实验二:淀粉酶活性测定实验报告

合集下载

淀粉酶活力测定实验报告

淀粉酶活力测定实验报告

淀粉酶活力测定实验报告一、实验目的1、学习和掌握淀粉酶活力测定的原理和方法。

2、了解淀粉酶的作用特点及其在生物体内的重要性。

3、培养实验操作技能和数据处理能力。

二、实验原理淀粉酶是能够水解淀粉分子中α-1,4 糖苷键的一类酶的总称,包括α淀粉酶和β淀粉酶。

α淀粉酶可以随机地作用于淀粉分子内部的α-1,4 糖苷键,生成麦芽糖、麦芽三糖、糊精等还原糖。

β淀粉酶则从淀粉分子的非还原性末端依次水解相隔的α-1,4 糖苷键,生成麦芽糖。

在本次实验中,利用淀粉酶水解淀粉生成还原糖,还原糖能与 3,5-二硝基水杨酸试剂反应,生成棕红色的 3-氨基-5-硝基水杨酸。

颜色的深浅与还原糖的量成正比,通过比色法测定吸光度,并与标准曲线对比,即可计算出淀粉酶的活力。

三、实验材料与仪器1、实验材料新鲜淀粉酶提取液1%淀粉溶液(称取 1g 可溶性淀粉,加入少量蒸馏水调匀,然后缓缓倾入沸水中并不断搅拌,最后定容至 100ml)pH 69 的磷酸缓冲液3,5-二硝基水杨酸试剂(DNS 试剂)麦芽糖标准溶液(1mg/ml)2、实验仪器分光光度计恒温水浴锅移液器离心机试管、刻度吸管、容量瓶等四、实验步骤1、标准曲线的绘制取 7 支干净的具塞刻度试管,编号,按下表加入试剂:|管号|麦芽糖标准液(ml)|蒸馏水(ml)| DNS 试剂(ml)|麦芽糖含量(mg)|||||||| 0 | 0 | 20 | 20 | 0 || 1 | 02 | 18 | 20 | 02 || 2 | 04 | 16 | 20 | 04 || 3 | 06 | 14 | 20 | 06 || 4 | 08 | 12 | 20 | 08 || 5 | 10 | 10 | 20 | 10 || 6 | 12 | 08 | 20 | 12 |摇匀后,在沸水浴中加热 5 分钟,取出后立即用冷水冷却至室温,再向每管中加入蒸馏水 20ml,摇匀。

以 0 号管为空白对照,在 540nm 波长下测定各管的吸光度值。

淀粉活性测定实验报告

淀粉活性测定实验报告

一、实验目的1. 掌握淀粉酶活性的测定原理和方法。

2. 了解不同条件对淀粉酶活性的影响。

3. 学会使用比色法测定淀粉酶活性。

二、实验原理淀粉酶是一种水解淀粉的酶,可以将淀粉分解成葡萄糖、麦芽糖等小分子糖类。

在实验中,淀粉酶将淀粉水解成还原糖,还原糖与3,5-二硝基水杨酸(DNS)反应生成红色复合物。

通过测定该复合物的吸光度,可以计算出淀粉酶的活性。

三、实验材料与仪器1. 材料:淀粉酶、淀粉、DNS试剂、硫酸铜、无水碳酸钠、盐酸、氢氧化钠、蒸馏水、待测样品(如唾液、植物组织等)。

2. 仪器:恒温水浴锅、移液器、容量瓶、试管、试管架、吸管、比色计、电子天平。

四、实验步骤1. 准备DNS试剂:称取DNS试剂0.1g,加入50ml蒸馏水溶解,再加入0.5g硫酸铜和0.5g无水碳酸钠,搅拌均匀。

2. 标准曲线制作:准确配制一系列浓度的麦芽糖标准溶液(如0.1mg/ml、0.2mg/ml、0.4mg/ml、0.6mg/ml、0.8mg/ml、1.0mg/ml),各取2ml加入试管中,加入2ml DNS试剂,沸水浴10分钟,取出冷却,用分光光度计在波长540nm处测定吸光度,以麦芽糖浓度为横坐标,吸光度为纵坐标绘制标准曲线。

3. 待测样品处理:准确称取一定量的待测样品,加入适量的蒸馏水,搅拌均匀,离心取上清液。

4. 测定淀粉酶活性:取2ml待测样品和2ml淀粉溶液(浓度根据实际情况调整)加入试管中,置于恒温水浴锅中,保持一定温度(如37℃)反应一定时间(如30分钟),取出后立即加入2ml DNS试剂,沸水浴10分钟,取出冷却,用分光光度计在波长540nm处测定吸光度。

5. 计算淀粉酶活性:根据标准曲线,计算出待测样品中还原糖的浓度,再根据反应时间、温度、待测样品浓度等参数,计算淀粉酶活性。

五、实验结果与分析1. 标准曲线绘制:以麦芽糖浓度为横坐标,吸光度为纵坐标绘制标准曲线,计算相关系数,验证标准曲线的线性关系。

生化实验淀粉的实验报告

生化实验淀粉的实验报告

一、实验目的1. 学习淀粉的提取和鉴定方法。

2. 掌握淀粉酶的活性测定方法。

3. 了解淀粉在生物体内的作用。

二、实验原理1. 淀粉是一种由葡萄糖分子组成的多糖,广泛存在于植物中,是植物储存能量的主要形式。

2. 淀粉酶是一种能够催化淀粉水解的酶,根据其作用方式可分为α-淀粉酶和β-淀粉酶。

3. 淀粉酶活性可以通过测定在一定时间内淀粉水解的量来衡量。

三、实验材料与仪器1. 材料:马铃薯、淀粉酶、碘液、蒸馏水、盐酸、氢氧化钠、酚酞指示剂等。

2. 仪器:天平、烧杯、试管、滴管、移液管、恒温水浴锅、分光光度计等。

四、实验步骤1. 淀粉的提取(1)称取一定量的马铃薯,去皮,切成小块。

(2)将马铃薯块放入烧杯中,加入适量的蒸馏水,用研钵捣碎。

(3)将捣碎后的马铃薯浆液过滤,收集滤液。

(4)向滤液中加入适量的盐酸,调节pH值为4.5。

(5)将调好pH值的滤液加热至60℃,保持30分钟。

(6)将加热后的滤液冷却,用蒸馏水定容至100mL。

2. 淀粉的鉴定(1)取少量提取的淀粉溶液,加入碘液,观察颜色变化。

(2)将淀粉溶液滴在载玻片上,用显微镜观察淀粉颗粒的形态。

3. 淀粉酶的活性测定(1)取一定量的淀粉酶溶液,加入适量的淀粉溶液,混合均匀。

(2)将混合液置于恒温水浴锅中,设定温度为37℃。

(3)每隔一定时间,取出少量混合液,加入碘液,观察颜色变化。

(4)根据颜色变化,计算出淀粉酶的活性。

五、实验结果与分析1. 淀粉的鉴定:提取的淀粉溶液加入碘液后,溶液呈蓝色,证明提取的淀粉成功。

2. 淀粉酶的活性测定:根据颜色变化,计算出淀粉酶的活性为X单位。

六、实验讨论1. 淀粉的提取过程中,盐酸的作用是调节pH值,使淀粉酶活性适宜。

2. 淀粉酶的活性受温度、pH值等因素的影响,本实验中选取了适宜的温度和pH值进行测定。

3. 实验过程中,要注意操作规范,避免误差的产生。

七、实验总结通过本次实验,我们学习了淀粉的提取和鉴定方法,掌握了淀粉酶的活性测定方法,了解了淀粉在生物体内的作用。

淀粉活性测定实验报告

淀粉活性测定实验报告

淀粉活性测定实验报告1. 引言淀粉是一种重要的多糖类物质,在食品工业、医药领域以及纺织工业等许多领域都有广泛的应用。

淀粉的活性测定是衡量其质量的一种重要方法。

本实验旨在通过测定淀粉的还原糖含量来确定淀粉的活性。

2. 实验原理淀粉的活性指的是淀粉能够与酶相互作用并被其降解的能力。

本实验采用的是酶法测定淀粉的活性,具体原理如下:1. 淀粉被酶淀粉酶水解成为还原糖;2. 还原糖与费林试剂反应,在酸性条件下形成紫红色物质;3. 使用分光光度计测定紫红色物质的吸光度,并根据标准曲线计算出还原糖的质量。

3. 实验步骤3.1 样品的制备将待测样品称取5 g,加入100 mL的蒸馏水中,搅拌均匀,并将溶液转移到250 mL容量瓶中,用蒸馏水稀释至刻度线。

3.2 酶解反应取5 mL样品溶液,加入0.5 mL淀粉酶,加水至10 mL。

将混合液置于37恒温水浴中反应1小时。

3.3 费林试剂反应取2 mL反应液,加入4 mL费林试剂,混合并立即加入1 mL浓硫酸。

放置冷却至室温。

3.4 吸光度测定使用分光光度计在520 nm波长下测定吸光度。

3.5 绘制标准曲线取一系列浓度已知的还原糖溶液,加入费林试剂和硫酸进行反应,测定吸光度。

根据吸光度与浓度的关系绘制标准曲线。

3.6 计算样品中淀粉的活性根据标准曲线计算样品中还原糖的质量,进而计算出样品中淀粉的活性。

4. 结果与讨论通过测定一系列已知浓度的标准溶液的吸光度,绘制了标准曲线。

利用标准曲线,计算出待测样品中淀粉的活性为X g。

本实验中使用的淀粉酶和费林试剂均具有较高的效率和灵敏度,能够准确测定淀粉的活性。

由于实验条件和操作的标准化,实验的重复性和可重复性均较高。

在实际应用中,淀粉的活性测定可以用于食品质量的监控以及生物反应器等相关工艺的控制。

根据淀粉的活性,可以调整淀粉的使用量,以获得最佳的产品质量和产率。

5. 结论通过酶法测定,本实验成功测定了淀粉的活性为X g。

实验结果表明,本方法可准确快速地测定淀粉的活性,为淀粉的应用和生产提供了重要的参考依据。

淀粉酶测定实验报告

淀粉酶测定实验报告

一、实验目的1. 掌握淀粉酶活性测定的原理和方法;2. 了解淀粉酶在生物体内的作用及其影响因素;3. 通过实验验证不同条件下淀粉酶活性的变化。

二、实验原理淀粉酶是一种能够水解淀粉的酶,主要分为α-淀粉酶和β-淀粉酶两种。

本实验采用α-淀粉酶作为研究对象,通过测定其在特定条件下催化淀粉水解的速率,来评价淀粉酶的活性。

实验原理如下:1. 淀粉酶能够将淀粉水解成葡萄糖,反应式如下:淀粉 + 水酶→ 葡萄糖2. 淀粉在碘存在下呈现蓝色,当淀粉被水解后,蓝色逐渐消失,通过测量蓝色消失的程度,可以判断淀粉酶的活性。

三、实验材料与仪器1. 实验材料:淀粉酶、淀粉、碘液、蒸馏水、pH缓冲液、比色皿等;2. 实验仪器:恒温水浴锅、移液器、比色计、天平等。

四、实验步骤1. 准备淀粉酶溶液:将淀粉酶用pH缓冲液稀释至一定浓度;2. 准备淀粉溶液:将淀粉用蒸馏水配制成一定浓度的溶液;3. 配制碘液:将碘液用蒸馏水稀释至一定浓度;4. 设置实验组:将淀粉溶液和淀粉酶溶液按照一定比例混合,置于恒温水浴锅中,在一定温度下反应;5. 设置对照组:将淀粉溶液和蒸馏水按照一定比例混合,置于恒温水浴锅中,在一定温度下反应;6. 取样:在反应一定时间后,取出实验组和对照组的溶液,加入碘液;7. 比色:将实验组和对照组的溶液在比色计上测定吸光度;8. 计算淀粉酶活性:根据实验组和对照组的吸光度差值,计算淀粉酶活性。

五、实验结果与分析1. 实验结果:实验组吸光度:A1对照组吸光度:A22. 结果分析:根据实验结果,计算淀粉酶活性:淀粉酶活性 = (A1 - A2) / A2淀粉酶活性越高,表示淀粉酶的催化能力越强。

六、实验讨论与心得1. 实验过程中,需要注意温度、pH值等因素对淀粉酶活性的影响,以保证实验结果的准确性;2. 实验结果表明,淀粉酶活性受到多种因素的影响,如温度、pH值、底物浓度等;3. 通过本实验,加深了对淀粉酶活性的理解,为后续研究提供了实验基础。

淀粉酶活性的测定实验报告

淀粉酶活性的测定实验报告

淀粉酶活性的测定实验报告淀粉酶活性的测定实验报告引言淀粉酶是一种重要的酶类,能够催化淀粉的降解为葡萄糖。

淀粉酶活性的测定对于了解酶的特性以及其在生物化学过程中的作用具有重要意义。

本实验旨在通过测定淀粉酶的活性,探究其受到不同因素的影响,为进一步研究酶的功能提供基础数据。

材料与方法1. 实验材料:淀粉酶溶液、淀粉溶液、缓冲液、I2-KI试剂、洗涤液。

2. 实验仪器:比色皿、移液管、离心机、恒温水浴。

实验步骤:1. 预热水浴至37°C。

2. 准备不同浓度的淀粉溶液(0.2%、0.4%、0.6%、0.8%、1.0%),并分别加入比色皿中。

3. 向每个比色皿中加入相同体积的淀粉酶溶液,混匀后立即放入预热的水浴中。

4. 在反应开始后的不同时间点(如0、5、10、15、20分钟),取出一个比色皿,立即加入I2-KI试剂,形成蓝色淀粉-碘复合物。

5. 使用比色计测定各比色皿中的吸光度,并记录下实验数据。

6. 重复实验步骤2-5,以获得可靠的结果。

结果与讨论通过实验测定得到各个时间点下不同淀粉浓度的吸光度值,进而计算出淀粉酶的活性。

实验结果显示,随着淀粉浓度的增加,淀粉酶的活性也随之增加。

这是因为淀粉浓度的增加会提供更多的底物供淀粉酶催化反应,从而增加反应速率。

然而,当淀粉浓度超过一定范围时,淀粉酶的活性开始饱和,即使再增加淀粉浓度,反应速率也不再显著增加。

此外,实验结果还显示,随着反应时间的增加,淀粉酶的活性逐渐增加,但增加速率逐渐减缓。

这是因为淀粉酶需要一定的时间来结合底物,并催化反应发生。

随着反应进行,底物逐渐减少,淀粉酶与底物的结合也变得更加困难,从而导致反应速率的下降。

此外,实验还可以探究其他因素对淀粉酶活性的影响,如温度、pH值等。

通过调节这些因素,可以进一步了解淀粉酶的特性以及其在生物体内的作用机制。

结论通过本实验的测定,我们得出了淀粉酶活性与淀粉浓度和反应时间的关系。

实验结果表明,淀粉酶活性随着淀粉浓度的增加而增加,并随着反应时间的增加而逐渐饱和。

实验二 淀粉酶活性的测定

实验二 淀粉酶活性的测定

实验二淀粉酶活性的测定预习报告生物094 左宇 0902040409一、研究背景:酶作为生物体内催化剂,测定其活力是非常有必要的。

不同种类的酶的活力测定方法不同,我们将通过在细节设计上差异较大的酶活力测定方法的设计细节的分析和具体酶活测定操作,体会分析比较其设计细节的差异,从而获取相关设计理念并完成没活力测定实验操作的训练。

二、研究目标:按照淀粉酶水解淀粉的作用方式,可以分为α-淀粉酶和β-淀粉酶等。

根据其催化产物的特点和现有测定方法规定酶活力单位为:每分钟每克鲜重麦种所催化生成的麦芽糖毫克数,来对这两种酶进行有效的测定。

三、研究策略:两种淀粉酶特性不同,α-淀粉酶不耐酸,在pH3.6以下迅速钝化;β-淀粉酶不耐热,在70℃15min钝化。

根据它们的这种特性,在测定活力时钝化其中之一,就可测出另一种淀粉酶的活力。

本实验采用加热的方法钝化β-淀粉酶,测出α-淀粉酶的活力。

在非钝化条件下测定淀粉酶总活力(α-淀粉酶活力+β-淀粉酶活力),再减去α-淀粉酶的活力,就可求出β-淀粉酶的活力。

四、研究方案及可行性分析:两种酶作用淀粉的方式不同。

α-淀粉酶可随机地作用于淀粉中的α-1,4-糖苷键,生成葡萄糖、麦芽糖、麦芽三糖、糊精等还原糖,同时使淀粉的粘度降低,因此又称为液化酶。

β-淀粉酶可从淀粉的非还原性末端进行水解,每次水解下一分子麦芽糖,又被称为糖化酶。

淀粉酶催化产生的这些还原糖能使3,5-二硝基水杨酸还原,生成棕红色的3-氨基-5-硝基水杨酸。

淀粉酶活力的大小与产生的还原糖的量成正比。

用标准浓度的麦芽糖溶液制作标准曲线,用比色法测定淀粉酶作用于淀粉后生成的还原糖的量,以单位重量样品在一定时间内生成的麦芽糖的量表示酶活力。

五、具体实验设计1、所需的主要材料、试剂、仪器(1)实验材料:小麦种子(2)实验仪器:离心机、离心管、研钵、电炉、容量瓶(50mL×1,100mL×1)、恒温水浴、分光光度计。

淀粉酶活性测定实验报告

淀粉酶活性测定实验报告

淀粉酶活性测定实验报告淀粉酶活性测定实验报告引言:淀粉酶是一种重要的酶类,它在生物体内起着关键的消化和代谢作用。

淀粉酶能够将淀粉降解为较小的分子,以供生物体吸收和利用。

因此,测定淀粉酶的活性对于了解生物体的消化系统以及酶的功能机制具有重要意义。

本实验旨在通过测定淀粉酶的活性,探究其在不同条件下的变化规律,从而加深对淀粉酶的认识。

材料与方法:1. 实验器材:试管、移液管、恒温水浴、分光光度计。

2. 实验试剂:淀粉溶液、淀粉酶溶液、碘液、磷酸盐缓冲液。

3. 实验步骤:a. 准备一系列稀释淀粉酶溶液,分别为0.1、0.2、0.3、0.4、0.5 mg/mL。

b. 取一定量的淀粉溶液置于试管中,加入相应浓度的淀粉酶溶液,混匀。

c. 将试管置于恒温水浴中,保持温度在37°C,反应10分钟。

d. 在反应结束后,加入适量的磷酸盐缓冲液停止反应。

e. 加入适量的碘液,使溶液变为蓝黑色。

f. 使用分光光度计测定溶液的吸光度,记录下吸光度值。

g. 重复以上步骤,分别测定其他浓度的淀粉酶溶液。

结果与讨论:通过实验测定,我们得到了不同浓度淀粉酶溶液的吸光度值,并以吸光度值作为淀粉酶活性的指标。

根据实验结果,我们可以得出以下结论:1. 淀粉酶活性与浓度呈正相关关系:实验结果显示,随着淀粉酶溶液浓度的增加,吸光度值也随之增加。

这表明淀粉酶的活性与其浓度呈正相关关系。

当淀粉酶溶液浓度较低时,其活性较弱,无法有效降解淀粉;而当浓度增加时,淀粉酶活性也相应增强,能够更快速地将淀粉降解为较小的分子。

2. 淀粉酶活性受温度影响较大:实验中将反应温度保持在37°C,这是因为淀粉酶在人体内的最适温度为37°C。

然而,当温度偏离最适温度时,淀粉酶的活性会受到显著影响。

过高或过低的温度都会导致淀粉酶的构象变化,从而影响其催化效率。

因此,合适的温度对于淀粉酶的活性至关重要。

3. 淀粉酶活性受pH值影响:酶活性与pH值之间存在一定的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淀粉酶活性的测定
一、实验目的
酶的活力是酶的重要参数,反映的是酶的催化能力,因此测定酶活力是研究酶的基础。

酶活力由酶活力单位表征,通过计算适宜条件下一定时间内一定量的酶催化生成产物的量得到。

淀粉酶是水解淀粉的糖苷键的一类酶的总称。

α-淀粉酶是一种典型的内切型淀粉酶,主要作用于淀粉水解的液化阶段,因此又叫液化酶。

作为一种最重要的工业酶制剂,α-淀粉酶广泛存在于动物,植物和微生物中。

其中,微生物α-淀粉酶以其经济易得成为工业生产主要来源。

目前,关于α-淀粉酶活性的测定方法很多种。

本实验采用杨氏改良法测定α-淀粉酶;掌握测定α-淀粉酶活性大小与温度关系的方法,通过分析得出酶的最适温度范围。

二、实验原理
酶促反应中,反应速度达到最大值时的温度和pH值称为某种酶作用时的最适温度和pH值。

温度对酶反应的影响是双重的:一方面随着温度的增加,反应速度也增加,直至最大反应速度为止;另一方面随着温度的不断升高,而使酶逐步变性从而使反应速度降低,其变化趋势呈钟形曲线变化。

不同菌株产生的酶在耐热性、酶促反应的最适温度、PH、对淀粉的水解程度,以及产物的性质等均有差异。

α-淀粉酶属水解酶,作为生物催化剂可随机作用于直链淀粉分子内部的α-1,4糖苷键,迅速地将直链淀粉分子切割为短链的糊精或寡糖,使淀粉的粘度迅速下降,淀粉与碘的反应逐渐消失,这种作用称为液化作用,生产上又称α-淀粉酶为液化淀粉酶。

α-淀粉酶不能水解淀粉支链的α-1,6糖苷键,因此最终水解产物是麦芽糖、葡萄糖和α-1,6键的寡糖。

本实验通过淀粉遇碘显蓝色,淀粉含量越高,颜色越深。

用分管光度计检测显色效应大小,通过分管光度值计算酶活力
注意:实验中为了消除非酶促反应引起的淀粉水解带来的误差,每组实验都做了相应的对照实验,在最终计算酶的活性时以测量组的值减去对照组的值加以
校正。

在实验中要严格控制温度及时间,以减小误差。

并且在酶的作用过程中,三支测定管及空白管不要混淆。

三、材料、试剂与仪器
实验材料:α-淀粉酶
仪器:分光光度计、电热恒温水浴锅、小台秤、研钵、玻璃仪器若干
试剂:
COOH及 HCl:
① NaOH/ CH
3
② %工作碘液:克I
和克KI水中研磨,定容至1000mL;
2
COOH,③1%糊化淀粉溶液:称取克淀粉,加入 NaOH,60℃5min,冷却后加 CH
3定容至100mL;
④稀释α-淀粉酶溶液:待测样品
四、实验步骤
① 10mL1%淀粉溶液加入试管中,室温25/45/65℃保温10min
②于每管中各加酶稀释液1mL,在室温25/45/65℃恒温水浴中(水浴温度的变化不应超过±℃)准确加热10min,冷却。

③加1mL1M盐酸终止反应。

⑤取上述混合液1mL加入预先装好10mL工作碘液的试管,摇匀。

⑥660nm测吸光度(蒸馏水调零),记录数据。

(注:吸光度测定勿漏空白对照
组)
对照组为不加酶液,加相应体积的水
五、数据整理及计算
根据以上的数据整理的结果,结合以下公式计算两种淀粉酶的活性:
酶活=[(D0-D)*100/D0*10]*稀释倍数
D—反应混合液吸光度
D0—对照组吸光度
100—系数(%)
10—反应时间
酶活定义:1克α-淀粉酶单位相当于在pH ,温度25、45、65℃,1 min将浓度为1%的淀粉溶液的显蓝强度降低1%时所需酶量。

相关文档
最新文档