弹簧模型动量守恒定律应用

合集下载

高三总复习物理课件 动量守恒中的三类典型模型

高三总复习物理课件 动量守恒中的三类典型模型
动量守恒中的三类典型模型
01
着眼“四翼” 探考点
题型·规律·方法
பைடு நூலகம்
02
聚焦“素养” 提能力
巧学·妙解·应用
01
着眼“四翼” 探考点
题型·规律·方法
模型一 “滑块—弹簧”模型
模型 图示
模型 特点
(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的 矢量和为零,则系统动量守恒。 (2)在能量方面,若系统所受的外力和除弹簧弹力以外的内力不做功,系 统机械能守恒。 (3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动 能通常最小(完全非弹性碰撞拓展模型)。 (4)弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模 型,相当于碰撞结束时)
[例 1] 如图甲所示,物块 A、B 的质量分别是 mA=4.0 kg 和 mB=3.0 kg。用轻弹 簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触。另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4 s 时与物块 A 相碰,并立即与 A 粘在一起不再分开, 物块 C 的 v-t 图像如图乙所示。求:
()
A.13mv02 C.112mv02
B.15mv02 D.145mv02
解析:当 C 与 A 发生弹性正碰时,根据动量守恒定律和能量守恒定律有 mv0=mv1+ 2mv2,12mv02=12mv12+12(2m)v22,联立解得 v2=23v0,当 A、B 速度相等时,弹簧的弹 性势能最大,设共同速度为 v,以 A 的初速度方向为正方向,则由动量守恒定律得 2mv2 =(2m+3m)v,由机械能守恒定律可知,Ep+12(5m)v2=12(2m)v22,解得 Ep=145mv02; 当 C 与 A 发生完全非弹性正碰时,根据动量守恒定律有 mv0=3mv1′,当 A、B、C 速度相等时弹簧的弹性势能最大,设共同速度为 v′,则由动量守恒定律得 3mv1′= 6mv′,由机械能守恒定律可知,Ep′=12(3m)v1′2-12(6m)v′2,解得 Ep′=112mv02,由 此可知,碰后弹簧的最大弹性势能范围是112mv02≤Ep≤145mv02,故选 A。 答案:A

动量守恒典型模型

动量守恒典型模型
动量守恒定律的典型模型及其应用
一、碰撞类。 二、子弹打木块类。 三、弹簧类。 四、人船模型类。
一、碰撞类(区分弹性碰撞和非弹性碰撞)
V1
' 1 1
V2=0 弹性碰撞
' 2 2
m1v1 m v m v
(m1 m2 ) v v1 m1 m2
' 1
1 1 1 2 '2 '2 m1v1 m1v1 m2v2 2 2 2
动能损失为
1 1 1 2 2 2 E= m1v10 m2 v 20 m1 m2 v 2 2 2 m1m1 2 v10 v20 2m1 m2
例1
如图所示,车厢长度L,质量为M,静止于光滑水平 面上,车厢内有一质量为m的物体以速度v向右运动, 与车厢壁来回碰撞n次后,静止于车厢中,这时车厢 的速度为:学.科.网 A v,水平向右 B 0 v C mv/(m+M),水平向右 D mv/(m-M),水平向右
学.科.网
θ
斜面和小物块组成的 系统在整个运动过程中都不受 水平方向外力,故系统在 水平方向上动量守恒。
1.如图所示:质量为m长为a的汽车由静止开始从 质量为M、长为b的平板车一端行至另一端时, 汽车和平板车的位移大小各为多少?(水平地面 光滑) M(b-a)/M+m; m(b-a)/M+m 2.质量为m半径为R的小球,放在半径2R、质 量相 同的大空心球壳内,小球开始静止在光滑 水平面上,当小球从图示位置无初速地沿内壁 滚到最低点时,大球移动的距离多大? R/3
v’2
m 2 (v0 2 gH ) 2 h 2 gM 2
二、滑块类
【例2】长木板质量为M, 有一质量为m的物块 (可以看作是质点)以水平速度v0从木板的左端 滑上。他们间的动摩擦因素为μ,当相对静止时, 物快仍在木板上. (M>m)

动量守恒定律的典型模型

动量守恒定律的典型模型
v0
M
m
四.子弹打木块的模型
1.运动性质:子弹对地在滑动摩擦力作用下匀减
速直线运动;木块在滑动摩擦力作用下做匀加速 运动。
2.符合的规律:子弹和木块组成的系统动量守恒, 机械能不守恒。
3.共性特征:一物体在另一物体上,在恒定的阻 力作用下相对运动,系统动量守恒,机械能不守
恒,ΔE = f 滑d相对
由功能关系得
mg
(s
x)
1 2
mV
2
1 2
mv02
mgx
1 2
(m
2M
)V
2
1 2
mv
2 0
相加得 mgs 1 2MV 2

2
解①、②两式得 x
Mv02

(2M m)g
代入数值得
v0
C
B
A
x 1.6m ④
xC
S
B
VA
x 比B 板的长度l 大.这说明小物块C不会停在B板上,而要
滑到A 板上.设C 刚滑到A 板上的速度为v1,此时A、B板的
多大的速度做匀速运动.取重力加速度g=10m/s2.
m=1.0kg
C
v0 =2.0m/s
B
A
M=2.0kg M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这
时A、B、C 三者的速度相等,设为V.
由动量守恒得 mv0 (m 2M )V

在此过程中,木板B 的位移为S,小木块C 的位移为S+x.
M=16 kg,木块与小车间的动摩擦因数为μ=0.5,木
块没有滑离小车,地面光滑,g取10 m/s2,求: (1)木块相对小车静止时小车的速度; (2)从木块滑上小车到木块相对于小车刚静止时, 小车移动的距离. (3)要保证木块不滑下平板车,平板车至少要有多 长?

动量守恒定律应用2:弹簧模型

动量守恒定律应用2:弹簧模型
F
VP>VQ 弹簧一直缩短
弹簧最短时 VP=VQ
弹簧原长时 弹性势能为零
变式训练
如图所示,位于光滑水平桌面上的小滑块P和Q都 可视为质点,质量相等,都为m。P、Q与轻质弹簧 相连,弹簧处于原长。设P静止, Q以初速度v0向 右运动,在弹簧拉伸过程中,弹簧具有的最大弹性 势能是多少?
V0
弹簧模型规律
1滑块和木板 2弹簧模型 3光滑1/4圆轨道轨道 (某一方向的动量守恒) 4人船模型 (平均动量守恒)
动量和机械能守恒情况常见模型图
m
v0
A
B
O
h
R
M
b
a
动量守恒定律
一、动量(P)
1、概念: 物体的质量m和速度v的乘积叫做动量。
2、定义式: P = m v
3、单位: 千克米每秒,符号是 kg ·m/s
m1=2kg的物块以v1=2m/s的初速冲向
质量为m2=6kg静止的光滑圆弧面斜
1
劈体,物块不会冲出斜劈。求:
1. 物块m1滑到最高点位置时,二者的速度 2. 物体上升的最大高度 3. 物块m1从圆弧面滑下后,二者速度 4. 若m1= m2物块m1从圆弧面滑下后,二者速度
动量和能量综合典型物理模型
弹簧最短时 VP=VQ
弹簧模型1
如图所示,位于光滑水平桌面上的小滑块 P 和 Q 都可视为质点,质量相等,都为 m.Q 与轻质弹簧相 连.设 Q 静止, P 以初速度 v0 向 Q 运动并与弹簧发 生碰撞. (1)在整个碰撞过程中,弹簧具有的最大弹性势能是多 少? (2)弹簧再次恢复原长时,P 的动能是多少?
4、方向:与运动方向相同
(1)矢量性 (2)瞬时性
运算遵循平行四边形定则 是状态量。

高考物理一轮复习讲义:专题25 动量守恒定律及应用二“滑块-弹簧”模型

高考物理一轮复习讲义:专题25 动量守恒定律及应用二“滑块-弹簧”模型

高三一轮同步复习专题25 动量守恒定律及应用二——“滑块-弹簧”模型【模型归纳】【典例分析】例1、如图所示,一轻弹簧的两端与质量分别为m1和m2的两物块甲、乙连接,静止在光滑的水平面上。

现在使甲瞬时获得水平向右的速度v0=5m/s,当甲物体的速度减小到1m/s 时,弹簧最短。

下列说法正确的是()A.紧接着甲物体将开始做减速运动B.紧接着甲物体将开始做加速运动C.甲乙两物体的质量之比m1∶m2=1∶3D.甲乙两物体的质量之比m1∶m2=1∶4【变式训练1】如图所示,质量为m1=2 kg的小球P从离水平面高度为h=0.8m的光滑斜面上滚下,与静止在光滑水平面上质量为m Q=2kg的带有轻弹簧的滑块Q碰撞,g=10m/s2,下列说法正确的是()A.P球与滑块Q碰撞前的速度为5m/sB.P球与滑块Q碰撞前的动量为16kg·m/sC.它们碰撞后轻弹簧压缩至最短时的速度为2m/sD.碰撞过程中动能守恒【变式训练2】如图甲所示,一轻弹簧的两端与质量分别为m1和m2的两物块A、B相连接,并静止在光滑的水平面上。

现使A瞬时获得水平向右的速度3m/s,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图像信息可得()A.在t1、t3时刻两物块达到共同速度1m/s,且弹簧都处于伸长状态B.从t3到t4时刻弹簧由伸长状态恢复到原长C .两物体的质量之比为12:1:3m m =D .在t 2时刻A 与B 的动能之比为12:1:8k kE E =【变式训练3】如图所示,质量为m 1=0.95kg 的小车A 静止在光滑地面上,一质量为m 3=0.05kg 的子弹以v 0=100m/s 的速度击中小车A ,并留在其中,作用时间极短。

一段时间后小车A 与另外一个静止在其右侧的,质量为m 2=4kg 的小车B 发生正碰,小车B 的左侧有一固定的轻质弹簧,碰撞过程中,弹簧始终未超弹性限度,则下列说法错误的是( )A .小车A 与子弹的最终速度大小为3m/sB .小车B 的最终速度大小为2m/sC .弹簧最大的弹性势能为10JD .整个过程损失的能量为240J【变式训练4】如图所示,质量M=4kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L=0.5m 这段滑板与木块A (可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑。

在四种常见模型中应用动量守恒定律(解析版)

在四种常见模型中应用动量守恒定律(解析版)

在四种常见模型中应用动量守恒定律导练目标导练内容目标1人船模型和类人船模型目标2反冲和爆炸模型目标3弹簧模型目标4板块模型【知识导学与典例导练】一、人船模型和类人船模型1.适用条件①系统由两个物体组成且相互作用前静止,系统总动量为零;②动量守恒或某方向动量守恒.2.常用结论设人走动时船的速度大小为v 船,人的速度大小为v 人,以船运动的方向为正方向,则m 船v 船-m 人v 人=0,可得m 船v 船=m 人v 人;因人和船组成的系统在水平方向动量始终守恒,故有m 船v 船t =m 人v 人t ,即:m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得:x 人=m 船m 人+m 船L ;x 船=m 人m 人+m 船L3.类人船模型类型一类型二类型三类型四类型五1有一条捕鱼小船停靠在湖边码头,小船又窄又长(估计一吨左右),一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,轻轻从船尾上船,走到船头后停下来,而后轻轻下船,用卷尺测出船后退的距离为d ,然后用卷尺测出船长L ,已知他自身的质量为m ,则渔船的质量()A.m (L +d )dB.md (L -d )C.mL dD.m (L -d )d【答案】D【详解】因水平方向动量守恒,可知人运动的位移为(L -d )由动量守恒定律可知m (L -d )=Md解得船的质量为M =m (L -d )d故选D 。

2如图所示,滑块和小球的质量分别为M 、m 。

滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O 由一不可伸长的轻绳相连,轻绳长为L ,重力加速度为g 。

开始时,轻绳处于水平拉直状态,小球和滑块均静止。

现将小球由静止释放,下列说法正确的是( )。

A.滑块和小球组成的系统动量守恒B.滑块和小球组成的系统水平方向动量守恒C.滑块的最大速率为2m 2gLM (M +m )D.滑块向右移动的最大位移为mM +mL【答案】BC【详解】A .小球下摆过程中竖直方向有分加速度,系统的合外力不为零,因此系统动量不守恒,A 错误;B .绳子上拉力属于内力,系统在水平方向不受外力作用,因此系统水平方向动量守恒,B 正确;C .当小球落到最低点时,只有水平方向速度,此时小球和滑块的速度均达到最大,取水平向右为正方向,系统水平方向动量守恒有Mv 1-mv 2=0由系统机械能守恒有mgL =12mv 22+Mv 21解得滑块的最大速率v 1=2m 2gLM (M +m ),C 正确;D .设滑块向右移动的最大位移为x ,根据水平动量守恒得M x t -m 2L -x t =0解得x =2mM +mL ,D 错误;故选BC 。

动量守恒之弹簧物块连接模型 高三物理一轮复习专题

图3
(1)当弹簧的弹性势能最大时,物块A的速度为多大?
(2)系统中弹性势能的最大值是多少?
答案(1)3 m/s(2)12 J
解析(1)弹簧压缩至最短时,弹性势能最大,
由动量守恒定律得:(mA+mB)v=(mA+mB+mC)vA
解得vA=3 m/s
(2)B、C碰撞过程系统动量守恒
mBv=(mB+mC)vC
5(2021湖南卷8,5分).如图(a),质量分别为mA、mB的A、B两物体用轻弹簧连接构成一个系统,外力 作用在A上,系统静止在光滑水平面上(B靠墙面),此时弹簧形变量为 。撤去外力并开始计时,A、B两物体运动的 图像如图(b)所示, 表示0到 时间内 的 图线与坐标轴所围面积大小, 、 分别表示 到 时间内A、B的 图线与坐标轴所围面积大小。A在 时刻的速度为 。下列说法正确的是( )
故vC=2 m/s
碰后弹簧压缩到最短时弹性势能最大,
故Ep= mAv2+ (mB+mC)v - (mA+mB+mC)v =12 J
三.举一反三,巩固练习
1.(2021全国乙卷14,6分)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动。在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )
C.小车C先向左运动后向右运动
D.小车C一直向右运动直到静止
答案D
解析A、B两物体和弹簧、小车C组成的系统所受合外力为零,所以系统的动量守恒.在弹簧释放的过程中,因mA∶mB=1∶2,由摩擦力公式Ff=μFN=μmg知,A、B两物体所受的摩擦力大小不等,所以A、B两物体组成的系统合外力不为零,A、B两物体组成的系统动量不守恒,A物体对小车向左的滑动摩擦力小于B对小车向右的滑动摩擦力,在A、B两物体相对小车停止运动之前,小车所受的合外力向右,会向右运动,因滑动摩擦力做负功,则系统的机械能不守恒,最终整个系统将静止,故A、B、C错误,D正确.

有关动量守恒定律的综合应用(原卷版)-2023年高考物理压轴题专项训练(全国通用)

压轴题11有关动量守恒定律的综合应用考向一/计算题:与碰撞模型有关的动量守恒定律的综合应用考向二/计算题:与板块模型有关的动量守恒定律的综合应用考向三/计算题:与弹簧模型有关的动量守恒定律的综合应用要领一:弹性碰撞和完全非弹性碰撞基本规律(一)弹性碰撞1.碰撞三原则:(1)动量守恒:即p 1+p 2=p 1′+p 2′.(2)动能不增加:即E k1+E k2≥E k1′+E k2′或p 212m 1+p 222m 2≥p 1′22m 1+p 2′22m 2.(3)速度要合理①若碰前两物体同向运动,则应有v 后>v 前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v 前′≥v 后′。

②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变。

2.“动碰动”弹性碰撞发生弹性碰撞的两个物体碰撞前后动量守恒,动能守恒,若两物体质量分别为m 1和m 2,碰前速度为v 1,v 2,碰后速度分别为v 1ˊ,v 2ˊ,则有:''11221112m v m v m v m v +=+(1)22'2'21122111211112222m v m v m v m v +=+(2)联立(1)、(2)解得:v 1’=,v 2’=.特殊情况:若m 1=m 2,v 1ˊ=v 2,v 2ˊ=v 1.3.“动碰静”弹性碰撞的结论两球发生弹性碰撞时应满足动量守恒和机械能守恒。

以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,则有m 1v 1=m 1v 1′+m 2v 2′(1)12m 1v 21=12m 1v 1′2+12m 2v 2′2(2)解得:v 1′=(m 1-m 2)v 1m 1+m 2,v 2′=2m 1v 1m 1+m 2结论:(1)当m 1=m 2时,v 1′=0,v 2′=v 1(质量相等,速度交换)(2)当m 1>m 2时,v 1′>0,v 2′>0,且v 2′>v 1′(大碰小,一起跑)(3)当m 1<m 2时,v 1′<0,v 2′>0(小碰大,要反弹)v 1v 2v 1’ˊv 2’ˊm 1m 2(4)当m 1≫m 2时,v 1′=v 0,v 2′=2v 1(极大碰极小,大不变,小加倍)(5)当m 1≪m 2时,v 1′=-v 1,v 2′=0(极小碰极大,小等速率反弹,大不变)(二)完全非弹性碰撞碰后物体的速度相同,根据动量守恒定律可得:m 1v 1+m 2v 2=(m 1+m 2)v 共(1)完全非弹性碰撞系统损失的动能最多,损失动能:ΔE k =½m 1v 12+½m 2v 22-½(m 1+m 2)v 共2(2)联立(1)、(2)解得:v 共=;ΔE k =要领二:与板块模型有关的动量守恒定律的综合应用要领三:与弹簧模型有关的动量守恒定律的综合应用条件与模型v 1v 2v 共m 1m 2①m A =m B(如:m A =1kg ;m B =1kg )②m A >m B(如:m A =2kg ;m B =1kg )③m A <m B(如:m A =1kg ;m B =2kg )规律与公式情况一:从原长到最短(或最长)时①()v m m v m B A A +=0;②()2201122A A B pm m v m m v E =++情况二:从原长先到最短(或最长)再恢复原长时①'2'10v m v m v m B A A +=;②2'2'2012111222A A B m v m v m v =+1.如图所示,9个完全相同的滑块静止在水平地面上,呈一条直线排列,间距均为L ,质量均为m ,与地面间的动摩擦因数均为μ,现给第1个滑块水平向右的初速度,滑块依次发生碰撞(对心碰撞),碰撞时间极短,且每次碰后滑块均粘在一起,并向右运动,且恰好未与第9个滑块发生碰撞。

微专题一动量守恒之弹簧模型

微专题一动量守恒之弹簧模型
一、弹簧模型
1.对于光滑水平面上的弹簧类问题,在作用过程中,系统所受合外力为零,
满足动量守恒条件;
2.系统只涉及弹性势能、动能,因此系统机械能守恒;
3.弹簧压缩至最短或拉伸到最长时,弹簧连接的两物体共速,此时弹簧的弹
性势能最大。
4.弹簧从原长到最短或最长相当于完非,从原长再到原长相当于完弹。
1
解得 v3= v1=1 m/s
6
由机械能守恒定律有
1
1
2
Ep=2(mA+mB)v2 -2(mA+mB+mC)v32
解得Ep=3 J
被压缩弹簧再次恢复自然长度时,滑块C脱离
弹簧,设此时滑块A、B的速度为v4,滑块C的
速度为 v5 ,由动量守恒定律和机械能守恒定
律有
(mA+mB)v2=(mA+mB)v4+mCv5
5.具体过程及规律如下:
vB′是滑块B全程最大的速度,若A未与弹簧连接,则3状态是滑块A脱离弹
簧的时刻,脱离时的速度为vA′,其大小方向如何由mA、mB决定。
6.A、B运动过程的v-t图像如图所示。
1.A、B 两小球静止在光滑水平面上,用轻质弹簧相连接,A、B 两球
的质量分别为 mA 和 mB(mA <mB)。若使A球获得初速度 v (图甲),弹
C.两物块的质量之比为m1∶m2=1∶2
D.在t2时刻A与B的动能之比Ek1∶Ek2=1∶8
3.如图所示,质量为2m的小球B与轻质弹簧连接后静止于光滑水平面上,质量为m的小球A
以初速度v0向右运动逐渐压缩弹簧,A,B通过弹簧相互作用一段时间后A球与弹簧分离。若
以水平向右为正方向,且A球与弹簧分离时A,B小球的动量分别为pA和pB,运动过程中弹簧

动量守恒定律的应用弹簧问题ppt课件

11
[解析] 设碰后 A、B 和 C 的共同速度大小为 v,由动量守
恒有 mv0=3mv

设 C 离开弹簧时,A、B 的速度大小为 v1,由动量守恒有
3mv=2mv1+mv0

设弹簧的弹性势能为 Ep,从细线断开到 C 与弹簧分开的过
程中机械能守恒,有
12(3m)v2+Ep=12(2m)v1 2+12mv0 2
3.如图所示,P物体与一个连着弹簧的Q物体正碰,碰 撞后P物体静止,Q物体以P物体碰撞前速度v离开,已 知P与Q质量相等,弹簧质量忽略不计,那么当弹簧被
压缩至最短时,下列的结论中正确的应是( BD)
A.P的速度恰好为零 B.P与Q具有相同速度 C.Q刚开始运动 D.P、Q弹簧组成的系统动量守恒
理解:弹簧被压缩至最短时的临界条件。 7
动量守恒定律的应用 —— 弹簧模型
1
水平面光滑,弹簧开始时处于原长
(1)何时两物体相距最近,即弹簧最短
Nv N
F弹
F弹
G
G
两物体速度相等时弹簧最短,且损失的动能
转化为弹性势能
(2)何时两物体相距最远,即弹簧最长
v
两物体速度相等时弹簧最长,且损失的动能转
化为弹性势能
2
弹簧模型的特点与方法
1.注意弹簧弹力特点及运动过程。
v
AB
C
9
6.如图所示,一轻质弹簧的一端固定在滑块B上,另 一端与滑块C接触但未连接,该整体静止放在离地面 高为H的光滑水平桌面上。现有一滑块A从光滑曲面 上离桌面h高处由静止开始滑下,与滑块B发生碰撞 (时间极短)并粘在一起压缩弹簧推动滑块C向前运 动,经一段时间,滑块C脱离弹簧,继续在水平桌面 上匀速运动一段时间后从桌面边缘飞出。已知
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修3-5 动量 近代物理初步
[审题指导 ] 第一步:抓关键点
关键点
获取信息
光滑的水平面
A,B,C组成的系统动量守恒
B,C可视为一个整体 A与B碰后,A,B,C三者速度相同
A与B相碰并黏合在一起 弹簧伸展以后,A,B的速度也相同 第二步:找突破口 要求弹簧释放的势能→ A,B,C系统增加的机械能→利用
动量守恒定律确定 A,B,C在弹簧伸展前的速度→利用动量守 恒定律确定 A,B,C在弹簧伸展后的速度。
选修3-5 动量 近代物理初步
[解析] 设碰后 A、B 和 C 的共同速度大小为 v,由动量守
恒有 mv0=3mv

设 C 离开弹簧时, A、B 的速度大小为 v1,由动量守恒有
3mv=2mv1+mv0
选修3-5 动量 近代物理初步
解析 设弹簧第一次恢复自然长度时B的
速度为vB ,以A、B及弹簧组成的系统为研究 对象 , 系作用力为系统的内
力),故系统动量守恒,机械能守恒,有
(mA+mB)v0=mBvB

1(mA+mB)v02+Ep= m1 BvB2 ②
选修3-5 动量 近代物理初步
解析 (1)设 B在绳被拉断后瞬间的速度为 vB,
到达12 Cm点BvB时2=的12 速mBv度C2为+2vmCB,g有R mB代g=入mB数vRc2据得vB=5 m/s
(2)设弹簧恢复到自然长度时 B的速度为 v1,取
水平向右为正方向,有Ep=
1 2
mBv12
I=mBvB-mBv1
簧弹性势能Ep= 49 J. 在A、B间系一轻质细绳,细 绳长度大于弹簧的自然长度 ,如图所示 .放手后 B
向右运动,绳在短暂时间内被拉
断,之后B冲上与水平面相切的
竖直半圆光滑轨道,其半径
R =0.5 m, B恰能到达最 高点C.取g=10 m/s2,求:(1)绳拉断后瞬间B的速
度vB的大小. (2)绳拉断过程绳对B的冲量I的大 小. (3)绳拉断过程绳对A所做的功W.
复习巩固 如图所示,木块A的质量mA=1kg,足够长的木板 B的质量 mB=4kg,质量为 mC=2kg的木块 C置于木 板B上,水平面光滑 ,B、C之间有摩擦。现使 A 以v0=10m/s的初速度向右匀速运动 ,与B碰撞 后将以vA′=2m/s的速度弹回。求: (1)B运动过程中的最大速度。 (2)若B、C间的动摩擦因数为 0.6,则C在B上 滑动的距离。
2
2
由①②解出Ep=
mA(mA ? 2mB
mB )
v02

选修3-5 动量 近代物理初步
2.光滑水平面上放着质量mA=1 kg的物块 A与质量 mB=2 kg的物块 B,A与B均可视为质点 , A靠在竖直 墙壁上, A、B间夹一个被压缩的轻弹簧(弹簧与
A、B 均不拴接 ), 用手挡住 B 不动, 此时弹
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
第一讲 动量 动量守恒定律
第7课 弹簧模型
水平面光滑,弹簧开始时处于原长
(1)何时两物体相距最近,即弹簧最短
Nv
N
F弹
F弹
G
G
两物体 速度相等 时弹簧最短 ,且损失的动能
转化为弹性势能
(2)何时两物体相距最远,即弹簧最长
v
两物体 速度相等 时弹簧最长 ,且损失的动能转
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
12. (2013·新课标Ⅱ·35(2))如图,光滑水平 直轨道上有三个质量均为 m的物块A、B、 C.B的左侧固定一轻弹簧 (弹簧左侧的挡板 质量不计 ).设A以速度 v 0朝B运动,压缩弹 簧;当 A、B速度相等时, B与C恰好相碰 并粘接在一起,然后继续运动.假设B和C碰 撞过程时间极短 .求从A开始压缩弹簧直至 与弹簧分离的过程中, (i)整个系统损失的 机械能; (ii)弹簧被压缩到最短时的弹性 势能.
代入数据得I=-4 N·s,其大小为4 N·s
(3)设绳断后 A的速度为 vA,取水平向右为正方
向,有mBv1=mBvB+mAvA
W=
1 2
mAvA2
代入数据得W=8 J
答案 (1)5 m/s (2)4 N·s (2)8 J
选修3-5 动量 近代物理初步
例:如图所示,质量 M=4kg的滑板B静止放在光滑 水平面上,其右端固定一根轻质弹簧,弹簧的自 由端 C到滑板左端的距离 L=0.5m,这段滑板与木 块A之间的动摩擦因数= 0.2,而弹簧自由端 C到 弹簧固定端 D所对应的滑板上表面光滑.可视为 质点的小木块 A以速度 v0=10m/s,由滑板 B左端开 始沿滑板B表面向右运动.已知A的质量m =lkg, g 取10m/s2 。 求:( 1)弹簧被压缩到最短时木块 A 的速度; (2)木块 A 压缩弹簧过程中弹簧的最大弹性势 能.
化为弹性势能
选修3-5 动量 近代物理初步
弹簧弹力联系的“两体模型”
注意:状态的把握 由于弹簧的 弹力随形变量变化 ,所以弹簧 弹力联系的“两体模型”一般都是作 加速度变 化的复杂运动,所以通常需要用“动量关系” 和“能量关系”分析求解。复杂的运动过程不 容易明确, 特殊的状态 必须把握: 弹簧最长 (短)时两体的速度相同;弹簧自由时两体的 速度最大(小)。
选修3-5 动量 近代物理初步
例:如图所示,A,B,C三个木块的质量 均为m。置于光滑的水平面上,B,C之间 有一轻质弹簧,弹簧的两端与木块接触而 不固连,将弹簧压紧到不能再压缩时用细 线把B和C紧连,使弹簧不能伸展,以至于 B,C可视为一个整体,现A以初速v0沿B, C的连线方向朝B运动,与B相碰并黏合在 一起,以后细线突然断开,弹簧伸展,从 而使C与A,B分离,已知C离开弹簧后的速 度恰为v0,求弹簧释放的势能。

设弹簧的弹性势能为 Ep,从细线断开到 C 与弹簧分开的过
程中机械能守恒,有
1 2(3m
)v2+E
p=12(2m
)v1
2+12mv0
2

由①②③式得弹簧所释放的势能为 Ep=13mv0 2
[答案] 13mv 0 2
选修3-5 动量 近代物理初步
1.如图所示 ,光滑轨道上 ,小车A 、B用轻弹簧 连接,将弹簧压缩后用细绳系在A、B上,然后 使A、B以速度v0沿轨道向右运动 ,运动中细 绳突然断开, 当弹簧第一次恢复到自然长度 时, A的速度刚好为0 ,已知A、B的质量分别 为mA、mB,且mA<mB ,求:被压缩的弹簧具有 的弹性势能Ep.
相关文档
最新文档