求解非厄米特正定线性系统的预处理Richardson迭代算法

合集下载

非线性方程组的迭代解法【开题报告】

非线性方程组的迭代解法【开题报告】

毕业论文开题报告信息与计算科学非线性方程组的迭代解法一、选题的背景和意义=的系数矩阵具有两非线性问题是近代数学研究的主流之一,随着计算问题的日益复杂化Ax b个明显的特点:大型化和稀疏化。

大型化指系数矩阵阶数可达上万甚至更高,稀疏性指A的零元素占绝大多数对这样的A作直接三角分解,稀疏性会遭到破坏,零元素被大量填入变为非零元素,因此迫切需要新的数值方法,适用于大型稀疏线性方程,以节省储存空间和计算时间,即提高计算效=是数值计算的重要任务,但是率,迭代法在这样的背景下得到关注和发展,求解线性方程组Ax b大多数科学和实际问题本质上是非线性的,能做线性化的毕竟有限,对这些非线性问题是各种解决方案,常常归纳为求解一个非线性方程组,而与线性方程相比非线性方程组的求解要困难和复杂的多,计算量也大的多,现有的理论研究还比较薄弱。

而对于非线性方程,一般都用迭代法求解。

二、国内外研究现状、发展动态近年来,国内外专家学者非线性方程组的迭代解法的研究兴趣与日俱增,他们多方面、多途径地对非线性方程组进行了广泛的领域性拓展(科学、物理、生产、农业等),取得了一系列研究成果。

这些研究,既丰富了非线性方程组的内容,又进一步完善了非线性方程组的研究体系,同时也给出了一些新的研究方法,促进了数值计算教学研究工作的开展,推动了课程教学改革的深入进行。

三、研究的主要内容,拟解决的主要问题(阐述的主要观点)非线性的迭代法是解非线性方程组的基本途径,是数值计算中非线性方程组求根的重要工具,也是研究非线性方程组整体性质和具体分布的重要工具。

就因为这样,很多专家学者对非线性方程组的迭代法进行研究。

在前人研究的基础上,本文首先介绍非线性方程组迭代法的产生背景以及国内外状况,然后从数值计算的定义及理论定理出发来研究非线性方程组的迭代法的一些相关的结论,包括非线性方程组的基于不动点原理的迭代法、newton迭代法及其收敛性、非线性方程组的迭代法及其收敛性、最小二乘法、迭代法的收敛加速性等,进一步讨论非线性方程组迭代解法的收敛性质以及其他一些相关定理,以便我们更好、更清楚的看到非线性方程组和迭代法之间的联系,以及收敛和加速。

非线性方程求解

非线性方程求解

⾮线性⽅程求解基于MATLAB的⾮线性⽅程的五种解法探讨摘要:本⽂利⽤matlab软件对⾮线性⽅程解法中的⼆分法、简单迭代法、⽜顿法、割线法以及Steffensen法的数值分析⽅法的算法原理及实现⽅法进⾏了探讨。

对f x x x=+-()2ln2的零点问题,分别运⽤以上五种不同的⽅法进⾏数值实验,⽐较⼏种解法的优缺点并进⾏初步分析评价。

关键词:⼆分法、简单迭代法、⽜顿法、割线法、Steffensen法1、引⾔在很多实际问题中,经常需要求⾮线性⽅程f(x) =0的根。

⽅程f(x) =0的根叫做函数f(x)的零点。

由连续函数的特性知:若f(x)在闭区间[a,b ]上连续,且()()0f a f b<.则f(x) =0在开区间(a,b)内⾄少有⼀个实根。

这时称[a,b]为⽅程f(x) =0的根的存在区间。

本⽂主要对⾮线性⽅程的数值解法进⾏分析,并介绍了⾮线性⽅程数值解法的五种⽅法。

并设=+-.f x x x()2ln2f x在[1,2]上的图形,如图1:. 显然,函数在[1,2]之间有⼀个零点。

⾸先画出()2、计算机配置操作系统Windows 7 旗舰版内存2GB处理器AMD 4核 A6-3400M APU 1.4GHz图.13、⼆分法⼆分法的基本思想是将⽅程根的区间平分为两个⼩区间,把有根的⼩区间再平分为两个更⼩的区间,进⼀步考察根在哪个更⼩的区间内。

如此继续下去,直到求出满⾜精度要求的近似值。

设函数()f x 在区间[a,b ]上连续,且f(a)·f(b) <0,则[a,b ]是⽅程f(x) =0的根的存在区间,设其内有⼀实根,记为x*。

取区间[a,b ]的中点()2k a b x +=并计算1()f x ,则必有下列三种情况之⼀成⽴: (1) 1()f x =0,x1就是⽅程的根x*;(2)()f a .1()f x <0,⽅程的根x*位于区间[a, 1x ]之中,此时令111,a a b x ==; (3)1()f x .()f b <0,⽅程的根x*位于区间[1x ,b ]之中,此时令11a x =,1b b =。

数值分析求解非线性方程根的二分法简单迭代法和牛顿迭代法

数值分析求解非线性方程根的二分法简单迭代法和牛顿迭代法

实验报告一:实验题目一、 实验目的掌握求解非线性方程根的二分法、简单迭代法和牛顿迭代法,并通过数值实验比较两种方法的收敛速度。

二、 实验内容1、编写二分法、并使用这两个程序计算02)(=-+=x e x x f 在[0, 1]区间的解,要求误差小于 410- ,比较两种方法收敛速度。

2、在利率问题中,若贷款额为20万元,月还款额为2160元,还期为10年,则年利率为多少?请使用牛顿迭代法求解。

3、由中子迁移理论,燃料棒的临界长度为下面方程的根,用牛顿迭代法求这个方程的最小正根。

4、用牛顿法求方程的根,精确至8位有效数字。

比较牛顿迭代法算单根和重根的收敛速度,并用改进的牛顿迭代法计算重根。

第1题:02)(=-+=x e x x f 区间[0,1] 函数画图可得函数零点约为0.5。

画图函数:function Test1()% f(x) 示意图, f(x) = x + exp(x) - 2; f(x) = 0r = 0:0.01:1;y = r + exp(r) - 2plot(r, y);grid on 二分法程序:计算调用函数:[c,num]=bisect(0,1,1e-4)function [c,num]=bisect(a,b,delta)%Input –a,b 是取值区间范围% -delta 是允许误差%Output -c 牛顿迭代法最后计算所得零点值% -num 是迭代次数ya = a + exp(a) - 2;yb = b + exp(b) - 2;if ya * yb>0return;endfor k=1:100c=(a+b)/2;yc= c + exp(c) - 2;if abs(yc)<=deltaa=c;b=c;elseif yb*yc>0b=c;yb=yc;elsea=c;ya=yc;endif abs(b-a)<deltanum=k; %num为迭代次数break;endendc=(a+b)/2;err=abs(b-a);yc = c + exp(c) - 2;牛顿迭代法程序:计算调用函数:[c,num]=newton(@func1,0.5,1e-4) 调用函数:function [y] = func1(x)y = x + exp(x) - 2;end迭代算法:function[c,num]=newton(func,p0,delta)%Input -func是运算公式% -p0是零点值% -delta是允许误差%Output -c牛顿迭代法最后计算所得零点值% -num是迭代次数num=-1;for k=1:1000y0=func(p0);dy0=diff(func([p0 p0+1e-8]))/1e-8;p1=p0-y0/dy0;err=abs(p1-p0);p0=p1;if(err<delta)num=k;%num为迭代次数break;endendc=p0;第2题:由题意得到算式:计算调用函数:[c,num]=newton(@func2,0.02,1e-8)程序:先用画图法估计出大概零点位置在0.02附近。

解非线性方程的牛顿迭代法及其应用

解非线性方程的牛顿迭代法及其应用

解非线性方程的牛顿迭代法及其应用一、本文概述非线性方程是数学领域中的一个重要研究对象,其在实际应用中广泛存在,如物理学、工程学、经济学等领域。

求解非线性方程是一个具有挑战性的问题,因为这类方程往往没有简单的解析解,需要通过数值方法进行求解。

牛顿迭代法作为一种古老而有效的数值求解方法,对于求解非线性方程具有重要的应用价值。

本文旨在介绍牛顿迭代法的基本原理、实现步骤以及在实际问题中的应用。

我们将详细阐述牛顿迭代法的基本思想,包括其历史背景、数学原理以及收敛性分析。

我们将通过具体实例,展示牛顿迭代法的计算步骤和实际操作过程,以便读者能够更好地理解和掌握该方法。

我们将探讨牛顿迭代法在各个领域中的实际应用,包括其在物理学、工程学、经济学等领域中的典型应用案例,以及在实际应用中可能遇到的问题和解决方法。

通过本文的介绍,读者可以深入了解牛顿迭代法的基本原理和应用技巧,掌握其在求解非线性方程中的实际应用方法,为进一步的研究和应用提供有力支持。

二、牛顿迭代法的基本原理牛顿迭代法,又称为牛顿-拉夫森方法,是一种在实数或复数域上近似求解方程的方法。

其基本原理是利用泰勒级数的前几项来寻找方程的根。

如果函数f(x)在x0点的导数f'(x0)不为零,那么函数f(x)在x0点附近可以用一阶泰勒级数来近似表示,即:这就是牛顿迭代法的基本迭代公式。

给定一个初始值x0,我们可以通过不断迭代这个公式来逼近f(x)的根。

每次迭代,我们都用当前的近似值x0来更新x0,即:这个过程一直持续到满足某个停止条件,例如迭代次数达到预设的上限,或者连续两次迭代的结果之间的差小于某个预设的阈值。

牛顿迭代法的收敛速度通常比线性搜索方法快,因为它利用了函数的导数信息。

然而,这种方法也有其局限性。

它要求函数在其迭代点处可导,且导数不为零。

牛顿迭代法可能不收敛,如果初始点选择不当,或者函数有多个根,或者根是重根。

因此,在使用牛顿迭代法时,需要谨慎选择初始点,并对迭代过程进行适当的监控和调整。

非线性方程的解法

非线性方程的解法

20世纪60年代中期以后,发展了两种求解非线性方程组(1)的新方法。

一种称为区间迭代法或称区间牛顿法,它用区间变量代替点变量进行区间迭代,每迭代一步都可判断在所给区间解的存在惟一性或者是无解。

这是区间迭代法的主要优点,其缺点是计算量大。

另一种方法称为不动点算法或称单纯形法,它对求解域进行单纯形剖分,对剖分的顶点给一种恰当标号,并用一种有规则的搜索方法找到全标号单纯形,从而得到方程(1)的近似解。

这种方法优点是,不要求f(□)的导数存在,也不用求逆,且具有大范围收敛性,缺点是计算量大编辑摘要目录• 1 正文• 2 牛顿法及其变形• 3 割线法• 4 布朗方法• 5 拟牛顿法•非线性方程组数值解法 - 正文n个变量n个方程(n >1)的方程组表示为(1)式中ƒi(x1,x2,…,x n)是定义在n维欧氏空间R n的开域D上的实函数。

若ƒi中至少有一个非线性函数,则称(1)为非线性方程组。

在R n中记ƒ=则(1)简写为ƒ(尣)=0。

若存在尣*∈D,使ƒ(尣*)=0,则称尣*为非线性方程组的解。

方程组(1)可能有一个解或多个解,也可能有无穷多解或无解。

对非线性方程组解的存在性的研究远不如线性方程组那样成熟,现有的解法也不象线性方程组那样有效。

除极特殊的方程外,一般不能用直接方法求得精确解,目前主要采用迭代法求近似解。

根据不同思想构造收敛于解尣*的迭代序列{尣k}(k=0,1,…),即可得到求解非线性方程组的各种迭代法,其中最著名的是牛顿法。

非线性方程组数值解法 - 牛顿法及其变形牛顿法基本思想是将非线性问题逐步线性化而形成如下迭代程序:(2)式中是ƒ(尣k)的雅可比矩阵,尣0是方程(1)的解尣*的初始近似。

这个程序至少具有2阶收敛速度。

由尣k算到尣k+的步骤为:①由尣k算出ƒ(尣k)及;②用直接法求线性方程组的解Δ尣k;③求。

由此看到迭代一次需计算n个分量函数值和n2个分量偏导数值,并求解一次n阶线性方程组。

斯蒂芬森迭代法公式

斯蒂芬森迭代法公式

斯蒂芬森迭代法公式以斯蒂芬森迭代法公式为标题,探讨一种用于求解非线性方程的迭代方法。

在数学和科学领域中,求解非线性方程是一个重要的问题。

非线性方程是指方程中包含未知数的非线性项的方程,不同于线性方程可以通过代数方法直接求解。

而斯蒂芬森迭代法是一种常用的数值求解非线性方程的方法。

斯蒂芬森迭代法的基本思想是通过不断迭代逼近方程的根。

假设我们要解的非线性方程为f(x)=0。

首先,我们需要选择一个初始值x0作为迭代的起点。

然后,根据斯蒂芬森迭代公式进行迭代计算,直到满足预设的精度要求。

斯蒂芬森迭代公式可以表示为:x_(n+1) = x_n - f(x_n) / f'(x_n)其中,x_n表示第n次迭代的近似解,f(x_n)表示方程在x_n处的函数值,f'(x_n)表示方程在x_n处的导数值。

斯蒂芬森迭代法的优点是收敛速度较快,且具有良好的数值稳定性。

它适用于一般的非线性方程求解问题,并且可以通过调整初始值和迭代次数来控制精度和计算时间。

下面以一个具体的例子来说明斯蒂芬森迭代法的应用。

假设我们要求解方程x^3 - 2x - 5 = 0在区间[1, 2]内的根。

首先,我们选择初始值x0=1.5。

然后,根据斯蒂芬森迭代公式进行迭代计算。

第一次迭代:x_1 = x_0 - (x_0^3 - 2x_0 - 5) / (3x_0^2 - 2)= 1.5 - (1.5^3 - 2*1.5 - 5) / (3*1.5^2 - 2)≈ 1.3571第二次迭代:x_2 = x_1 - (x_1^3 - 2x_1 - 5) / (3x_1^2 - 2)= 1.3571 - (1.3571^3 - 2*1.3571 - 5) / (3*1.3571^2 - 2)≈ 1.3652继续进行迭代计算,直到满足预设的精度要求。

最终,可以得到方程在区间[1, 2]内的根约为1.3652。

斯蒂芬森迭代法的应用不仅局限于求解非线性方程,还可以用于求解其他数值问题,如求解方程组、求解积分等。

7、解非线性方程的迭代法

7、解非线性方程的迭代法

(1.1)
2. 超越方程, 如 : x e x 0.
如果f ( x)可以分解为 f ( x) ( x x*)m g ( x), 其中0 | g ( x*) | , m为正整数. 则称x * 为f ( x)的m重零点.
此时 f ( x*) f ( x*) f ( m 1) ( x*) 0, f ( m) ( x*) 0.
k 0 1 2 3 4 5 6 7 xk 1.5 1.35721 1.33086 1.32588 1.32494 1.32476 1.32473 1.32472
3 (2) xk 1 xk 1, x0 1.5, x1 2.375, x2 12.39, .
二、不动点的存在性与迭代法的收敛性
二、斯蒂芬森迭代法
把不动点迭代与埃特金加速技巧结合,得到斯蒂芬森 ( Steffensen)迭代法 yk ( xk ), zk ( yk ),
( yk xk ) 2 xk 1 xk zk 2 yk xk
改写为另一种不动.4)
k 0 1 2 3 ‫׃‬ xk x0 x1 x2 x3 ‫׃‬ 迭代法(1) 2 3 9 87 ‫׃‬ 迭代法(2) 2 1.5 2 1.5 ‫׃‬ 迭代法(3) 2 1.75 1.73475 1.732631 ‫׃‬ 迭代法(4) 2 1.75 1.732143 1.732051 ‫׃‬
定义2 设迭代过程xk 1 ( xk )收敛于x*,误差ek xk x*, 若 lim
例6 求方程3x 2 e x 0在[3,4]中的解.
解: 取对数得x 2 ln x ln 3 g ( x), 构造迭代法 xk 1 2 ln xk ln3 2 2 ( x) , max ( x) 1, 当x [3,4], ( x) [3,4], x 3 x 4 3 由定理2迭代收敛. x0 3.5, x16 3.73307 .

基本迭代方法

基本迭代方法
−1
,
k = 0, 1, . . . ,
,
k = 0, 1, . . . , (3.2)
N
称为 迭代矩阵.
这就是基于矩阵分裂 A = M − N 的迭代方法.
选取不同的 M , 就可以构造出不同的迭代方法.
9/98
1.2
Jacobi 迭代
记 A = D − L − U , 其中 D 为 A 的对角部分, −L 和 −U 为 A 的严 格下三角和严格上三角部分. 取 M = D, N = L + U , 则可得 Jacobi 迭代 方法: x(k+1) = D−1 (L + U )x(k) + D−1 b 对应的迭代矩阵为 GJ = D−1 (L + U )
定常迭代法有时也称为经典迭代法, 基本迭代法 或 不动点迭代法.
3/98
迭代法基本想法
当直接求解 Ax = b 比较困难时, 我们可以求解一个近似等价方程 组 M x = b , 其中 M 是对 A 的某种意义下的近似. 设 M x = b 的解为 x(1) . 则它与原方程的解 x∗ = A−1 b 之间的差满足 ( ) A x∗ − x(1) = b − Ax(1) 如果 x(1) 已经满足精度要求, 则可以停止计算, 否则需要进行修正.
关键技术 矩阵分裂
7/98
1.1
矩阵分裂与定常迭代
定义 1 (矩阵分裂, Matrix Splitting) 设 A ∈ Rn×n 非奇异, 称 A=M −N 为 A 的一个 矩阵分裂 , 其中 M 非奇异. (3.1)
8/98
给定一个矩阵分裂 (3.1), 则原方程组 Ax = b 就等价于 M x = N x + b . 于是我们就可以构造出以下的迭代格式 M x(k+1) = N x(k) + b 或 x(k+1) = M −1 N x(k) + M −1 b ≜ Gx(k) + g 其中 G ≜ M
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求解非厄米特正定线性系统的预处理Richardson迭代算法肖小勇
【期刊名称】《新余学院学报》
【年(卷),期】2023(28)1
【摘要】为了求解非厄米特正定线性系统,引入了一种新的预处理Richardson迭代算法(PR迭代算法)。

每一次迭代,PR迭代算法只需求解一个带厄米特正定系数矩阵的线性系统。

在适当的条件下,分析了PR迭代矩阵的谱半径,并讨论使上述谱半径取最小值时的最优参数。

数值结果表明,不管是否采用实验最优参数,PR迭代算法都是有效的。

【总页数】8页(P21-28)
【作者】肖小勇
【作者单位】新余学院数学与计算机学院
【正文语种】中文
【中图分类】O241.6;O242.2
【相关文献】
1.实次对称次正定矩阵的乔莱斯基分解及次厄米特矩阵与反次厄米特矩阵
2.非埃米特正定Toeplitz矩阵的m—步预处理子
3.反厄米特型Toeplitz线性方程组的反厄米特循环预处理子
4.非埃尔米特正定线性系统的m步预处理的斜埃尔米特和反埃尔米特分裂方法
5.求解非埃尔米特正定方程组的广义LHSS迭代法
因版权原因,仅展示原文概要,查看原文内容请购买。

相关文档
最新文档