量化投资知识
量化交易和金融工程的基本知识和应用

量化交易和金融工程的基本知识和应用量化交易和金融工程的基本知识和应用随着金融市场的不断变化和发展,传统的金融交易方式已经难以适应市场的快速变化和投资者的需求。
因此,量化交易和金融工程成为新时代的热门话题。
量化交易是一种到目前为止最具创新性的投资策略,利用计算机程序自动执行交易,并通过分析历史数据和市场趋势,找到最有可能带来收益的交易信号。
而金融工程则是利用数学、统计学和计算机科学等方法,将复杂的金融问题转化为可操作的金融产品和交易策略。
量化交易和金融工程的基本知识量化交易的核心是算法交易,即利用计算机程序进行交易。
算法交易可以根据既定的交易策略进行自动交易,不受情绪和偏见的影响。
在算法交易中,各种模型和算法被应用于市场和数据分析,以制定有效的交易策略,并根据市场和经济条件不断优化这些策略。
研究表明,相比于手动交易,算法交易的收益更加稳定。
金融工程则是一种综合了数学、统计学和计算机科学等多学科知识的交叉学科,主要研究金融产品的设计、交易策略和交易风险。
金融工程涉及的领域包括投资组合管理、衍生品定价、股票和其他金融产品的交易策略等。
金融工程的目标在于通过设计金融产品和交易策略,提高投资者的财务收益并降低交易风险。
两者的应用量化交易和金融工程被广泛应用于各种金融市场。
量化交易已经成为一种常见的交易方式,可以在各种金融市场和交易平台上进行。
交易者使用算法来分析市场数据和趋势,从而做出更加准确的决策,优化自己的投资组合并获得更高的收益。
金融工程则可以设计各种金融产品,例如期货、期权、债券等等。
金融工程可以通过分析市场数据和风险因素来制定更加有效的交易策略和投资组合。
同时,金融工程可以针对不同的投资风险程度制定不同的交易策略,从而为投资者提供更加灵活和多样的投资选择。
应用案例量化交易和金融工程的应用成功案例屡见不鲜。
其中一些案例如下:高盛基金从2007年开始将商业贷款出售给投资者,并利用金融工程来设计不同类型的债券产品。
金融建模—金融投资基本知识

谢谢!
一、量化对冲
(二)量化对冲 所谓“量化对冲”其实是“量化”和“对冲”两个概念的结合。
2.对冲
“对冲”的概念最早由Alfred W. Jones 于1949年创立第一只对冲基金时 提出,他认为“对冲”就是通过管理并降低组合系统风险以应对金融市场变化。
资本资产定价模型:E(ri)=rf+βim(E(rm)-rf) 投资组合的期望收益由两部分组成:其中α 收益为投资组合超越 市场基准的收益,β收益为投资组合承担市场系统风险而获得的收益。 虽然优秀的基金经理可以通过选股、择时获得α 收益,但无法避免市 场下跌带来的系统风险。而通过对冲手段可以剥离或降低投资组合的 系统风险(β收益),获取纯粹的α 收益,使得投资组合无论在市场上涨 或下跌时均能获取正收益,因此对冲基金往往追求绝对收益而非相对 收益。
1.量化 “量化”投资是区别于传统“定性”投资而言的。量化投资通过借
助统计学、数学方法,运用计算机从海量历史数据中寻找能够带来超 额收益的多种“大概率”策略,并纪律严明地按照这些策略所构建的 数量化模型来指导投资,力求取得稳定的、可持续的、高于平均的超 额回报,其本质是定性投资的数量化实践。由此可见,所有采用量化 投资策略的产品(包括普通公募基金、对冲基金等等)都可以纳入量化 基金的范畴。量化投资的最大的特点是强调纪律性,即可以克服投资 者主观情绪的影响。
七、量化对冲的常用策略
(三)全球宏观策略 全球宏观策略是一种基于宏观经济周期理论对各国经济增长趋势、
资金流动、财政/货币政策变化等因素进行自上而下的分析,并预期 其对股票、债券、货币、商品、衍生品等各类投资品价格的影响,运 用量化、定性分析方法作出投资决策并在不同国家、不同大类资产之 间进行轮动配置,以期获得稳定收益。
C14070 量化投资基础知识100分答案

试题一、单项选择题1. 相对价值策略的特点是()。
A. 低收益、低风险、大容量B. 高收益、低风险、小容量C. 高收益、高风险、大容量D. 高收益、高风险、小容量您的答案:A题目分数:10此题得分:10.02. 关于金融市场的数学定义,下列说法正确的是()。
A. 数学可以用来描述金融市场B. 把金融市场看成是函数逼近问题时,可以用贝叶斯分类进行计算C. 把金融市场看成是分类问题时,可以用回归分析的方式进行数据分析D. 把金融市场看成是概率问题时,可利用小波分析理论计算概率您的答案:A题目分数:10此题得分:10.0二、多项选择题3. 量化投资具有以下()等优点。
A. 以组合对冲为主,赌大概率事件B. 以机器交易为主,克服人性弱点C. 可进行全市场、全产品、全周期监控,精力无限D. 利用算法交易降低对市场的冲击,实现精细化交易您的答案:B,C,D,A题目分数:10此题得分:10.04. 下列关于量化投资的理解正确的是()。
A. 数据是量化投资的基础要素B. 程序化交易实现量化投资的重要手段C. 量化投资追求的是相对收益D. 量化投资的核心是策略模型您的答案:B,D,A题目分数:10此题得分:10.05. 下列关于股指期货套利的说法正确的是()。
A. 股指期货套利可看作无风险套利B. 股指期货套利是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,以赚取差价的行为C. 股指期货套利策略的核心是冲击成本和保证金管理D. 高速的套利系统是股指期货套利的重要支撑您的答案:B,D,C,A题目分数:10此题得分:10.0三、判断题6. 量化投资的目标是追求绝对收益。
()您的答案:错误题目分数:10此题得分:10.07. 国际知名的对冲基金管理公司桥水公司(BRIDGEWATER)是由物理学博士伊曼纽尔·德曼创立的。
()您的答案:错误题目分数:10此题得分:10.08. 目前比较流行的量化对冲策略建模语言主要有MATLAB和R语言。
股票量化交易的7个策略

股票量化交易的7个策略
鉴于股票量化交易高度复杂,主要包括以下7种策略:
1、价格动量策略:价格动量策略是基于股票价格上涨或下跌的动量,根据价格和成交量发现超额收益。
2、反转策略:反转策略判断价格是支撑或阻力位,假定价格在这一点转向,以获得一定收益。
3、趋势跟踪策略:趋势跟踪策略是基于股票价格的变化发现趋势,并以追踪或延续这一趋势从而获得收益。
4、基准策略:基准策略建立一个投资基准,将股票的收益水平与投资基准作对比,以获得超额收益。
5、对冲策略:对冲策略以投资者的资产作为基准,根据价格波动构建投资组合,以抵消价格波动的影响,最终实现超额收益。
6、套利策略:套利策略是基于投资者利用价格差的差异实现的收益,可以作为有效的风险控制工具,减少投资风险。
7、做多做空策略:做多做空策略是投资者利用价格变化实现利润的方法,可以基于不同的价格水平做多或做空股票,以获得利润。
- 1 -。
量化小知识

量化是一种通过数学模型和统计方法来辅助投资操作的技术。
它依托计算机技术,创造出可以摆脱人性的操作模式。
量化交易在期货市场和A股市场中都有应用,其中期货市场中的量化交易主要是高频交易,而A股市场中的量化交易则以中短线交易为主。
量化的本质是建立高精度浮点数值和量化后低精度的定点数值之间的数据映射。
这种映射关系可以通过线性量化和非线性量化来实现。
线性量化是目前最常用的量化方法,它通过一个公式将输入的浮点数据映射到定点数据上。
而非线性量化则可以根据不同场景的权值输入分布特点,采用不同的映射方式。
量化的作用是可以帮助投资者在交易中获得更多的收益。
通过量化的手段,投资者可以更快地处理数据、更准确地分析市场趋势、更有效地进行风险管理,从而在交易中获得更多的收益。
同时,量化交易也可以减少人的情绪对交易的影响,使得交易更加理性、客观。
总之,量化是一种有效的投资工具,可以帮助投资者更好地把握市场机会,提高交易效率,降低风险。
C14070课后测验量化投资基础知识

C14070课后测验量化投资基础知识一、单项选择题1. 相对价值策略的特点是()。
A. 低收益、低风险、大容量B. 高收益、低风险、小容量C. 高收益、高风险、大容量D. 高收益、高风险、小容量您的答案:A题目分数:10此题得分:10.0批注:2. 关于金融市场的数学定义,下列说法正确的是()。
A. 数学可以用来描述金融市场B. 把金融市场看成是函数逼近问题时,可以用贝叶斯分类进行计算C. 把金融市场看成是分类问题时,可以用回归分析的方式进行数据分析D. 把金融市场看成是概率问题时,可利用小波分析理论计算概率您的答案:A题目分数:10此题得分:10.0批注:二、多项选择题3. 美国对冲基金主要运用的策略包括()。
A. 相对价值策略B. 宏观因素策略C. 事件驱动策略D. 小盘价值策略您的答案:B,C,A题目分数:10此题得分:10.0批注:4. 下列关于量化投资的理解正确的是()。
A. 数据是量化投资的基础要素B. 程序化交易实现量化投资的重要手段C. 量化投资追求的是相对收益D. 量化投资的核心是策略模型您的答案:D,A,B题目分数:10此题得分:10.0批注:5. 下列选项属于主要量化对冲策略的是()。
A. 阿尔法套利B. 股指期货套利C. 商品期货套利D. 期权套利您的答案:B,A,D,C题目分数:10此题得分:10.0批注:三、判断题6. 阿尔法套利是主流的量化对冲策略,Pure Alpha是阿尔法套利的代表性产品。
()您的答案:正确题目分数:10此题得分:10.0批注:7. 投资的核心是小数定律。
()您的答案:正确题目分数:10此题得分:0.0批注:8. 算法交易策略核心是成交量分布的预测。
()您的答案:正确题目分数:10此题得分:10.0批注:9. 对于资产管理而言,高收益率策略是主导策略。
()您的答案:错误题目分数:10此题得分:10.0批注:10. 商品期货套利策略的核心是持仓成本的计算和现货的组织。
量化交易(一文了解量化交易策略)

量化交易策略可以根据交易产品和盈利模式进行分类
按照交易产品分类:量化投资策略主要包括股票策略、CTA策略、期权策略、FOF策略等。
按照盈利模式分类:量化投资策略可以分为单边多空策略、套利策略、对冲策略等。
NO.1 交易产品分类
股票策略:可以进一步细分为Alpha策略和Beta策略。
Beta策略致力于获得绝对收益。
它又可以细分为主观策略和量化策略,包括基于财务和行业研究的主观投资和使用技术指标选股的量化策略。
另一方面,Alpha策略旨在获取超额收益,即跑赢指数,通常采用多因子策略,数据一般来源于基本面数据(如财务)和量价数据。
CTA策略:是交易股指期货、国债期货、大宗商品期货的量化策略,也是当前应用最广泛的策略之一。
FOF策略:则是将资金分散投资于不同的基金,在基金分散投资的基础上进一步分散风险的策略。
NO.2 盈利模式分类
单边多空策略:是指投资者在结合经济周期、宏观趋势、政治事件以及历史数据的基础上,对单个金融工具进行单边买入或单边卖出实现盈利的策略。
套利策略:是基于不同市场之间的价格差异,通过同时在两个或多个市场进行买卖操作以获得利润;而统计套利策略则是基于股票价格的历史波动情况和统计学原理,通过计算股票价格与其历史波动范围之间的差异来判断股票价格是否处于低估或高估状态,从而进行买卖操作。
对冲策略:是一种投资策略,旨在通过同时在股指期货市场和股票市场上进行数量相当、方向相反的交易,以实现盈亏相抵,从而降低甚至消除商业风险的影响。
这种策略可以帮助投资者锁定既得利润或成本,规避股票市场的系统性风险。
量化交易知识体系-概述说明以及解释

量化交易知识体系-概述说明以及解释1.引言1.1 概述量化交易是一种通过运用数学建模和统计分析的方法,在金融市场上进行交易决策的交易策略。
它利用大量的历史数据、统计模型和算法,以及计算机技术来进行交易决策,以期获得更为稳定和可控的投资回报。
随着信息时代的到来,金融市场的竞争日益激烈,传统的人工交易方式已经无法满足投资者对于效率和收益的要求。
相比于传统的主观判断和经验交易,量化交易通过对历史数据的分析和建模,摆脱了主观情绪和个人偏见的影响,从而更加客观、系统地进行交易决策。
其核心理念是通过数据建模和算法优化,找到市场的统计规律,并利用这些规律进行交易,以实现稳定的投资回报。
量化交易的发展已经有数十年的历史,在过去的几十年中,它已经从最初的黑盒交易系统,逐渐发展成了一个庞大而复杂的交易体系。
从最早的技术分析指标到现在的机器学习和人工智能,量化交易借助不断发展的计算机技术和数据处理能力,为投资者带来了更多的机会和选择。
量化交易的优势主要体现在以下几个方面。
首先,量化交易能够消除人为情绪因素的干扰,减少投资者的主观误判。
其次,量化交易能够对更多的信息进行处理和利用,更全面地把握市场动态。
同时,通过科学的建模和分析,量化交易可以在短时间内作出更快速的交易决策。
此外,量化交易还能够实现更为精确的风险控制和资金管理,提升投资组合的稳定性和回报率。
随着科技的不断进步和金融市场的不断变革,量化交易的未来发展趋势也是值得关注的。
一方面,随着机器学习和人工智能的应用,量化交易将更加智能化和自动化,能够更加准确地捕捉市场的细微变动。
另一方面,量化交易还将向更广泛的资产类别和市场扩展,如股票、期货、外汇等。
此外,随着人们对于风险控制和资金管理的重视程度不断提高,量化交易的风险管理模型和策略也将不断优化和改进。
综上所述,量化交易作为一种利用数学建模和统计分析方法的交易策略,具有很强的客观性和系统性。
它通过消除主观情绪、利用大量的历史数据和计算机技术,能够为投资者提供更为稳定和可控的投资回报。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数量化投资是将投资理念及策略通过具体指标、参数的设计,体现到具体的模型中,让模型对市场进行不带任何情绪的跟踪;相对于传统投资方式来说,具有快速高效、客观理性、收益与风险平衡和个股与组合平衡等四大特点。
量化投资技术几乎覆盖了投资的全过程,包括估值与选股、资产配置与组合优化、订单生成与交易执行、绩效评估和风险管理等,在各个环节都有不同的方法及量化模型:一、估值与选股估值:对上市公司进行估值是公司基本面分析的重要方法,在“价值投资”的基本逻辑下,可以通过对公司的估值判断二级市场股票价格的扭曲程度,继而找出价值被低估或高估的股票,作为投资决策的参考。
对上市公司的估值包括相对估值法和绝对估值法,相对估值法主要采用乘数方法,如PE估值法、PB估值法、PS估值法、PEG估值法、PSG估值法、EV/EBITDA估值法等;绝对估值法主要采用折现的方法,如公司自由现金流模型、股权自由现金流模型和股利折现模型等。
相对估值法因简单易懂,便于计算而被广泛使用;绝对估值法因基础数据缺乏及不符合模型要求的全流通假设而一直处于非主流地位。
随着全流通时代的到来和国内证券市场的快速发展,绝对估值法正逐渐受到重视。
选股:在当前品种繁多的资本市场中,从浩瀚复杂的数据背后选出适合自己投资风格的股票变得越加困难。
在基本面研究的基础上结合量化分析的手段就可以构建数量化选股策略,主流的选股方法如下:资产配置方法与模型资产配置类别资产配置层次资产配置方法资产配置模型战略资产配置全球资产配置大类资产配置行业风格配置收益测度风险测度估计方法马克维茨MV 模型均值-LPM 模型VaR 约束模型Black-Litterman 模型战术资产配置( 动态资产配置) 周期判断风格判断时机判断行业轮动策略风格轮动策略Alpha 策略投资组合保险策略基本面选股:通过对上市公司财务指标的分析,找出影响股价的重要因子,如:与收益指标相关的盈利能力、与现金流指标相关的获现能力、与负债率指标相关的偿债能力、与净资产指标相关的成长能力、与周转率指标相关的资产管理能力等。
然后通过建立股价与因子之间的关系模型得出对股票收益的预测。
股价与因子的关系模型分为结构模型和统计模型两类:结构模型给出股票的收益和因子之间的直观表达,实用性较强,包括价值型(本杰明·格雷厄姆—防御价值型、查尔斯·布兰迪—价值型等)、成长型(德伍·切斯—大型成长动能、葛廉·毕克斯达夫—中大型成长股等)、价值成长型(沃伦·巴菲特—优质企业选择法、彼得·林奇—GARP价值成长法等)三种选股方法;统计模型是用统计方法提取出近似线性无关的因子建立模型,这种建模方法因不需先验知识且可以检验模型的有效性,被众多经济学家推崇,包括主成分法、极大似然法等。
多因素选股:通过寻找引起股价共同变动的因素,建立收益与联动因素间线性相关关系的多因素模型。
影响股价的共同因素包括宏观因子、市场因子和统计因子(通过统计方法得到)三大类,通过逐步回归和分层回归的方法对三类因素进行选取,然后通过主成分分析选出解释度较高的某几个指标来反映原有的大部分信息。
多因素模型对因子的选择有很高的要求,因子的选择可依赖统计方法、投资经验或二者的结合,所选的因子要有统计意义上或市场意义上的显著性,一般可从动量、波动性、成长性、规模、价值、活跃性及收益性等方面选择指标来解释股票的收益率。
动量、反向选股:动量选股策略是指分析股票在过去相对短期的表现,事先对股票收益和交易量设定条件,当条件满足时买进或卖出股票的投资策略,该投资策略基于投资者对股票中期的反应不足和保守心理,在投资行为上表现为购买过去几个月表现好的股票而卖出过去几个月表现差的股票。
反向选股策略则基于投资者的锚定和过度自信的心理特征,认为投资者会对上市公司的业绩状况做出持续过度反应,形成对业绩差的公司业绩过分低估和业绩的好公司业绩过分高估的现象,这为投资者利用反向投资策略提供了套利机会,在投资行为上表现为买进过去表现差的股票而卖出过去表现好的股票。
反向选股策略是行为金融学理论发展至今最为成熟,也是最受关注的策略之一。
二、资产配置资产配置指资产类别选择、投资组合中各类资产的配置比例以及对这些混合资产进行实时管理。
资产配置一般包括两大类别、三大层次,两大类别为战略资产配置和战术/动态资产配置,三大层次为全球资产配置、大类资产配置和行业风格配置。
资产配置的主要方法及模型如下:战略资产配置针对当前市场条件,在较长的时间周期内控制投资风险,使得长期风险调整后收益最大化。
战术资产配置通常在相对较短的时间周期内,针对某种具体的市场状态制定最优配置策略,利用市场短期波动机会获取超额收益。
因此,战术资产配置是在长期战略配置的过程中针对市场变化制定的短期配置策略,二者相互补充。
战略资产配置为未来较长时间内的投资活动建立业务基准,战术资产配置通过主动把握投资机会适当偏离战略资产配置基准,获取超额收益。
三、股价预测股价的可预测性与有效市场假说密切相关。
如果有效市场假说成立,股价就反映了所有相关的信息,价格变化服从随机游走,股价的预测就毫无意义,而我国的股市远未达到有效市场阶段,因此股价时间序列不是序列无关,而是序列相关的,即历史数据对股价的形成起作用,因此可以通过对历史信息的分析来预测股价。
主流的股价预测模型有灰色预测模型、神经网络预测模型和支持向量机预测模型(SVM)。
灰色预测模型对股价的短期变化有很强的预测能力,近年发展起来的灰色预测模型包括GM(1, 1)模型、灰色新陈代谢模型和灰色马尔可夫模型。
人工神经网络模型具有巨量并行性、存储分布性、结构可变性、高度非线性和自组织性等特点,且可以逼近任何连续函数,目前在金融分析和预测方面已有广泛的应用,效果较好。
支持向量机模型在解决小样本、非线性及高维模式识别问题中有许多优势,且结构简单,具有全局优化性和较好的泛化能力,比神经网络有更好的拟合度。
四、绩效评估作为集合投资、风险分散、专业化管理、变现性强等特点的投资产品,基金的业绩虽然受到投资者的关注,但要对基金有一个全面的评价,则需要考量基金业绩变动背后的形成原因、基金回报的来源等因素,绩效评估能够在这方面提供较好的视角与方法,风险调整收益、择时/股能力、业绩归因分析、业绩持续性及Fama的业绩分解等指标和方法可从不同的角度对基金的绩效进行评估。
绩效评估模型/ 指标绩效评估准则择时/ 股能力业绩归因分析风险调整收益业绩持续性Fama 业绩分解模型/ 指标T-M 模型H-M 模型GII 模型C-L 模型资产配置收益证券选择收益行业选择收益行业内个股选择收益RAROCSharp, StutzerTreynor, Jensen, ,双向表分析时间序列相关性总风险收益系统风险收益分散化投资收益五、基于行为金融学的投资策略上世纪50~70年代,随着马科维茨组合理论、CAPM模型、MM 定理及有效市场假说的提出,现代金融经济学建立了一套成熟的理论体系,并且在学术界占据了主导地位,也被国际投资机构广泛应用和推广,但以上传统经济学的理论基石是理性人假设,在理性人假设下,市场是有效率的,但进入80年代以后,关于股票市场的一系列研究和实证发现了与理性人假设不符合的异常现象,如:日历效应、股权溢价之谜、期权微笑、封闭式基金折溢价之谜、小盘股效应等。
面对这些金融市场的异常现象,诸多研究学者从传统金融理论的基本假设入手,放松关于投资者是完全理性的严格假设,吸收心理学的研究成果,研究股市投资者行为、价格形成机制与价格表现特征,取得了一系列有影响的研究成果,形成了具有重要影响力的学术流派-行为金融学。
行为金融学是对传统金融学理论的革命,也是对传统投资实践的挑战。
随着行为金融理论的发展,理论界和投资界对行为金融理论和相关投资策略作了广泛的宣传和应用,好买认为,无论机构投资者还是个人投资者,了解行为金融学的指导意义在于:可以采取针对非理性市场行为的投资策略来实现投资目标。
在大多数投资者认识到自己的错误以前,投资那些定价错误的股票,并在股价正确定位之后获利。
目前国际金融市场中比较常见且相对成熟的行为金融投资策略包括动量投资策略、反向投资策略、小盘股策略和时间分散化策略等。
六、程序化交易与算法交易策略根据NYSE的定义,程序化交易指任何含有15只股票以上或单值为一百万美元以上的交易。
程序化交易强调订单是如何生成的,即通过某种策略生成交易指令,以便实现某个特定的投资目标。
程序化交易主要是大机构的工具,它们同时买进或卖出整个股票组合,而买进和卖出程序可以用来实现不同的目标,目前程序化交易策略主要包括数量化程序交易策略、动态对冲策略、指数套利策略、配对交易策略和久期平均策略等。
算法交易,也称自动交易、黑盒交易或无人值守交易,是使用计算机来确定订单最佳的执行路径、执行时间、执行价格及执行数量的交易方法,主要针对经纪商。
算法交易广泛应用于对冲基金、企业年金、共同基金以及其他一些大型的机构投资者,他们使用算法交易对大额订单进行分拆,寻找最佳路由和最有利的执行价格,以降低市场的冲击成本、提高执行效率和订单执行的隐蔽性。
任何投资策略都可以使用算法交易进行订单的执行,包括做市、场内价差交易、套利及趋势跟随交易。
算法交易在交易中的作用主要体现在智能路由、降低冲击成本、提高执行效率、减少人力成本和增加投资组合收益等方面。
主要的算法包括:交易量加权平均价格算法(VWAP)、保证成交量加权平均价格算法(Guaranteed VWAP)、时间加权平均价格算法(TWAP)、游击战算法(Guerrilla)、狙击手算法(Sniper)、模式识别算法(Pattern Recognition)等。
综上所述,数量化投资技术贯穿基金的整个投资流程,从估值选股、资产配置到程序化交易与绩效评估等。
结合量化投资的特点及我国证券市场的现状,好买认为量化投资技术在国内基金业中的应用将主要集中在量化选股、资产配置、绩效评估与风险管理、行为金融等方面,而随着包括基金在内的机构投资者占比的不断提高、衍生品工具的日渐丰富(股指期货、融资融券等)以及量化投资技术的进步,基金管理人的投资策略将会越来越复杂,程序化交易(系统)也将有快速的发展。
七、对冲基金1. 对冲基金的英文名称为Hedge Fund,意为"风险对冲过的基金",起源于50年代初的美国。
其操作的宗旨,在于利用期货、期权等金融衍生产品以及对相关联的不同股票进行实买空卖、风险对冲的操作技巧,在一定程度上可规避和化解投资风险。
在最基本的对冲操作中,基金管理者在购入一种股票后,同时购入这种股票的一定价位和时效的看跌期权(Put Option)。