函数专题:数学归纳法

合集下载

函数的连续性、数学归纳法

函数的连续性、数学归纳法

课时5 函数的连续性一、复习目标了解函数连续的意义,理解闭区间上连续函数有最大值最小值的性质. 二、例题讲解例1.已知函数⎩⎨⎧>≤=)1|(|1)1|(|)(x x x x f 且有如下结论:①)(x f 在点1=x 处连续;②)(x f 在点1-=x 处连续;③)(x f 在点1=x 处极限不存在;④)(x f 在点1-=x 处极限不存在.其中正确的有___①④___.例2.指出下列函数的不连续点:(1)231)(22+--=x x x x f ;(2)x x x f tan )(=;⎩⎨⎧>-≤-=)1(,3)1(,1)(x x x x x f .解:(1)由0232=+-x x ,得2,1==x x ,所以函数的不连续点为2,1==x x . (2)当)(Z k k x ∈=π时,0tan =x ,分母为0,当)(2Z k k x ∈+=ππ,x tan 不存在,所以函数的不连续点为πk x =和)(2Z k k x ∈+=ππ.例3.设⎪⎪⎩⎪⎪⎨⎧<<=<<=),21(1),1(21),10()(x x x x x f(1)求)(x f 在点1=x 处的左、右极限.函数)(x f 在1=x 处是否有极限? (2)函数)(x f 在点1=x 处是否连续? (3)确定函数)(x f 的连续区间.解:(1).11lim )(lim ,1lim )(lim 1111====++--→→→→x x x x x f x x f ∵)(lim )(lim 11x f x f x x +-→→=, ∴函数函数)(x f 在1=x 处极限存在,且1)(lim 1=→x f x .(2)∵1)(lim 1=→x f x ,且21)1(=f ,∴)1()(lim 1f x f x ≠→.∴函数)(x f 在点1=x 处不不连续. (3)函数)(x f 的连续区间是(0,1),(1,2).例4.设函数⎪⎩⎪⎨⎧=≠-=)3(6sin )3)(1(log )(22x x k x x x f π,在3=x 处连续,试确定k 的值. 解:∵3)1(log lim )(lim 2233=-=→→x x f x x ,又k k f =⋅=)36s i n ()3(π,而在3=x 处连续,∴)3()(lim 3f x f x =→,即3=k三、同步练习:《高考三人行—学生用书》P344课时6 数学归纳法一、复习目标掌握数学归纳法证题的两个步骤,能运用数学归纳法证题,有初步的猜想归纳能力. 二、例题讲解例1.设)(21312111)(*N n nn n n n f ∈+++++++= ,那么)()1(n f n f -+等于( D ) A .121+n B .221+n C .121+n +221+n D .121+n -221+n例2.某个命题与正整数有关,若)(*N k k n ∈=时,该命题成立,那么可推得当1+=k n 时该命题也成立,现已知当5=n 时该命题不成立,那么可推得( )A .当6=n 时该命题不成立B .当6=n 时该命题成立C .当4=n 时该命题不成立D .当4=n 时该命题成立解:如果4=n 时命题成立,那么由题设,5=n 时命题也成立.上面的判断作为一个命题,那么它的逆否命题是:如果5=n 时命题不成立,那么4=n 时命题也不成立.原命题成立,它的逆否命题一定成立,故选C.例3.*N n ∈,求证:nn n n n 212111211214131211+++++=--++-+- .证明:略例4.证明不等式:*)(2131211N n n n∈<++++证明:略例5.已知93)72()(+⋅+=n n n f ,是否存在自然数m ,使得对任意,都能使m 整除)(n f ,如果存在,求出最大的m 值,并证明你的结论;若不存在,说明理由.解:1224)4(,360)3(,108)2(,36)1(====f f f f ,猜想能整除)(n f 的最大整数是36. 下面证明)(n f 能被36整除,(1)当1=n 时,36)1(=f 能被36整除;(2)假设当k n =时,)(k f 能被36整除,则当1+=k n 时,)13(18]93)72[(393]7)1(2[)1(11-++⋅+=+⋅++=+-+k k k k k k f由归纳假设]93)72[(3+⋅+kk 能被36整除,而131--k 时偶数,∴)13(181--k 能被36整除,∴)1(+k f 能被36整除. 由(1)、(2)得)(n f 能被36整除,由于36)1(=f ,所以能整除)(n f 的最大整数是36.三、同步练习:已知点的序列)0,(n n x A ,*N n ∈,其中)0(,021>==a a x x ,3A 是线段21A A 的中点,4A 是线段32A A 的,…,n A 是线段12--n n A A 的中点,….(1)写出n x 与1-n x 、2-n x 之间的关系式(3≥n );(2)设n n n x x a -=+1,计算321,,a a a ,由此推测数列}{n a 的通项公式,并加以证明; (3)求.解:(1)当3≥n 时,221--+=n n n x x x . (2)22,1212232121ax x x x x a x x a -=-+=-==-= 42323343ax x x x x a =-+=-=,由此猜测)()21(*1N n a a n n ∈-=-.证法一:因为01>=a a ,且2221111---+-=--=-+=-=n n n n n nn n n ax x x x x x x a (2≥n ),所以)()21(*1N n a a n n ∈-=-.证法二:数学归纳法(3)当3≥n 时,有112211)()()(x x x x x x x x n n n n n +-++-+-=--- 121a a a n n +++=-- , 由(2)知}{n a 是公比为21-的等比数列,所以a a x n n 32211lim 1=+=∞→.。

数学思想方法专题二(待定系数法、定义法数学归纳法)

数学思想方法专题二(待定系数法、定义法数学归纳法)

数学思想方法专题二(待定系数法、定义法)一.待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等。

待定系数法解题的关键是依据已知,正确列出等式或方程。

使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。

例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。

使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。

如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。

例1已知函数y=mx x nx22431+++的最大值为7,最小值为-1,求此函数式。

例2.设抛物线经过两点(-1,6)和(-1,-2),对称轴与x轴平行,开口向右,直线y=2x+7和抛物线截得的线段长是410, 求抛物线的方程。

练习一1.设f(x)=x2+m,f(x)的反函数f 1(x)=nx-5,那么m、n的值依次为_____。

A. 52, -2 B. -52, 2 C.52, 2 D. -52,-22.二次不等式ax2+bx+2>0的解集是(-12,13),则a+b的值是_____。

A. 10B. -10C. 14D. -143.在(1-x3)(1+x)10的展开式中,x5的系数是_____。

高一知识点归纳数学公式总结大全

高一知识点归纳数学公式总结大全

高一知识点归纳数学公式总结大全一、代数与函数1. 二次方程的解法:- 一元二次方程 ax²+bx+c=0 的解法为:x = (-b±√(b²-4ac))/(2a)。

- 当 b²-4ac = 0 时,方程有一个重根;当 b²-4ac > 0 时,方程有两个不等实根;当 b²-4ac < 0 时,方程有两个共轭复根。

2. 一次函数的斜率与截距:- 一次函数的标准方程为 y = kx + b,其中 k 为直线的斜率,b 为直线与 y 轴的截距。

- 两点 (x₁, y₁) 和 (x₂, y₂) 间的斜率 k = (y₂-y₁)/(x₂-x₁)。

3. 二次函数的顶点和轴对称:- 二次函数的标准方程为 y = ax²+bx+c,其中 (h, k) 表示顶点的坐标。

- 顶点的 x 坐标为 h = -b/(2a),y 坐标为 k = ah²+bh+c。

- 二次函数的图像关于直线 x = -b/(2a) 对称。

4. 绝对值函数的性质:- 绝对值函数 f(x) = |x| 分两段定义,当 x>=0 时,f(x) = x;当 x<0 时,f(x) = -x。

- 绝对值函数的图像为以原点为对称中心的 V 字形曲线。

- 绝对值函数是奇函数,即 f(x) = -f(-x)。

5. 指数函数的运算性质:- 指数函数aⁿ⁽⁻ᵐ⁾= aⁿ/aᵐ,aⁿ⋅aᵐ= aⁿ⁺ᵐ。

- 指数函数aⁿ/aⁿ⁽⁻ᵐ⁾ = aᵐ。

- 指数函数(aⁿ)ᵐ= aⁿ⁻ᵐ。

二、数列与数学归纳法1. 等差数列的通项公式:- 等差数列的通项公式为 an = a₁+(n-1)d,其中 a₁为首项,d 为公差,an 表示第 n 项。

2. 等差数列的前 n 项和公式:- 等差数列的前 n 项和公式为 Sn = (a₁+an)n/2,其中 Sₙ 表示前 n 项和。

3. 等比数列的通项公式:- 等比数列的通项公式为 an = a₁⋅r⁽ⁿ⁻¹⁾,其中 a₁为首项,r 为公比,an 表示第 n 项。

高中数学:函数解析式的十一种方法

高中数学:函数解析式的十一种方法

高中数学:函数解析式的十一种方法一、定义法 二、待定系数法 三、换元(或代换)法 四、配凑法 五、函数方程组法七、利用给定的特性求解析式.六、特殊值法 八、累加法 九、归纳法 十、递推法 十一、微积分法一、定义法:【例1】设23)1(2+-=+x x x f ,求)(x f .2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2++-+x x 65)(2+-=∴x x x f【例2】设21)]([++=x x x f f ,求)(x f . 【解析】设xx x x x x f f ++=+++=++=111111121)]([xx f +=∴11)(【例3】设33221)1(,1)1(x x x x g x x x x f +=++=+,求)]([x g f .【解析】2)(2)1(1)1(2222-=∴-+=+=+x x f x x x x x x f又x x x g x x x x xx x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([24623-+-=--=x x x x x x g f【例4】设)(sin ,17cos )(cos x f x x f 求=.【解析】)2(17cos )]2[cos()(sin x x f x f -=-=ππx x x 17sin )172cos()1728cos(=-=-+=πππ.二、待定系数法:在已知函数解析式的构造时,可用待定系数法。

【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则bab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知1392)2(2+-=-x x x f ,求)(x f .【解析】显然,)(x f 是一个一元二次函数。

高二数学公式总结

高二数学公式总结

高二数学公式总结高二数学公式总结一、函数与方程1. 一次函数:y = kx + b,其中k为斜率,b为截距。

2. 二次函数:y = ax^2 + bx + c,其中a为二次项系数,b为一次项系数,c为常数项。

3. 反函数:若y = f(x),则x = f^(-1)(y)。

4. 三角函数:正弦函数sin(x),余弦函数cos(x),正切函数tan(x),余切函数cot(x)。

5. 幂函数:y = x^a,其中a为常数。

6. 对数函数:y = loga(x),其中a为底数。

7. 指数函数:y = a^x,其中a为底数。

二、数列与数学归纳法1. 等差数列通项公式:an = a1 + (n-1)d,其中a1为首项,d为公差。

2. 等比数列通项公式:an = a1 * q^(n-1),其中a1为首项,q为公比。

3. 等差数列前n项和公式:Sn = n/2 * (a1 + an),其中n为项数,a1为首项,an为第n项。

4. 等比数列前n项和公式:Sn = a1 * (1 - q^n) / (1 - q),其中n为项数,a1为首项,q为公比。

5. 数学归纳法:若能证明当n=k时命题成立,且当n=k+1时,命题成立,则对于所有自然数n,命题均成立。

三、几何1. 相似三角形:如果两个三角形的对应角相等,对应边成比例,则它们是相似三角形。

2. 正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应的角度。

3. 余弦定理:c^2 = a^2 + b^2 - 2ab*cosC,其中a、b、c为三角形的边长,C为夹角。

4. 钝角余弦定理:c^2 > a^2 + b^2 - 2ab*cosC。

5. 射影定理:在直角三角形中,斜边上的垂直射影等于斜边与直角边的乘积。

6. 平行四边形性质:对角线互相平分,对角线互相交于中点,对角线长度平方和等于边长平方和的两倍。

7. 三角形面积公式:S = 1/2 * a * b * sinC,其中a、b为两边长,C为夹角。

如何合理利用数学归纳法得出结论

如何合理利用数学归纳法得出结论

如何合理利用数学归纳法得出结论一、数学归纳法的基本概念知识点:数学归纳法的定义知识点:数学归纳法的基本步骤知识点:数学归纳法的适用范围二、数学归纳法的步骤及应用知识点:验证基础情况知识点:假设命题在某一情况下成立知识点:证明命题在下一情况下也成立知识点:归纳结论三、数学归纳法的常见题型知识点:数列问题知识点:函数问题知识点:几何问题知识点:组合问题四、数学归纳法的解题技巧知识点:善用数学归纳法的性质知识点:灵活运用数学归纳法知识点:注意归纳假设的合理性知识点:避免数学归纳法的滥用五、数学归纳法在实际应用中的案例分析知识点:求解等差数列的求和公式知识点:证明恒等式知识点:解决函数的性质问题知识点:分析几何图形的性质六、数学归纳法在学习中的重要性知识点:培养逻辑思维能力知识点:提高数学证明能力知识点:锻炼问题解决能力知识点:深化对数学知识的理解七、数学归纳法的拓展与延伸知识点:数学归纳法的变种知识点:数学归纳法与其他证明方法的结合知识点:数学归纳法在高等数学中的应用知识点:数学归纳法是一种强大的数学证明方法知识点:掌握数学归纳法的步骤和应用知识点:善于运用数学归纳法解决实际问题知识点:不断探索数学归纳法的拓展与延伸习题及方法:1.习题:证明对于所有的自然数n,等式n^2 + n + 41总是能够被41整除。

解答思路:使用数学归纳法,首先验证基础情况n=0时等式成立,然后假设对于某个自然数k,等式成立,即k^2 + k + 41能被41整除,接着证明当n=k+1时等式也成立。

答案:等式n^2 + n + 41可以被41整除。

2.习题:求解等差数列1, 3, 5, …, 2n+1的和。

解答思路:使用数学归纳法,首先验证基础情况n=1时等式成立,即1=1,然后假设对于某个自然数k,等式成立,即1+3+5+…+(2k+1)=k^2+k,接着证明当n=k+1时等式也成立。

答案:等差数列1, 3, 5, …, 2n+1的和为n^2 + n。

数学归纳法(各种全)

数学归纳法(各种全)

解:设椭圆221mx ny +=,则4191m n m n +=⎧⎨+=⎩,解得335835m n ⎧=⎪⎪⎨⎪=⎪⎩,所以椭圆方程为223813535x y +=.六、数学归纳法(一)数学归纳法应用关于正整数的命题的证明可以用数学归纳法.本部分的数学归纳法指的是第一数学归纳法.第一数学归纳法的思维方法是:命题在1n =成立的条件下,如果n k =时命题成立能够推出1n k =+时命题也成立,我们就可以下结论,对于任意正整数命题都成立.1.证明等式典型例题:证明222112(1)(21)6n n n n ++⋅⋅⋅+=++,其中n N *∈.证明:(1)当1n =时,左边211==,右边11(11)(21)16=⨯⨯++=,等式成立.(2)假设n k =时等式成立,即222112(1)(21)6k k k k ++⋅⋅⋅+=++.则当1n k =+时,左边22222112(1)(1)(21)(1)6k k k k k k =++⋅⋅⋅+++=++++1(1)(2)(23)6k k k =+++1(1)[(1)1][2(1)1]6k k k =+++++=右边,即1n k =+时等式成立.根据(1)(2)可知,等式对于任意n N *∈都成立.2.证明不等式典型例题 1.证明1111223n n+++⋅⋅⋅+<,其中n N *∈.证明:(1)当1n =时,左边1=,右边2=,不等式成立.(2)假设n k =时不等式成立,即1111223k k+++⋅⋅⋅+<,则当1n k =+时,左边11111122311k k k k =+++⋅⋅⋅++<+++,右边21k =+.要证左边<右边,536只需证12211k k k +<++,而此式2112(1)k k k ⇔++<+2121k k k ⇔+<+24(1)(21)01k k k ⇔+<+⇔<,显然01<成立,故1n k =+时不等式也成立.综上所述,不等式对任意n N *∈都成立.典型例题2.已知,0a b >,a b ≠,n N ∈,2n ≥,证明()22n nn a b a b ++<.证明:(1)当2n =时,2222222222()2442a b a ab b a b a b +++++=<=,不等式成立.(2)假设n k =时不等式成立,即()22k kk a b a b ++<,则当1n k =+时,左边1()2k a b ++11224k k k k k k a b a b a b a b ab +++++++<⋅=,因为11()()k k k ka b a b ab +++-+()()k k a b a b =--0>,所以11k k k k a b ab a b +++<+,则111142k k k k k k a b a b ab a b ++++++++<,即111()22k k k a b a b +++++<,故1n k =+时不等式也成立.由(1)(2)可知,不等式对任意n N ∈,2n ≥都成立.3.证明整除性问题典型例题:证明22nn ab -能被a b +整除,其中n N *∈.证明:(1)当1n =时,显然22a b -能被a b +整除.(2)假设n k =时命题成立,即22k k a b -能被a b +整除,则当1n k =+时,2(1)2(1)2(1)2(1)2222k k k k k k a b a b a b a b ++++-=-+-222222()()k k k a a b b a b =-+-,因为22a b -与22k k a b -都能被a b +整除,所以222222()()k kk a a b b a b -+-能被a b +整除,即1n k =+时命题也成立.综上所述,原命题成立.4.证明几何问题典型例题:求证平面内n 条直线的交点最多有1(1)2n n -个.证明:平面内n 条直线的交点最多,只需任意三条直线不过同一点,任意两条直线不平行,下面在此条件下证明.(1)当2n =时,显然两条直线只有1个交点,而1(1)12n n -=,命题成立.537(2)假设n k =时命题成立,即平面内k 条直线的交点有1(1)2k k -个,则当1n k =+即平面上有1k +条直线时,因为任意三条直线不过同一点,任意两条直线不平行,所以第1k +条直线与原来的k 条直线共有k 个交点.这时交点的总个数为1(1)2k k k-+1(1)[(1)1)]2k k =++-,即1n k =+时命题也成立.综上所述,原命题成立.(二)其他数学归纳法除了第一数学归纳法以外,还有一些特别的数学归纳法.1.第二数学归纳法典型例题:设n N *∈,且12cos x x α+=,证明:12cos n n x n x α+=.证明:(1)当1n =时,12cos x xα+=,命题成立.当2n =时,21()x x +2212x x =++24cos α=,得2212cos 2x xα+=,命题成立.(2)假设n k ≤(2)k ≥时命题成立,则当1n k =+时,有111k k x x +++11111()()()k k k k x x x x x x--=++-+2cos 2cos 2cos(1)k k ααα=⋅--2[cos(1)cos(1)]2cos(1)k k k ααα=++---2cos(1)k α=+,故1n k =+时不等式也成立.由(1)(2)可知,命题成立.2.反向数学归纳法典型例题:函数:f N N **→满足(1)(2)2f =,(2)对任意正整数m 、n ,()()()f mn f m f n =,(3)当m n >时,()()f m f n >;证明:()f n n =.证明:令2m =、1n =,则(2)(2)(1)f f f =,故(1)1f =.令2m =、2n =,则22(2)(2)(2)2f f f ==;令22m =、2n =,则323(2)(2)(2)2f f f ==;由第一数学归纳法易证(2)2mmf =.下面用反向数学归纳法证()f n n =.(1)由上面推证知,存在无数个形如2m的数使()f n n =成立.(2)假设1n k =+时成立,即(1)1f k k +=+.因为存在t N *∈满足1212t t k +<+≤,则122t t k +≤<.设2t k s =+,s N *∈,则1112(2)(21)(22)(2)(21)(2)2t t t t t t t t f f f f s f f +++=<+<+<⋅⋅⋅<+<⋅⋅⋅<-<=.所以1(21),(22),,(2),,(21)t t t t f f f s f +++⋅⋅⋅+⋅⋅⋅-是区间1(2,2)t t +内的21t -个不同的自然数,538而区间1(2,2)t t +内恰好有21t -个不同的自然数121,22,,2,,21t t t t s +++⋅⋅⋅+⋅⋅⋅-,于是11(21)21,(22)22,,(21)21t t t t t t f f f +++=++=+⋅⋅⋅-=-,即()f k k =.由反向数学归纳法知,对任意n N *∈都有()f n n =.3.跷跷板数学归纳法典型例题:n S 是数列{}n a 的前n 项和,设223n a n =,213(1)1n a n n -=-+,n N *∈,求证:2211(431)2n S n n n -=-+及221(431)2n S n n n =++.证明:设()P n :2211(431)2n S n n n -=-+;()Q n :221(431)2n S n n n =++.(1)当1n =时,111S a ==,则(1)P 成立.(2)假设n k =时,则()P k 成立,即2211(431)2k S k k k -=-+,则2212k k k S S a -=+=221(431)32k k k k -++21(431)2k k k =++,即()Q k 成立.当()Q k 成立时,21k S +=221k k S a ++21(431)3(1)12k k k k k =+++++21(1)[4(1)3(1)1]2k k k =++-++,即(1)P k +成立.由跷跷板数学归纳法可知,原命题成立.4.二重数学归纳法典型例题:设(,)f m n 满足(,)(,1)(1,)f m n f m n f m n ≤-+-,其中,m n N *∈,1mn >,且(,1)(1,)1f m f n ==,证明:12(,)m m n f m n C -+-≤.证明:设命题(,)P m n 表示(,)f m n .(1)112(,1)1m m f m C -+-==,012(1,)1n f n C +-==,即(,1)P m 、(1,)P n 成立.(2)假设(1,)P m n +、(,1)P m n +成立,即1(1,)m m n f m n C +-+≤,11(,1)m m n f m n C -+-+≤.则(1,1)(1,)(,1)f m n f m n f m n ++≤+++11111(1)(1)2m m m m m n m n m n m n C C C C -+++-+-++++-≤+==,即(1,1)P m n ++也成立.由二重数学归纳法知,原不等式成立.539。

高中奥数_函数 不等式 数列 极限 数学归纳法

高中奥数_函数 不等式 数列 极限 数学归纳法

函数 不等式 数列 极限 数学归纳法一 能力培养1,归纳-猜想-证明 2,转化能力 3,运算能力 4,反思能力 二 问题探讨问题1数列{n a }满足112a =,212n n a a a n a ++⋅⋅⋅+=,(n N *∈). (I)求{n a }的通项公式; (II)求1100nn a -的最小值; (III)设函数()f n 是1100nn a -与n 的最大者,求()f n 的最小值.问题2已知定义在R 上的函数()f x 和数列{n a }满足下列条件:1a a =,1()n n a f a -= (n =2,3,4,⋅⋅⋅),21a a ≠,1()()n n f a f a --=1()n n k a a --(n =2,3,4,⋅⋅⋅),其中a 为常数,k 为非零常数.(I)令1n n n b a a +=-(n N *∈),证明数列{}n b 是等比数列; (II)求数列{n a }的通项公式; (III)当1k <时,求lim n n a →∞.问题3已知两点M (1,0)-,N (1,0),且点P 使MP MN ⋅ ,PM PN ⋅ ,NM NP ⋅成公差小于零的等差数列.(I)点P 的轨迹是什么曲线? (II)若点P 坐标为00(,)x y ,记θ为PM 与PN的夹角,求tan θ.三 习题探讨 选择题1数列{}n a 的通项公式2n a n kn =+,若此数列满足1n n a a +<(n N *∈),则k 的取值范围是A,2k >- B,2k ≥- C,3k ≥- D,3k >- 2等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S nT n =+,则n na b = A,23 B,2131n n -- C,2131n n ++ D,2134n n -+ 3已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是A,1(0,2+B,1(2C,1[1,2D,11(22- 4在等差数列{}n a 中,1125a =,第10项开始比1大,记21lim ()n n n a S t n →∞+=,则t 的取值范围是A,475t > B,837525t <≤ C,437550t << D,437550t <≤5设A 11(,)x y ,B 22(,)x y ,C 33(,)x y 是椭圆22221x y a b+=(0a b >>)上三个点,F 为焦点,若,,AF BF CF 成等差数列,则有A,2132x x x =+ B,2132y y y =+ C,213211x x x =+ D,2213x x x =⋅ 6在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为 第三项,9为第六项的等比数列的公比,则这个三角形是A,钝角三角形 B,锐角三角形 C,等腰直角三角形 D,以上都不对 填空7等差数列{}n a 前n (6n >)项和324n S =,且前6项和为36,后6项和为180,则n = .8223323232323236666n nn n S ++++=+++⋅⋅⋅+,则lim n n S →∞= . 9在等比数列{}n a 中,121lim()15n n a a a →∞++⋅⋅⋅+=,则1a 的取值范围是 . 10一个数列{}n a ,当n 为奇数时,51n a n =+;当n 为偶数时,22n n a =.则这个数列的前2m 项之和2m S = .11等差数列{}n a 中,n S 是它的前n 项和且67S S <,78S S >,则①此数列的公差0d <,②96S S <,③7a 是各项中最大的一项,④7S 一定是n S 中的最大项,其中正确的是 . 解答题12已知23123()nn f x a x a x a x a x =+++⋅⋅⋅+,且123,,n a a a a ⋅⋅⋅组成等差数列(n 为正偶数). 又2(1)f n =,(1)f n -=,(I)求数列的通项n a ;(II)试比较1()2f 与3的大小,并说明理由.13已知函数2()31f x x bx =++是偶函数,()5g x x c =+是奇函数,正数数列{}n a 满足11a =,211()()1n n n n n f a a g a a a +++-+=.(I)若{}n a 前n 项的和为n S ,求lim n n S →∞;(II)若12()()n n n b f a g a +=-,求n b 中的项的最大值和最小值.14. 已知等比数列{}n x 的各项不为1的正数,数列{}n y 满足log 2n n x y a ⋅=(0a >且1a ≠),设417y =,711y =.(I)求数列{}n y 的前多少项和最大,最大值是多少? (II)设2n yn b =,123n n S b b b b =+++⋅⋅⋅+,求25lim2nn S →∞的值.(III)试判断,是否存在自然数M,使当n M >时1n x >恒成立,若存在求出相应的M;若不存 在,请说明理由.15设函数()f x 的定义域为全体实数,对于任意不相等的实数1x ,2x ,都有12()()f x f x -12x x <-,且存在0x ,使得00()f x x =,数列{}n a 中,10a x <,1()2()n n n f a a a n N +=-∈,求证:对于任意的自然数n ,有: (I)0n a x <; (II)1n n a x +<.参考答案:问题1解:(I)212n n a a a n a ++⋅⋅⋅+=,得n S =2n n a当2n ≥时,1n n n a S S -=-=2n n a 21(1)n n a ---,有221(1)(1)n n n a n a --=-,即111n n a n a n --=+. 于是3241123112313451n n n a a a a a n a a a a a n --=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅+=2(1)n n +.又112a =,得n a =1(1)n n +. 由于1a 也适合该式,故n a =1(1)n n +.(II)1100nn a -=299n n -=2(49.5)2450.25n -- 所以当49n =或50时,1100nn a -有最小值2450-. (III)因()f n 是1100nn a -与n 的最大者,有(1100)()1100(100)nn n f n n n a ≤≤⎧⎪=⎨-<⎪⎩,有min ()f n =(1)f =1.问题2(I)证明:由1210b a a =-≠,得2322121()()()0b a a f a f a k a a =-=-=-≠. 由数学归纳法可证10n n n b a a +=-≠(n N *∈). 而,当2n ≥时,1111111()()()n n n n n n n n n n n n n n b a a f a f a k a a k b a a a a a a +---------====--- 因此,数列{}n b 是一个公比为k 的等比数列. (II)解:由(I)知,11121()()n n n b kb k a a n N --*==-∈当1k ≠时,112211()(2)1n n k b b b a a n k--++⋅⋅⋅+=-≥-当1k =时,12n b b b ++⋅⋅⋅+=21(1)()n a a --(2n ≥)而12213211()()()(2)n n n n b b b a a a a a a a a n -++⋅⋅⋅+=-+-+⋅⋅⋅+-=-≥,有当1k ≠时,1n a a -= 1211()(2)1n k a a n k---≥-;当1k =时,1n a a -=21(1)()n a a --(2)n ≥.以上两式对1n =时也成立,于是当1k ≠时,11211()1n n k a a a a k --=+--= 11(())1n k a f a a k--=+--当1k =时,121(1)()n a a n a a =+--=(1)(())a n f a a +--.(III)解:当1k <时,11()lim lim[(())]11n n n n k f a aa a f a a a k k-→∞→∞--=+-=+--. 问题3解:(I)设点P(,x y ),由M (1,0)-,N (1,0)得(1,)PM MP x y =-=--- ,(1,)PN NP x y =-=-- ,(2,0)MN NM =-=有2(1)MP MN x ⋅=+ ,221PM PN x y ⋅=+- ,2(1)NM NP x ⋅=- .于是MP MN ⋅ ,PM PN ⋅ ,NM NP ⋅成公差小于零的等差数列等价于 2211[2(1)2(1)]22(1)2(1)0x y x x x x ⎧+-=++-⎪⎨⎪--+<⎩,即2230x y x ⎧+=⎨>⎩ 所以点P 的轨迹是以原点为圆心为半径的右半圆C.(II)设P(00,x y ),则由点P 在半圆C 上知,22001PM PN x y ⋅=+-又PM PN ⋅=,得cos PM PN PM PNθ⋅==⋅又001x <≤,12≤<,有1cos 12θ<≤, 03πθ≤<,sin θ==由此得0tan y θ==. 习题解答:1由1(21)0n n a a n k +-=++>,n N *∈恒成立,有30k +>,得3k >-,选D.21211212112112121(21)22(21)21223(21)131(21)2n n n n n n n n n n a a n a a a a S n n b b b b T n n n ------+-+--======+-+--,选B. 3设三边长分别为2,,a aq aq ,且0,0a q >>①当1q ≥时,由2a aq aq +>,得112q ≤<②当01q <<时,由2aq aq a +>,得112q <<,于是得1122q +<<,选D. 4由10191a a d =+>,且9181a a d =+≤,而21lim ()2n nn da S t n →∞+==, 又1125a =,于是737550t <≤,选D. 5由椭圆第2定义得222132()()22()a a a AF CF x x BF x c c c+=+++==+,选A.6由条件得31444tan ,9tan 3A B =-+=,有tan 2A =,tan 3B =. 得tan tan[()]tan()1C A B A B π=-+=-+=,于是ABC ∆为锐角三角形,选B. 7由12345636a a a a a a +++++=,12345180n n n n n n a a a a a a -----+++++=有12165()()()216n n n a a a a a a --++++⋅⋅⋅++=,即16()n a a +=216,得1n a a +=36,又13242na a n +⨯=,解得18n =. 822111111()()333222n n n S =++⋅⋅⋅++++⋅⋅⋅+,得11332lim 1121132n n S →∞=+=--.9由条件知,公比q 满足01q <<,且11115a q =-,当01q <<时,11015a <<; 当10q -<<时,1121515a <<.于是1a 的取值范围是112(0,)(,)151515. 10当n 为奇数时,相邻两项为n a 与2n a +,由51n a n =+得25(2)1(51)n n a a n n +-=++-+ =10,且16a =.所以{}n a 中的奇数项构成以16a =为首项,公差10d =的等差数列.当n 为偶数时,相邻两项为n a 与2n a +,由n a = 22n ,得2222222n n n na a ++==,且22a = 所以{}n a 中的偶数项构成以22a =为首项,公比2q =的等比数列. 由此得212(1)2(12)610522212m m mm m S m m m +--=+⨯+=++--.11由6778,S S S S <>,得780,0a a ><,有0d <;96S S <;7S 是n S 中的最大值,选①②④. 12解:(I)由12(1)n f a a a =++⋅⋅⋅+=2n ,再依题意有1a +n a =2n ,即12(1)2a n d n +-=① 又121(1)n n f a a a a n --=-+-⋅⋅⋅-+=,(n 为正偶数)得2d =,代入①有21n a n =-. (II)2311111()3()5()(21)()22222n f n =+++⋅⋅⋅+-,2341111111()()3()5()(21)()222222n f n +=+++⋅⋅⋅+- 得2311111111(1)()2()2()2()(21)()2222222n n f n +-=+++⋅⋅⋅+--于是2111()12()(21)3222n f n n-=+---⋅<.13解: (I)可得2()31f x x =+,()5g x x =,由已知211()()1n n n n n f a a g a a a +++-+=,得11(32)()0n n n n a a a a ++-⋅+=,而10n n a a ++≠,有123n n a a +=,于是1lim 3213n n S →∞==-.(II)215832()()6()1854n n n n b f a g a a +=-=-+, 由12()3n n a -=知n b 的最大值为1143b =,最小值为4374243b =.14解: (I)22log log n n a n x y x a==,设11n n x x q -=有1122log 2log 2log log n n n a n a n a x y y x x q a++-==-=,又{}n y 成等差数列.742log 74a y y q d -==-,得2d =-,17(71)(2)23,y y =--⨯-=252n y n =-. 当0n y ≥时,即23(1)(2)0n +-⨯-≥,得252n ≤.于是前12项和最大,其最大值为144.(II)25222ny n n b -==,2312b =,得21124n n b b -+==,23112()4n n b -= 232522lim 1314n n S →∞==-,于是251lim 23n n S →∞=(III)由(I)知当12n >时,0n y <恒成立,由2log n a n y x =,得2n y n x a =.(i)当01a <<且12n >时,有2n y n x a =01a >=,(ii)当1a >且12n >时,1n x <,故当01a <<时,在12M =使n M >时,1n x >恒成立;当1a >时不存在自然数M,使当n M >时1n x >.15证明:用数学归纳法 (I)当1n =时,10a a <命题成立.假设当n k =(k N *∈)时,0k a a <成立,那么当1n k =+时,由1212()()f x f x x x -<-,得00()()k k f x f a x a -<-,又00()f x x =,有00()k k x f a x a -<-, 而0k a x <,得00()k k x f a x a -<-,于是000()k k k a x x f a x a -<-<-,即0()2()k k k ka f a x f a a +<⎧⎨>⎩,又1()2k k k f a a a +=-, 有10(2)2k k k a a a x ++-<,即10k a x +<,于是当1n k =+时,命题也成立. 综上所述,对任意的k N *∈,0n a a <.(II)由1212()()f x f x x x -<-,得00()()n n f x f a x a -<-, 又00()f x x =,得00()n n x f a x a -<-,又0n a a <,得00()n n x f a x a -<-,即000()n n n a x x f a x a -<-<-, 有()n n f a a >,而1()2n n n f a a a +=-,得12n n n a a a +->, 故1n n a a +>.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数专题:数学归纳法梁久阳一.基本步骤:(一)第一数学归纳法:一般地,证明一个与自然数n 有关的命题P(n),有如下步骤:(1)证明当n 取第一个值n0时命题成立。

n0对于一般数列取值为0或1,但也有特殊情况;(2)假设当n=k (k ≥n0,k 为自然数)时命题成立,证明当n=k+1时命题也成立。

综合(1)(2),对一切自然数n (≥n0),命题P(n)都成立。

(二)第二数学归纳法:对于某个与自然数有关的命题P(n), (1)验证n=n0时P(n)成立;(2)假设n0≤n<=k 时P(n)成立,并在此基础上,推出P(k+1)成立。

综合(1)(2),对一切自然数n (≥n0),命题P(n)都成立。

(三)倒推归纳法(反向归纳法):(1)验证对于无穷多个自然数n 命题P(n)成立(无穷多个自然数可以是一个无穷数列中的数,如对于算术几何不等式的证明,可以是2^k ,k ≥1);(2)假设P(k+1)(k ≥n0)成立,并在此基础上,推出P(k)成立, 综合(1)(2),对一切自然数n (≥n0),命题P(n)都成立; (四)螺旋式归纳法对两个与自然数有关的命题P(n),Q(n), (1)验证n=n0时P(n)成立;(2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对一切自然数n (≥n0),P(n),Q(n)都成立。

二.实际应用(1)确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的。

(2)数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式。

(3)证明数列前n 项和与通项公式的成立。

(4)证明和自然数有关的不等式。

等等。

数学归纳法其实是一件很有用的工具,如果能够使用得当的话,会使解决问题的难度大大降低。

三.试题研究(1)直接证法与数学归纳法的比较①所谓直接证法,便是置n 的任何具体值于不顾,仅仅把它看成是一个任意的自然数,也就是说,假定它只具备任何自然数都具备的共同性质,并在这样的基础上进行推导。

【例3】 证明:对任何自然数n ,如下的等式都能成立: 证明:我们有21+cosx+cos2x+…+cosnx=xsin xn sin 21221)(=xsin 2121(sin21x+2cosxsin 21x+2cos2xsin 21x+…+2cosnxsin 21x ) 利用积化和差公式2cos αsin β=sin (α+β)-sin (α-β) 即知 sin21x+2cosxsin 21x+2cos2xsin 21x+…+2cosnxsin 21x =sin21x+(sin 23x-sin 21x)+(sin 25x-sin 23x)+…+(sin(n+21)x-sin (n-21)x) =sin(n+21)x 综合上述等式即得所证,可见不论n 为任何自然数,所证的恒等式都能成立。

这就是我们所说的“置n 的任何具体值于不顾”的含义。

②运用数学归纳法,也可以使像例1这样一些可以通过直接证法证明的问题得到解决。

例1又证 当n=1时,我们有左式=21+cosx 右式=x sin x sin 21223=xsin x sin 4-x 3sin 21221213)()( =23-2sin ²21x=23-(1-cosx)=21+cosx 所以对于n=1,等式是成立的。

假设对于n=k ,等式成立,即有21+cosx+cos2x+…+coskx=xsin xk sin 21221)(我们要来证明对于n=k+1,等式也成立。

我们有21+cosx+cos2x+…+coskx+cos (k+1)x=xsin xk sin 21221)(++cos(k+1)x =xsin x211)xsin 2cos(k x k sin 21221+++)( =xsin x)k sin -x k (sin x k sin 212212321)()()(++++=xsin xk sin 21223)(+ =xsin x 1)k sin 21221⎥⎦⎤⎢⎣⎡++)(所以,对于n=k+1,等式也成立。

从而对一切自然数n ,等式都成立。

我们可以比较一下直接证法与数学归纳法,我个人认为,直接证法虽然漂亮,但比较难想,一试时没有充裕的时间,因此很难想出来。

相反,数学归纳法简洁明了,步骤清晰,很容易想到。

由此看来,这种解题方式确实有着它独特的优越性。

(2)学会从头看起 有时,为了实现归纳过渡,我们在证明n=1成立的同时,还要证明n=2,3…使命题在n=k+1时更容易做出。

下面便是一例: 【例3】设正数数列{}满足关系式²≤-+1,证明,对一切n ∈N ,有<n1。

证明:n=1的情形显然,而当n=2时,由于a 2≤a 1-a 1²=41-(21-a 1)²<21知断言也成立。

假设当n=k 时,断言成立,即有a k <k1,则当n=k+1时,有 a k +1≤a k -a k ²=41-(21-a k )²≤41-(21-k 1)²=k 2-k 1<121-k -k =11+k知断言也成立。

因此由数学归纳法原理知,对一切n ∈N ,都有a n <n1。

细心的我们会发现,在上面的论证中,“n=2”(即a 2<21)并未在归纳过渡中发挥作用,因此按理说来是不用验证这一步的。

但是,它却启示了我们如何将(a 1-a 1²)改写成一种便于使用归纳假设的形式,而这种启示对于实行归纳过渡是非常重要的。

可见这种对n=2情形的考察是很有好处的。

(3)“正确”选取起点与跨度 ①起点的选取【例3】 证明:任意n 条直线均能重合成一条直线。

证明:当n=1时,命题显然成立。

假设当n=k 时,命题已经成立。

那么当n=k+1时,可以先让其中k 条直线重合为一条直线,再让这条直线同剩下的一条重合为一条直线,即知命题也可成立。

所以任意n 条直线均能重合成一条直线。

怎么会呢?这个定理与我们以前所了解到的知识明显不符啊。

最初看到这道题的证明时,我便感觉到,他对我的以前形成的几何观产生了深深的挑战。

后来仔细一想,我觉得,矛盾的产生不是因为我自身出现了问题,而是这道题本身有问题!这个证明上的逻辑漏洞,就在于在进行归纳过渡时,需要用到“可将任意两条直线重合为一条直线”的论断,即“n=2”时的命题。

但是我们只证明了“n=1”时的命题,并没有对“n=2”的命题加以证明,并且事实上它也是不能被证明的。

由此可见,认真考察起点附近的命题是多么的重要!但是,是不是在每一个问题的证明中,都要先对起点附近的命题“n=0”、“n=2”、“n=3”…呢?并不是的。

究竟是否需要验证以及需要验证几个,完全取决于命题本身的特点,尤其是取决于在进行归纳过渡时的需要。

【例4】是否存在一个等差数列{a n },使得对任何自然数n ,等式:a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立,并证明你的结论.分析:与上题一样,这道题的起点也需要我们费一些思考。

是“n=1”么?是“n=2”么?不,都不对,是“n=3”!本题需要采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性.解:将n =1,2,3分别代入等式得方程组.⎪⎩⎪⎨⎧=++=+=60322426321211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3.故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立.下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即a1+2a2+3a3+…+ka k=k(k+1)(k+2)那么当n=k+1时,a1+2a2+3a3+…+ka k +(k+1)a k+1= k(k+1)(k+2)+ (k+1)[3(k+1)+3]=(k+1)(k2+2k+3k+6)=(k+1)(k+2)(k+3)=(k+1)[(k+1)+1][(k+1)+2]这就是说,当n=k+1时,也存在一个等差数列a n=3n+3使a1+2a2+3a3+…+na n=n(n+1)(n+2)成立.综合上述,可知存在一个等差数列a n=3n+3,对任何自然数n,等式a1+2a2+3a3+…+na n=n(n+1)(n+2)都成立.②跨度的选取【例5】证明:对任意整数n(n≥3),存在一个正整数的完全立方,使得它可以表示成n 个不同正整数的立方之和。

证明:这事实上是一个归纳构造问题。

如果我们采用常规的跨度为“1”的归纳,将会灰常困难,至少我不能做出。

这个时候,就需要我们的大胆想象,改变归纳的跨度。

那么这个跨度是几呢?别急,我们先对n进行分析。

不难算得,3³+4³+5³=6³;5³+7³+9³+10³=13³…再往下,我们就不好找了。

事实上,我们也不用找了,因为这些已经够了。

我们观察“3³+4³+5³=6³”,1变3,多出了2个数,这样我们便已经可以大胆地采用“2”为跨度了。

假设对n≥3,存在可表示成k个不同正整数立方之和的完全立方数m³,设m³=a1³+a2³+…+a k³(1)这里a1<a2<…a k都是正整数。

由(1)容易看出(6m)³=(6a1)³+(6a2)³+…+(6a k)³= (3a1) ³+(4a1) ³+(5a1)³+(6a2)³+…+(6a k)³而显然有,3a1<4a1<5a1<6a2<6a k,故它们是不同的正整数。

这表明,我们做出的(6m)³能表示成k+2个不同正整数的立方和。

综上所述,原命题得证。

注:可以证明,不存在能表示成两个正整数立方和的完全立方数,所以题目中“n≥3”的条件是必要的。

(4)强化命题作为“以退为进”的典范,反证法以它强大的本领和顽强的生命力,帮助我们解决了许多困难的问题。

相反,如果再让我们找一个“以进为退”的工具的话,那无疑就是强化命题了。

它能帮我们找出,那些出题人故意隐藏起来的,“无法言说”的东西。

①同侧加强:它的字面意思是,对所证不等式的同一方向(可以是左侧,也可以是右侧)进行加强.如要证明A x f <)(,只要证明)0()(>-<B B A x f ,其中B 通过寻找分析,归纳完成.下面是一个可能比较困难的问题,需要我们认真去思考。

相关文档
最新文档