若α是第三象限角,则下列各式中不成立的是( ) A .sin α+cos α<0 B .tan α-sin α<0 C .cos α-tan α<0 D .tan αsin α<0答案 B解析 α是第三象限角,sin α<0,cos α<0,tan α>0,则可排除A 、C 、D ,故选B. 3.(2016·广州一模)已知α是第二象限的角,其终边上的一点为P (x ,5),且cos α=24x ,则tan α等于( ) A.155B.153C .-155D .-153答案 D解析 ∵P (x ,5),∴y = 5. 又cos α=24x =xr,∴r =22, ∴x 2+(5)2=(22)2,解得x =±3. 由α是第二象限的角,得x =-3, ∴tan α=y x =5-3=-153.4.(2017·九江质检)若390°角的终边上有一点P (a,3),则a 的值是( ) A. 3 B .3 3 C .- 3 D .-3 3答案 B解析 tan 390°=3a,又tan 390°=tan(360°+30°)=tan 30°=33, ∴3a =33,∴a =3 3. 5.给出下列各函数值:①sin(-1 000°);②cos(-2 200°); ③tan(-10);④sin 7π10cos πtan17π9.其中符号为负的是( )A .①B .②C .③D .④答案 C 解析 sin(-1 000°)=sin 80°>0;cos(-2 200°)=cos(-40°)=cos 40°>0;tan(-10)=tan(3π-10)<0;sin7π10cos πtan 179π=-sin 7π10tan 17π9>0. 6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3答案 B解析 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.7.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.答案 (-1,3)解析 依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3).8.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________. 答案 π3 解析 设扇形半径为r ,弧长为l ,则⎩⎨⎧ l r =π6,12lr =π3,解得⎩⎪⎨⎪⎧l =π3,r =2. 9.设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是第________象限角. 答案 二解析 由θ是第三象限角,知θ2为第二或第四象限角,∵⎪⎪⎪⎪cos θ2=-cos θ2, ∴cos θ2≤0, 综上知θ2为第二象限角. 10.在(0,2π)内,使sin x >cos x 成立的x 的取值范围为________.答案 (π4,5π4) 解析 如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sin π4=cos π4=22,sin 5π4=cos 5π4=-22. 根据三角函数线的变化规律标出满足题中条件的角x ∈(π4,5π4). 11.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB . 解 设扇形的半径为r cm ,弧长为l cm ,则⎩⎪⎨⎪⎧ 12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2. ∴圆心角α=l r=2(rad). 如图,过O 作OH ⊥AB 于H ,则∠AOH =1 rad.∴AH =1·sin 1=sin 1(cm),∴AB =2sin 1(cm).∴圆心角的弧度数为2 rad ,弦长AB 为2sin 1 cm.12.已知角α终边上一点P ,P 到x 轴的距离与到y 轴的距离之比为3∶4,且sin α<0,求cos α+2tan α的值.解 设P (x ,y ),则根据题意,可得|y ||x |=34. 又∵sin α<0,∴α的终边只可能在第三、第四象限.①若点P 位于第三象限,可设P (-4k ,-3k )(k >0), 则r =x 2+y 2=5k ,从而cos α=x r =-45,tan α=y x =34, ∴cos α+2tan α=710. ②若点P 位于第四象限,可设P (4k ,-3k )(k >0),则r =x 2+y 2=5k ,从而cos α=x r =45,tan α=y x =-34, ∴cos α+2tan α=-710. 综上所述,若点P 位于第三象限,则cos α+2tan α=710; 若点P 位于第四象限,则cos α+2tan α=-710. *13.已知sin α<0,tan α>0.(1)求角α的集合;(2)求α2终边所在的象限; (3)试判断tan α2sin α2cos α2的符号. 解 (1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0,知α在第一、三象限,故角α在第三象限, 其集合为{α|2k π+π<α<2k π+3π2,k ∈Z }. (2)由2k π+π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z , 故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0, sin α2>0,cos α2<0, 所以tan α2sin α2cos α2取正号; 当α2在第四象限时,tan α2<0,sin α2<0,cosα2>0,所以tan α2sinα2cosα2也取正号.因此,tan α2sinα2cosα2取正号.。

2018版高考数学文人教大一轮复习讲义 教师版文档第四

2018版高考数学文人教大一轮复习讲义 教师版文档第四

1.y =A sin(ωx +φ)的有关概念2.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点 如下表所示:3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ) (A >0,ω>0)的图象的步骤如下:【知识拓展】1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z确定其横坐标. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)y =sin ⎝⎛⎭⎫x -π4的图象是由y =sin ⎝⎛⎭⎫x +π4的图象向右平移π2个单位得到的.( √ ) (2)将函数y =sin ωx 的图象向右平移φ(φ>0)个单位长度,得到函数y =sin(ωx -φ)的图象.( × )(3)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( × ) (4)函数y =A sin(ωx +φ)的最小正周期为T =2π.( × )(5)把y =sin x 的图象上各点纵坐标不变,横坐标缩短为原来的12,所得图象对应的函数解析式为y =sin 12x .( × )(6)若函数y =A cos(ωx +φ)的最小正周期为T ,则函数图象的两个相邻对称中心之间的距离为T2.( √ )1.(教材改编)y =2sin(12x -π3)的振幅,频率和初相分别为( )A .2,4π,π3B .2,14π,π3C .2,14π,-π3D .2,4π,-π3答案 C解析 由题意知A =2,f =1T =ω2π=14π,初相为-π3.2.(2015·山东)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位答案 B解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12,∴要得到y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位. 3.(2017·青岛质检)将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A .y =sin(2x -π10)B .y =sin(2x -π5)C .y =sin(12x -π10)D .y =sin(12x -π20)答案 C解析 y =sin x π10−−−−−→右移个单位y =sin(x -π10)―――――→横坐标伸长到原来的2倍y =sin(12x -π10). 4.若函数y =sin(ωx +φ) (ω>0)的部分图象如图所示,则ω等于( )A .5B .4C .3D .2答案 B解析 由函数图象知T =π4×2=π2,ω=2πT =2ππ2=4.5.若将函数f (x )=sin(2x +π4)的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________. 答案3π8解析 ∵函数f (x )=sin(2x +π4)的图象向右平移φ个单位得到g (x )=sin[2(x -φ)+π4]=sin(2x +π4-2φ),又∵g (x )是偶函数,∴π4-2φ=k π+π2(k ∈Z ),∴φ=-k π2-π8(k ∈Z ).当k =-1时,φ取得最小正值3π8.题型一 函数y =A sin(ωx +φ)的图象及变换例1 (2015·湖北)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1) 请将上表数据补充完整,并直接写出函数f (x )的解析式;(2) 将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称, 所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.引申探究在本例(2)中,将f (x )图象上所有点向左平移π6个单位长度,得到g (x )的图象,求g (x )的解析式,并写出g (x )图象的对称中心.解 由(1)知f (x )=5sin(2x -π6),因此g (x )=5sin[2(x +π6)-π6]=5sin(2x +π6).因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为(k π2-π12,0),k ∈Z .思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.把函数y =sin x 的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图象向左平移π4个单位,得到的函数图象的解析式是( )A .y =cos 2xB .y =-sin 2xC .y =sin(2x -π4)D .y =sin(2x +π4)答案 A解析 由y =sin x 图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,所得图象的解析式为y =sin 2x ,再向左平移π4个单位得y =sin2(x +π4),即y =cos 2x .题型二 由图象确定y =A sin(ωx +φ)的解析式例2 已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示.(1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.解 (1)观察图象可知A =2且点(0,1)在图象上, ∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6,又∵1112π是函数的一个零点且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2. ∴f (x )=2sin(2x +π6).(2)设2x +π6=B ,则函数y =2sin B 的对称轴方程为B =π2+k π,k ∈Z ,即2x +π6=π2+k π(k ∈Z ),解得x =k π2+π6(k ∈Z ),∴f (x )=2sin(2x +π6)的对称轴方程为x =k π2+π6(k ∈Z ).思维升华 求y =A sin(ωx +φ)+B (A >0,ω>0)解析式的步骤 (1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m2. (2)求ω,确定函数的周期T ,则ω=2πT .(3)求φ,常用方法如下:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(2016·太原模拟)已知函数f (x )=sin(ωx +φ) (ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }答案 B解析 根据所给图象,周期T =4×(7π12-π3)=π,故π=2πω,∴ω=2,因此f (x )=sin(2x +φ),另外图象经过点(7π12,0),代入有2×7π12+φ=k π(k ∈Z ),再由|φ|<π2,得φ=-π6,∴f (x +π6)=sin(2x+π6),当2x +π6=-π2+2k π (k ∈Z ),即x =-π3+k π(k ∈Z )时,y =f (x +π6)取得最小值. 题型三 三角函数图象性质的应用 命题点1 三角函数模型的应用例3 (2015·陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10答案 C解析 由题干图易得y min =k -3=2,则k =5. ∴y max =k +3=8.命题点2 函数零点(方程根)问题例4 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在⎝⎛⎭⎫π2,π上有两个不同的实数根,则m 的取值范围是________. 答案 (-2,-1)解析 方程2sin 2x -3sin 2x +m -1=0可转化为 m =1-2sin 2x +3sin 2x =cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π6,x ∈⎝⎛⎭⎫π2,π. 设2x +π6=t ,则t ∈⎝⎛⎭⎫76π,136π,∴题目条件可转化为m2=sin t ,t ∈⎝⎛⎭⎫76π,136π有两个不同的实数根. ∴y =m2和y =sin t ,t ∈⎝⎛⎭⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m 2的范围为(-1,-12),故m 的取值范围是(-2,-1). 引申探究例4中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是__________. 答案 [-2,1)解析 由例4知,m2的范围是⎣⎡⎭⎫-1,12, ∴-2≤m <1,∴m 的取值范围是[-2,1). 命题点3 图象与性质的综合应用例5 已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.解 (1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT =2.又因为f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,k ∈Z ,由-π2≤φ<π2,得k =0,所以φ=π2-2π3=-π6.综上,ω=2,φ=-π6.(2)由(1)知f (x )=3sin(2x -π6),当x ∈[0,π2]时,-π6≤2x -π6≤5π6,∴当2x -π6=π2,即x =π3时,f (x )最大值=3;当2x -π6=-π6,即x =0时,f (x )最小值=-32.思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.已知函数f (x )=cos(3x +π3),其中x ∈[π6,m ],若f (x )的值域是[-1,-32],则m的取值范围是__________. 答案 [2π9,5π18]解析 画出函数的图象.由x ∈[π6,m ],可知5π6≤3x +π3≤3m +π3,因为f (π6)=cos 5π6=-32且f (2π9)=cos π=-1,要使f (x )的值域是[-1,-32], 只要2π9≤m ≤5π18,即m ∈[2π9,5π18].4.三角函数图象与性质的综合问题典例 (12分)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.思维点拨 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期;(2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.规范解答解 (1)f (x )=23sin(x 2+π4)cos(x 2+π4)-sin(x +π)=3cos x +sin x [3分]=2sin(x +π3),[5分]于是T =2π1=2π.[6分](2)由已知得g (x )=f (x -π6)=2sin(x +π6),[8分]∵x ∈[0,π],∴x +π6∈[π6,7π6],∴sin(x +π6)∈[-12,1],[10分]∴g (x )=2sin(x +π6)∈[-1,2].[11分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[12分]解决三角函数图象与性质的综合问题的一般步骤: 第一步:(化简)将f (x )化为a sin x +b cos x 的形式; 第二步:(用辅助角公式)构造f (x )=a 2+b 2·(sin x ·a a 2+b 2+cos x ·ba 2+b 2); 第三步:(求性质)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质; 第四步:(反思)反思回顾,查看关键点、易错点和答题规范.1.为了得到函数y =cos(2x +π3)的图象,可将函数y =sin 2x 的图象( )A .向左平移5π6个单位长度B .向右平移5π6个单位长度C .向左平移5π12个单位长度D .向右平移5π12个单位长度答案 C解析 由题意,得y =cos(2x +π3)=sin(2x +π3+π2)=sin 2(x +5π12),则它是由y =sin 2x 向左平移5π12个单位得到的,故选C.2.若f (x )=sin(2x +φ)+b ,对任意实数x 都有f ⎝⎛⎭⎫x +π3=f (-x ),f ⎝⎛⎭⎫2π3=-1,则实数b 的值为( ) A .-2或0 B .0或1 C .±1 D .±2答案 A解析 由f ⎝⎛⎭⎫x +π3=f (-x )可得f (x )的图象关于直线x =π6对称,∴2×π6+φ=π2+k π,k ∈Z .当直线x =π6经过最高点时,φ=π6;当直线x =π6经过最低点时,φ=-56π.若f (x )=sin ⎝⎛⎭⎫2x +π6+b ,由f ⎝⎛⎭⎫23π=-1,得b =0;若f (x )=sin ⎝⎛⎭⎫2x -56π+b ,由f ⎝⎛⎭⎫23π=-1,得b =-2.所以b =-2或b =0. 3.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3 C .π D .2π答案 C解析 f (x )=3sin ωx +cos ωx =2sin(ωx +π6)(ω>0).由2sin(ωx +π6)=1,得sin(ωx +π6)=12,∴ωx +π6=2k π+π6或ωx +π6=2k π+56π(k ∈Z ).令k =0,得ωx 1+π6=π6,ωx 2+π6=56π,∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2.故f (x )的最小正周期T =2π2=π.4.函数f (x )=sin(ωx +φ) (x ∈R ,ω>0,|φ|<π2)的部分图象如图所示,如果x 1,x 2∈(-π6,π3)且f (x 1)=f (x 2),则f (x 1+x 2)等于( )A.12B.32C.22D .1答案 B解析 观察图象可知,A =1,T =π, ∴ω=2,f (x )=sin(2x +φ).将(-π6,0)代入上式得sin(-π3+φ)=0,由|φ|<π2,得φ=π3,则f (x )=sin(2x +π3).函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈(-π6,π3),且f (x 1)=f (x 2),∴x 1+x 22=π12,∴x 1+x 2=π6,∴f (x 1+x 2)=sin(2×π6+π3)=32.故选B.5.函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象向左平移π6个单位后所得函数图象的解析式是奇函数,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为( ) A .-32B .-12C.12 D.32答案 A解析 由函数f (x )的图象向左平移π6个单位得g (x )=sin ⎝⎛⎭⎫2x +φ+π3的图象, 因为是奇函数,所以φ+π3=k π,k ∈Z ,又因为|φ|<π2,所以φ=-π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3. 又x ∈⎣⎡⎦⎤0,π2,所以2x -π3∈⎣⎡⎦⎤-π3,2π3, 所以当x =0时,f (x )取得最小值为-32. 6.(2016·太原模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝⎛⎭⎫π12,0对称 D .关于点⎝⎛⎭⎫5π12,0对称答案 B解析 由题意知2πω=π,∴ω=2;又由f (x )的图象向右平移π3个单位后得到y =sin[2⎝⎛⎭⎫x -π3+φ]=sin ⎝⎛⎭⎫2x +φ-23π,此时关于原点对称,∴-2π3+φ=k π,k ∈Z ,∴φ=2π3+k π,k ∈Z ,又|φ|<π2,∴φ=-π3,∴f (x )=sin ⎝⎛⎭⎫2x -π3. 当x =π12时,2x -π3=-π6,∴A 、C 错误; 当x =5π12时,2x -π3=π2,∴B 正确,D 错误.7.(2016·全国丙卷)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到.答案2π3解析 y =sin x -3cos x =2sin ⎝⎛⎭⎫x -π3,y =sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,因此至少向右平移2π3个单位长度得到.8.(2017·长春质检)设偶函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为________.答案34解析 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f (16)=12cos π6=34.9.(2015·天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________. 答案π2解析 f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4, 因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2.10.(2016·邢台模拟)先把函数f (x )=sin(x -π6)的图象上各点的横坐标变为原来的12(纵坐标不变),再把新得到的图象向右平移π3个单位,得到y =g (x )的图象.当x ∈(π4,3π4)时,函数g (x )的值域为________. 答案 (-32,1]解析 依题意得 g (x )=sin[2(x -π3)-π6]=sin(2x -5π6),当x ∈(π4,3π4)时,2x -5π6∈(-π3,2π3),此时sin(2x -5π6)∈(-32,1],故g (x )的值域是(-32,1]. 11.已知函数y =A sin(ωx +φ) (A >0,ω>0)的图象过点P (π12,0),图象上与点P 最近的一个最高点是Q (π3,5).(1)求函数的解析式; (2)求函数f (x )的递增区间.解 (1)依题意得A =5,周期T =4(π3-π12)=π,∴ω=2ππ=2.故y =5sin(2x +φ),又图象过点P (π12,0),∴5sin(π6+φ)=0,由已知可得π6+φ=0,∴φ=-π6,∴y =5sin(2x -π6).(2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z ,故函数f (x )的递增区间为[k π-π6,k π+π3] (k ∈Z ).12.已知函数f (x )=3cos 2x +sin x ·cos x -32. (1)求函数f (x )的最小正周期T 和函数f (x )的单调递增区间; (2)若函数f (x )的对称中心为(x,0),求x ∈[0,2π)的所有x 的和. 解 (1)由题意得f (x )=sin(2x +π3),∴T =2π2=π,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z .可得函数f (x )的单调递增区间为[-5π12+k π,π12+k π],k ∈Z .(2)令2x +π3=k π,k ∈Z ,可得x =-π6+k π2,k ∈Z .∵x ∈[0,2π),∴k 可取1,2,3,4. ∴所有满足条件的x 的和为2π6+5π6+8π6+11π6=13π3. *13.(2016·潍坊模拟)函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)设g (x )=[f (x -π12)]2,求函数g (x )在x ∈[-π6,π3]上的最大值,并确定此时x 的值.解 (1)由题图知A =2,T 4=π3,则2πω=4×π3,∴ω=32. 又f (-π6)=2sin[32×(-π6)+φ]=2sin(-π4+φ)=0,∴sin(φ-π4)=0,∵0<φ<π2,∴-π4<φ-π4<π4,∴φ-π4=0,即φ=π4,∴f (x )的解析式为f (x )=2sin(32x +π4).(2)由(1)可得f (x -π12)=2sin[32(x -π12)+π4]=2sin(32x +π8),∴g (x )=[f (x -π12)]2=4×1-cos (3x +π4)2=2-2cos(3x +π4),∵x ∈[-π6,π3],∴-π4≤3x +π4≤5π4,∴当3x +π4=π,即x =π4时,g (x )max =4.。

2018届高考数学理科全国通用一轮总复习课件:第三章 三角函数、解三角形 3.5.2 精品

2018届高考数学理科全国通用一轮总复习课件:第三章 三角函数、解三角形 3.5.2 精品

S()
S
OAP
S
BAP
1 2
OA
OPsin
3 AP2 4
sin 3 (5 4cos) sin 3cos 5 3
sin
sin
【规律方法】 1.三角恒等变换的化简、求值问题的求解策略 (1)对于和、差式子,见到平方要降幂、消项、逆用公 式等. (2)对于分式,通分后分子分母化简时尽量出现约分的 式子,或逆用公式.
(3)对于二次根式,要用升幂公式,或配方,出现完全平 方,注意倍角公式的逆用. (4)观察角的关系,尽量异角化同角,合理拆分角. (5)观察三角函数的名称的关系,常用弦切互化,异名化 同名. (6)观察结构特征,明确变形方向,遇到分式要通分,整 式要因式分解.
4
4
cos2α·cos2β+cos2α+cos2β)- ·1cos2α·cos2β
2
=1 .2Fra bibliotek答案: 1
2
【一题多解】解答本题,还有以下解法:
方法一:(从“名”入手,异名化同名)
原式=sin2α·sin2β+(1-sin2α)·cos2β-
1 cos2α·cos2β=cos2β-sin2α(cos2β-sin2β)
3
3
ON=OD-NcoDs= 3 sin,
3
S=ON·PD(=cos 3 sin·s)inθ
3
sincos 3 sin 2 1 sin 2 3 (1 cos 2)
3
2
6
1 sin 2 3 cos 2 3
2
6
6
3 sin(2 ) 3,因为 (0, ),
3
66
3
所以2 ( , 5 ),sin(2 ) (1 ,1].

2018届高考数学理科全国通用一轮总复习课件:第三章 三角函数、解三角形 3-6 精品


易错提醒:(1)应用正弦定理求角时容易出现增解或丢 解的错误,要根据条件和三角形的限制条件合理取舍. (2)求角时忽略角的范围而导致错误,需要根据大边对 大角,大角对大边的规则,画图帮助判断.
【变式训练】(2015·安徽高考)在△ABC中,AB= 6 ,
A=75°,B=45°,则AC=
.
【解析】由正弦定理可知:
那么k的取值范围是 ( )
A.k=8 3 C.k≥12
B.0<k≤12 D.0<k≤12或k=8 3
【解题导引】(1)利用正弦定理,将边化为角,借助式子 的特点,利用和角公式与相关的诱导公式解决问题. (2)由正弦定理和三角函数的图象求解.
【规范解答】(1)选A.根据正弦定理,
设 a b 则ca=kks,inA,b=ksinB,
6
考向一 正弦定理、余弦定理的简单应用
【典例1】(1)(2016·济宁模拟)在△ABC中,内角A,B,C
的对边分别为a,b,c.若asinBcosC+csinBcosA= 1 b,且
2
a>b,则B= ( )
A.
B.
C. 2
6
3
3
D. 5 6
(2)如果满足∠ABC=60°,AC=12,BC=k的△ABC恰有一个,
a2 c2 b2
b2=_a_2_+_c_2-_2_a_c_c_o_s_B_,cosB=_____2a_c____;
a2 b2 c2
c2=_a_2_+_b_2-_2_a_b_c_o_s_C_,cosC=____2_a_b____.
3.勾股定理 在△ABC中,∠C=90°⇔_a_2_+_b_2=_c_2_.
【规律方法】 1.应用余弦定理判断三角形形状的方法 在△ABC中,c是最大的边, 若c2<a2+b2,则△ABC是锐角三角形; 若c2=a2+b2,则△ABC是直角三角形; 若c2>a2+b2,则△ABC是钝角三角形.

2018版高考数学理北师大版大一轮复习讲义课件 第四章


b 3.辅助角公式: asin x+bcos x= a +b sin(x+φ), 其中 sin φ= 2 2, a +b
2 2
a cos φ= 2 2 . a +b
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”) (1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC中,sin Asin B和cos Acos B大小不确定.( × ) (3)若α+β=45°,则tan α+tan β=1-tan αtan β.( √ )
4.tan 20° +tan 40° + 3tan 20° tan 40° =
3
.
答案
解析
tan 20° +tan 40° ∵tan 60° =tan(20° +40° )= , 1-tan 20° tan 40°
∴tan 20°+tan 40°=tan 60°(1-tan 20°tan 40°)
§4.5 三角恒等变形
内容索引
基础知识
自主学习
题型分类
课时作业
深度剖析
基础知识
自主学习
知识梳理
1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β,(Cα-β)
cos(α+β)=cos αcos β-sin αsin β,(Cα+β)
sin(α-β)= sin αcos β-cos αsin β ,(Sα-β)
sin(α+β)= sin αcos β+cos αsin β ,(Sα+β) tan α-tan β tan(α-β)= 1+tan αtan β ,(Tα-β)
tan α+tan β tan(α+β)= 1-tan αtan β .(Tα+β)

2018届高考数学文新课标二轮专题复习课件:2-7 三角函数 精品

第 讲 三角函数
热点调研
调研一 三角函数求值
命题方向: 1.恒等变换求值;2.二倍角公式求值; 3.变角求值;4.齐次式求值;5.求角.
[恒等变换求值] π
(1)(2016·河北省三市二次联考)若 2sin(θ+ 3 )=3sin(π-θ),
则 tanθ等于( )
A.-
3 3
23 C. 3
3 B. 2 D.2 3
(2)解给值求角问题的一般步骤: ①求角的某一个三角函数值; ②确定角的范围; ③根据角的范围写出所求的角.
(3)①三角函数式的化简与求值的原则:化为同名同角,常用 的技巧有:切割化弦、降幂、异角化同角、高次化低次.
②三角函数恒等变形的基本策略: a.常值代换.特别是用“1”的代换,如 1=cos2x+sin2x 等. b.项的分拆与角的配凑.如分拆项:sin2x+2cos2x=(sin2x +cos2x)+cos2x=1+cos2x;配凑角:α=(α+β)-β,β=α+2 β- α-2 β等.
【解析】 ∵α,β∈(0,π2 ),∴-π4 <α-β2<π2 ,-π2 <α2-
β<π4 ,由 cos(α-β2)= 23和 sin(α2-β)=-12,得 α-β2=±π6 ,α2-β
π =- 6 .

α-β2=-π6 ,α2-β=-π6 时,α+β=0,与
π α,β∈(0,2 )
矛盾;当 α-β2=π6 ,α2-β=-π6 时,α=β=π3 ,此时 cos(α+β)
[求角]
已知

β) =
13 14


π 0<β<α< 2 ,则
β=
________.
【解析】 由 cosα=71,0<α<π2 ,得 sinα= 1-cos2α=

最新-2018年高考数学一轮复习 第3章三角函数三角函数的性质课件 精品


2
2
∴函数y=-2sin(x- )的递增、递减区间分别由下面的
4
不等式确定
返回目录
2kπ+ ≤x- ≤2kπ+ 3(k∈Z),
2
4
2
即2kπ+ 3 ≤x≤2kπ+ 7(k∈Z),
4
4
2kπ- ≤x- ≤2kπ+ (k∈Z),
2
4
2
即2kπ- ≤x≤2kπ+ 3(k∈Z).
4
4
∴函数y=2sin( -x)的单调递减区间、单调递增区间分别
即A·sin(ωx+ φ)+A·sin(-ωx+ φ)=0, ∴2A·sin φ·cosωx=0.
∵cosωx不恒为0,
∴sin φ=0,解得 φ=kπ(k∈Z). 即φ =kπ(k∈Z)时,f(x)为奇函数.
返回目录
(2)∵f(x)是偶函数,
∴f(x)-f(-x)=0,
即Asin(ωx+ φ)-Asin(-ωx+ φ)=0.
2
2
或三角函数的图象,易得所求函数的定义域是{ x|2kπ-
≤x≤2kπ+ 5 ,k∈Z }.
4
4
当sinx=cos( -x)=
2
2 2
时,ymin=0;
当sinx=cos(
2
-x)=-1时,ymax=

1
2.
所以函数的值域为[0, 1 2].
返回目录
考点二 求三角函数的值域或最值
求下列函数s的in2值xs域in:x (1)y= 1- cosx ;
求值域时注意A的正负号;②能够化为y=asin2x+bsinx+c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届高考三角函数复习讲义一、角的概念与推广:任意角的概念;角限角、终边相同的角; 二、弧度制:把长度等于半径的弧所对的圆心角叫做1弧度;弧长公式:r l α=扇形面积:S=α22121r r l =⋅三角函数线:如右图,有向线段AT 与MP OM 分别叫做α 的的正切线、正弦线、余弦线。

三、同角三角函数关系:即:平方关系、商数关系、倒数关系。

四、诱导公式:()ααπf nf '±=⎪⎭⎫⎝⎛±2 记忆:单变双不变,符号看象限。

单双:即看πn 中的n 是2π的单倍还是双倍,单倍后面三角函数名变,双不变则三角函数名不变;符号看象限:即把α看成锐角,加上2πn终边落在第几象限则是第几象限角的符号。

五、有关三角函数单调区间的确定、最小正周期、奇偶性、对称性以及比较三角函数值的大小问题,一般先化简成单角三角函数式。

然后再求解。

六、三角函数的求值、化简、证明问题常用的方法技巧有:1、 常数代换法:如:αααααα2222tan sec cot tan cos sin 1-=⋅=+= 2、 配角方法:ββαα-+=)( ()βαβαα-++=)(2 22βαβαβ--+=三角函数知识框架图3、 降次与升次:22cos 1sin 2αα-= 22cos 1cos 22αα+= 以及这些公式的变式应用。

4、 ()θααα++=+sin cos sin 22b a b a (其中ab=θtan )的应用,注意θ的符号与象限。

5、 常见三角不等式:(1)、若x x x x tan sin .2,0<<⎪⎭⎫ ⎝⎛∈则π (2)、若2cos sin 1.2,0≤+<⎪⎭⎫⎝⎛∈x x x 则π (3)、1c o s si n ≥+x x6、 常用的三角形面积公式:(1)、c b a ch bh ah S 212121===(2)、B ac A bc C ab S sin 21sin 21sin 21=== (3)、S = 七、三角函图象和性质:正弦函数图象的变换:()()αωαωω+=−−−→−+=−−−→−=−−−→−=x A y x y x y x y sin sin sin sin 振幅变换平移变换横伸缩变换象关于轴对称在区间在区间在区间在区间在区间考点分析:考点一: 求三角函数的定义域、值域和最值、三角函数的性质(包括奇偶性、单调性、周期性)这类问题在选择题、填空题、解答题中出现较多,主要是考查三角的恒等变换及三角函数的基础知识。

样题1、已知函数f(x)=)x cos x (sin log 21-(1)求它的定义域和值域;求它的单调区间;判断它的奇偶性;判断它的周期性。

解题思路分析: (1)x 必须满足sinx-cosx>0,利用单位圆中的三角函数线及π+π<<π+π45k 2x 4k 2,k ∈Z ∴ 函数定义域为)45k 2,4k 2(π+ππ+π,k ∈Z ∵ )4x sin(2x cos x sin π-=- ∴ 当x ∈)45k 2,4k 2(π+ππ+π时,1)4x sin(0≤π-< ∴ 2cos x sin 0≤-<∴ 212log y 21-=≥∴ 函数值域为[+∞-,21] (3)∵ f(x)定义域在数轴上对应的点关于原点不对称 ∴ f(x)不具备奇偶性 (4)∵ f(x+2π)=f(x) ∴ 函数f(x)最小正周期为2π注;利用单位圆中的三角函数线可知,以Ⅰ、Ⅱ象限角平分线为标准,可区分sinx-cosx 的符号。

样题2、(18年广东)化简),,)(23sin(32)2316cos()2316cos()(Z k R x x x k x k x f ∈∈++--+++=πππ并求函数)(x f 的值域和最小正周期. 解:)23sin(32)232cos()232cos()(x x k x k x f +π+-π-π++π+π= )23sin(32)23cos(2x x +π++π=x 2cos 4=所以函数f (x )的值域为[]4,4-,最小正周期πωπ==2T 样题3、(1)已知cos(2α+β)+5cos β=0,求tan(α+β)·tan α的值; (2)已知5cos 3sin cos sin 2-=θ-θθ+θ,求θ+θ2sin 42cos 3的值。

解题思路分析:从变换角的差异着手。

∵ 2α+β=(α+β)+α,β=(α+β)-α ∴ 8cos[(α+β)+α]+5cos[(α+β)-α]=0 展开得: 18cos(α+β)cos α-3sin(α+β)sin α=0 同除以cos(α+β)cos α得:tan(α+β)tan α=313 (1)以三角函数结构特点出发 ∵3tan 1tan 2cos 3sin cos sin 2-θ+θ=θ-θθ+θ ∴ 53tan 1tan 2-=-θ+θ ∴ tan θ=2∴ 57tan 1tan 8tan 33cos sin cos sin 8)sin (cos 32sin 42cos 3222222=θ+θ+θ-=θ+θθθ+θ-θ=θ+θ 样题4 求函数y=sin 2x+2sinxcosx+3cos 2的最大值 解:∵2sinxcosx=sin2x,sin 2x+cos 2x=1,cos 2x=2cos2x1+ ∴y=sin 2x+2sinxcosx+3cos 2x=(sin 2x+cos 2x)+2sinxcosx+2cos 2x=1+sin2x+2·2cos2x1+ =sin2x+cos2x+2=2(sin2x ·cos 4π+cos2x ·sin 4π)+2=2 sin(2x+4π)+2 ∴当2x+4π=2π+2k π时,y max =2+2 即x=8π+K π(K ∈Z),y 的最大值为2+2注;齐次式是三角函数式中的基本式,其处理方法是化切或降幂。

考点二: 三角与其他知识的结合,三角函数仍将以选择题、填空题和解答题三种题型出现,难度会控制在中等偏易的程度;样题5、已知00<α<β<900,且sin α,sin β是方程-+-020240cos x )40cos 2(x 21=0的两个实数根,求sin(β-5α)的值。

解题思路分析:由韦达定理得sin α+sin β=2cos400,sin αsin β=cos 2400-21 ∴ sin β-sin α=)40cos 1(2sin sin 4)sin (sin )sin (sin 0222-=βα-β+α=α-β 040sin 2=又sin α+sin β=2cos400∴ ⎪⎪⎩⎪⎪⎨⎧=-=α=+=β0000005sin )40sin 240cos 2(21sin 85sin )40sin 240cos 2(21sin∵ 00<α<β< 900∴ ⎪⎩⎪⎨⎧=α=β00585 ∴ sin(β-5α)=sin600=23注:利用韦达定理变形寻找与sin α,sin β相关的方程组,在求出sin α,sin β后再利用单调性求α,β的值。

考点三: 关于三角函数的图象, 立足于正弦余弦的图象,重点是函数的图象与y=sinx的图象关系。

根据图象求函数的表达式,以及三角函数图象的对称性样题6、 如下图,某地一天从6时到18时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b .(1)求这段时间的最大温差.(2)写出这段曲线的函数解析式.解:(1)由图示,这段时间的最大温差是30-18=20(℃);(2)图中从6时到18时的图象是函数y =A sin(ωx +φ)+b 的半个周期的图象.∴ωπ221⋅=18-6,解得ω=8π,由图示A =21(30-18)=18,b =21(30+18)=20,这时y =18sin(8πx +φ)+20,将x =6,y =18代入上式可取φ=43π.综上所求的解析式为y =18sin(8πx +43π)+20,x ∈[6,18]. 样题7(18年福建)函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则 ( C )A .4,2πϕπω== B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==样题8、(18年全国卷Ⅰ18)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x 。

(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)画出函数)(x f y =在区间],0[π上的图像。

(本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分18分.) 解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<- (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得 .,2243222Z k k x k ∈+≤-≤-πππππ 所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为 (Ⅲ)由知)32sin(π-=x y 故函数上图像是在区间],0[)(πx f y = (略) 考点四,三角函数与其它知识交汇设计试题,是突出能力、试题出新的标志,近年来多出现于三角函数与向量等知识交汇。

样题9(18年江西)已知向量x f xx x x ⋅=-+=+=)()),42tan(),42sin(2()),42tan(,2cos2(令πππ. 求函数f (x )的最大值,最小正周期,并写出f (x )在[0,π]上的单调区间.解:)42tan()42tan()42sin(2cos22)(πππ--++=⋅=x x x x x f 21tan tan 122()222221tan 1tan 222sin cos 2cos 1222x x x x x x xx x x +-=++⋅-+=+-x x cos sin +==)4sin(2π+x .所以2)(的最大值为x f ,最小正周期为,2π]4,0[)(π在x f 上单调增加,[,]42ππ上单调减少.样题18、(18年山东卷)已知向量528),2,(),cos ,sin 2()sin ,(cos =+ππ∈θθθ-=θθ=和, 求)82cos(π+θ的值. 解:)sin cos ,2sin (cos θθθθ++-=+n m22)s i n (c o s )2s i n (c o s θ+θ++θ-θ=+n m)s i n (c o s 224θ-θ+= )4cos(44π+θ+=)4cos(12π+θ+=528=,得257)4cos(=π+θ又1)82(cos 2)4cos(2-π+θ=π+θ 所以2516)82(cos 2=π+θ 0)82c o s (898285,2<π+θ∴π<π+θ<π∴π<θ<π 54)82cos(-=π+θ∴。

相关文档
最新文档