18年高考数学专题14二项式定理及数学归纳法教学案理

合集下载

2018届高考数学总复习教学案:数学归纳法(理)

2018届高考数学总复习教学案:数学归纳法(理)

第七节数学归纳法(理)[知识能否忆起]数学归纳法一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.[小题能否全取]1.用数学归纳法证明3n ≥n 3(n ∈N ,n ≥3),第一步应验证( ) A .n =1 B .n =2 C .n =3D .n =4答案:C2.(教材习题改编)已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝⎛⎭⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立解析:选B 因为n 为偶数,故假设n =k 成立后,再证n =k +2时等式成立. 3.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14解析:选D 由f (n )可知,共有n 2-n +1项,且n =2时,f (2)=12+13+14.4.用数学归纳法证明1+2+22+…+2n +1=2n +2-1(n ∈N *)的过程中,在验证n =1时,左端计算所得的项为________.答案:1+2+225.用数学归纳法证明:“1+12+13+…+12n -1<n (n >1)”,由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项的项数是________.解析:当n =k 时,不等式为1+12+13+…+12k -1<k .则n =k +1时,左边应为:1+12+13+…+12k -1+12k +12k +1+…+12k +1-1 则增加的项数为2k +1-1-2k +1=2k .答案:2k数学归纳法的应用(1)数学归纳法是一种只适用于与正整数有关的命题的证明方法,它们的表述严格而且规范,两个步骤缺一不可.第一步是递推的基础,第二步是递推的依据,第二步中,归纳假设起着“已知条件”的作用,在n =k +1时一定要运用它,否则就不是数学归纳法.第二步的关键是“一凑假设,二凑结论”.(2)在用数学归纳法证明问题的过程中,要注意从k 到k +1时命题中的项与项数的变化,防止对项数估算错误.用数学归纳法证明恒等式典题导入[例1] 设f (n )=1+12+13+…+1n(n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *). [自主解答] (1)当n =2时,左边=f (1)=1, 右边=2⎝⎛⎭⎫1+12-1=1, 左边=右边,等式成立.(2)假设n =k (k ≥2,k ∈N *)时,结论成立,即f (1)+f (2)+…+f (k -1)=k [f (k )-1], 那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k ) =(k +1)f (k )-k=(k +1)⎣⎡⎦⎤f (k +1)-1k +1-k=(k +1)f (k +1)-(k +1) =(k +1)[f (k +1)-1],∴当n =k +1时结论仍然成立.由(1)(2)可知:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).由题悟法用数学归纳法证明等式的规则(1)数学归纳法证明等式要充分利用定义,其中两个步骤缺一不可,缺第一步,则失去了递推基础,缺第二步,则失去了递推依据.(2)证明等式时要注意等式两边的构成规律,两边各有多少项,并注意初始值n 0是多少,同时第二步由n =k 到n =k +1时要充分利用假设,不利用n =k 时的假设去证明,就不是数学归纳法.以题试法1.用数学归纳法证明:对任意的n ∈N *,11×3+13×5+…+1(2n -1)(2n +1)=n 2n +1. 证明:(1)当n =1时,左边=11×3=13,右边=12×1+1=13,左边=右边,所以等式成立.(2)假设当n =k (k ∈N *且k ≥1)时等式成立,即有 11×3+13×5+…+1(2k -1)(2k +1)=k2k +1, 则当n =k +1时,11×3+13×5+…+1(2k -1)(2k +1)+1(2k +1)(2k +3) =k 2k +1+1(2k +1)(2k +3)=k (2k +3)+1(2k +1)(2k +3)=2k 2+3k +1(2k +1)(2k +3)=k +12k +3=k +12(k +1)+1, 所以当n =k +1时,等式也成立. 由(1)(2)可知,对一切n ∈N *等式都成立.用数学归纳法证明不等式典题导入[例2] 等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *),证明:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立. [自主解答] (1)由题意,S n =b n +r , 当n ≥2时,S n -1=b n -1+r .所以a n =S n -S n -1=b n -1(b -1).由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列. 又a 1=b +r ,a 2=b (b -1),∴a 2a 1=b ,即b (b -1)b +r =b ,解得r =-1. (2)证明:由(1)知a n =2n -1,因此b n =2n (n ∈N *),所证不等式为2+12·4+14·…·2n +12n >n +1.①当n =1时,左式=32,右式=2,左式>右式,所以结论成立.②假设n =k (k ≥1,k ∈N *)时结论成立,即2+12·4+14·…·2k +12k >k +1,则当n =k +1时,2+12·4+14·…·2k +12k ·2k +32(k +1)>k +1·2k +32(k +1)=2k +32k +1, 要证当n =k +1时结论成立, 只需证2k +32k +1≥k +2.即证2k +32≥(k +1)(k +2),由基本不等式知2k +32=(k +1)+(k +2)2≥(k +1)(k +2)成立,故2k +32k +1≥k +2成立,所以,当n =k +1时,结论成立.由①②可知,n ∈N *时,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1成立.由题悟法应用数学归纳法证明不等式应注意的问题(1)当遇到与正整数n 有关的不等式证明时,若用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法等证明.以题试法2.用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).证明:(1)当n =2时,1+122=54<2-12=32,命题成立.(2)假设n =k 时命题成立,即1+122+132+…+1k 2<2-1k.当n =k +1时,1+122+132+…+1k 2+1(k +1)2<2-1k +1(k +1)2<2-1k +1k (k +1)=2-1k +1k -1k +1=2-1k +1命题成立.由(1)(2)知原不等式在n ∈N *,n ≥2时均成立.归纳—猜想—证明典题导入[例3] (·天津模拟)如图,P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n )(0<y 1<y 2<…<y n )是曲线C :y 2=3x (y ≥0)上的n 个点,点A i (a i,0)(i =1,2,3,…,n )在x 轴的正半轴上,且△A i -1A i P i 是正三角形(A 0是坐标原点).(1)写出a 1、a 2、a 3;(2)求出点A n (a n,0)(n ∈N *)的横坐标a n 关于n 的表达式并证明.[自主解答] (1)a 1=2,a 2=6,a 3=12.(2)依题意,得x n =a n -1+a n 2,y n =3·a n -a n -12,由此及y 2n =3·x n 得⎝⎛⎭⎫3·a n -a a -122=32(an +a n -1),即(a n -a n -1)2=2(a n -1+a n ).由(1)可猜想:a n =n (n +1)(n ∈N *). 下面用数学归纳法予以证明: ①当n =1时,命题显然成立;②假定当n =k 时命题成立,即有a k =k (k +1),则当n =k +1时,由归纳假设及(a k +1-a k )2=2(a k +a k +1),得[a k +1-k (k +1)]2=2[k (k +1)+a k +1],即a 2k +1-2(k 2+k +1)a k +1+[k (k -1)]·[(k +1)(k +2)]=0,解之得,a k +1=(k +1)(k +2)(a k +1=k (k -1)<a k 不合题意,舍去),即当n =k +1时成立.由①②知,命题成立.由题悟法“归纳——猜想——证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式.其一般思路是:通过观察有限个特例,猜想出一般性的结论,然后用数学归纳法证明.这种方法在解决探索性问题、存在性问题或与正整数有关的命题中有着广泛的应用.其关键是归纳、猜想出公式.以题试法3.(·北京海淀模拟)数列{a n }满足S n =2n -a n (n ∈N *) (1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ; (2)用数学归纳法证明(1)中的猜想. 解:(1)当n =1时,a 1=S 1=2-a 1, ∴a 1=1.当n =2时,a 1+a 2=S 2=2×2-a 2, ∴a 2=32.当n =3时,a 1+a 2+a 3=S 3=2×3-a 3, ∴a 3=74.当n =4时,a 1+a 2+a 3+a 4=S 4=2×4-a 4, ∴a 4=158.由此猜想a n =2n -12n -1(n ∈N *).(2)证明:①当n =1时,a 1=1,结论成立.②假设n =k (k ≥1且k ∈N *)时,结论成立,即a k =2k -12k -1,那么n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1, ∴2a k +1=2+a k ,∴a k +1=2+a k 2=2+2k -12k -12=2k +1-12k ,这表明n =k +1时,结论成立, 由①②知猜想a n =2n -12n -1成立.1.如果命题p (n )对n =k (k ∈N *)成立,则它对n =k +2也成立.若p (n )对n =2也成立,则下列结论正确的是( )A .p (n )对所有正整数n 都成立B .p (n )对所有正偶数n 都成立C .p (n )对所有正奇数n 都成立D .p (n )对所有自然数n 都成立解析:选B 由题意n =k 成立,则n =k +2也成立,又n =2时成立,则p (n )对所有正偶数都成立.2.用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值最小应取( )A .7B .8C .9D .10解析:选B 可逐个验证,n =8成立.3.(·海南三亚二模)用数学归纳法证明“1+2+22+…+2n -1=2n -1(n ∈N *)”的过程中,第二步n =k 时等式成立,则当n =k +1时,应得到( )A .1+2+22+…+2k -2+2k -1=2k +1-1B .1+2+22+…+2k +2k +1=2k -1+2k +1C .1+2+22+…+2k -1+2k +1=2k +1-1D .1+2+22+…+2k -1+2k =2k +1-1解析:选D 由条件知,左边是从20,21一直到2n-1都是连续的,因此当n =k +1时,左边应为1+2+22+…+2k -1+2k ,而右边应为2k +1-1.4.凸n 多边形有f (n )条对角线,则凸(n +1)边形的对角线的条数f (n +1)为( ) A .f (n )+n +1 B .f (n )+n C .f (n )+n -1D .f (n )+n -2解析:选C 边数增加1,顶点也相应增加1个,它与和它不相邻的n -2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n -1条.5.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1(n -1)(n +1) B.12n (2n +1) C.1(2n -1)(2n +1)D.1(2n +1)(2n +2)解析:选C 由a 1=13,S n =n (2n -1)a n 求得a 2=115=13×5,a 3=135=15×7,a 4=163=17×9.猜想a n =1(2n -1)(2n +1).6.下列代数式(其中k ∈N *)能被9整除的是( ) A .6+6·7kB .2+7k -1C .2(2+7k +1)D .3(2+7k )解析:选D (1)当k =1时,显然只有3(2+7k )能被9整除.(2)假设当k =n (n ∈N *)时,命题成立,即3(2+7n )能被9整除,那么3(2+7n +1)=21(2+7n )-36.这就是说,k =n +1时命题也成立. 由(1)(2)可知,命题对任何k ∈N *都成立.7.(·徐州模拟)用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =________时,命题亦真.解析:n 为正奇数,假设n =2k -1成立后,需证明的应为n =2k +1时成立. 答案:2k +18.(·济南模拟)用数学归纳法证明1+2+3+…+n 2=n 4+ n 22,则当n =k +1时左端应在n =k 的基础上加上的项为________.解析:当n =k 时左端为1+2+3+…+k +(k +1)+(k +2)+…+k 2,则当n =k +1时,左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2, 故增加的项为(k 2+1)+(k 2+2)+…+(k +1)2. 答案:(k 2+1)+(k 2+2)+…+(k +1)29.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有:(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =________.解析:由(S 1-1)2=S 21得:S 1=12; 由(S 2-1)2=(S 2-S 1)S 2得:S 2=23;由(S 3-1)2=(S 3-S 2)S 3得:S 3=34.猜想S n =nn +1.答案:n n +110.用数学归纳法证明:12+32+52+…+(2n -1)2 =13n (4n 2-1). 证明:(1)当n =1时,左边=12=1,右边= 13×1×(4-1)=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即12+32+52+…+(2k -1)2=13k (4k 2-1).则当n =k +1时,12+32+52+…+(2k -1)2+(2k +1)2=13k (4k 2-1)+(2k +1)2=13k (4k 2-1)+4k 2+4k +1=13k [4(k +1)2-1]-13k ·4(2k +1)+4k 2+4k +1 =13k [4(k +1)2-1]+13(12k 2+12k +3-8k 2-4k ) =13k [4(k +1)2-1]+13[4(k +1)2-1] =13(k +1) [4(k +1)2-1]. 即当n =k +1时等式也成立.由(1),(2)可知,对一切n ∈N *,等式都成立. 11.已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n 1-4a 2n(n ∈N *),且点P 1的坐标为(1,-1).(1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上. 解:(1)由题意得a 1=1,b 1=-1,b 2=-11-4×1=13,a 2=1×13=13,∴P 2⎝⎛⎭⎫13,13. ∴直线l 的方程为y +113+1=x -113-1,即2x +y =1.(2)①当n =1时,2a 1+b 1=2×1+(-1)=1成立. ②假设n =k (k ≥1且k ∈N *)时,2a k +b k =1成立. 则2a k +1+b k +1=2a k ·b k +1+b k +1=b k1-4a 2k ·(2a k +1)=b k1-2a k =1-2a k 1-2a k=1, ∴当n =k +1时,2a k +1+b k +1=1也成立.由①②知,对于n ∈N *,都有2a n +b n =1,即点P n 在直线l 上.12.设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3……. (1)求a 1,a 2;(2)猜想数列{S n }的通项公式,并给出严格的证明.解:(1)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1, 于是(a 1-1)2-a 1(a 1-1)-a 1=0, 解得a 1=12.当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是⎝⎛⎭⎫a 2-122-a 2⎝⎛⎭⎫a 2-12-a 2=0,解得a 2=16.(2)由题设(S n -1)2-a n (S n -1)-a n =0, 即S 2n -2S n +1-a n S n =0. 当n ≥2时,a n =S n -S n -1, 代入上式得S n -1S n -2S n +1=0.① 由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23.由①可得S 3=34.由此猜想S n =nn +1,n =1,2,3….下面用数学归纳法证明这个结论. (ⅰ)n =1时已知结论成立.(ⅱ)假设n =k (k ≥1,k ∈N *)时结论成立, 即S k =k k +1, 当n =k +1时,由①得S k +1=12-S k, 即S k +1=k +1k +2,故n =k +1时结论也成立.综上,由(ⅰ)(ⅱ)可知S n =nn +1对所有正整数n 都成立.1.利用数学归纳法证明“(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1解析:选B 当n =k (k ∈N *)时, 左式为(k +1)(k +2)…(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1), 则左边应增乘的式子是(2k +1)(2k +2)k +1=2(2k +1).2.对大于或等于2的自然数 m 的n 次方幂有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19. 根据上述分解规律,若n 2=1+3+5+…+19, m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.解析:∵依题意得 n 2=10×(1+19)2=100, ∴n =10. 易知 m 3=21m +m (m -1)2×2, 整理得(m -5)(m +4)=0, 又 m ∈N *, 所以 m =5, 所以m +n =15.答案:153.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *.(1)当n =1,2,3时,试比较f (n )与g (n )的大小关系; (2)猜想f (n )与g (n )的大小关系,并给出证明.解:(1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1); 当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2);当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3).(2)由(1)猜想f (n )≤g (n ),下面用数学归纳法给出证明. ①当n =1,2,3时,不等式显然成立. ②假设当n =k (k ≥3,k ∈N *)时不等式成立,即1+123+133+143+…+1k 3<32-12k 2,那么,当n =k +1时,f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3, 因为12(k +1)2-⎣⎡⎦⎤12k 2-1(k +1)3=k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0, 所以f (k +1)<32-12(k +1)2=g (k +1).由①②可知,对一切n ∈N *,都有f (n )≤g (n )成立.1.用数学归纳法证明a n +1+(a +1)2n -1(n ∈N *)能被a 2+a +1整除.证明: (1)当n =1时,a 2+(a +1)=a 2+a +1可被a 2+a +1整除. (2)假设n =k (k ≥1,k ∈N *)时, a k +1+(a +1)2k-1能被a 2+a +1整除,则当n =k +1时,a k +2+(a +1)2k +1=a ·a k +1+(a +1)2(a +1)2k -1=a ·a k +1+a ·(a +1)2k -1+(a 2+a +1)(a +1)2k -1=a [a k +1+(a +1)2k -1]+(a 2+a +1)(a +1)2k -1由假设可知a [a k +1+(a +1)2k -1]能被a 2+a +1整除,(a 2+a +1)(a +1)2k-1也能被a 2+a+1整除,∴a k +2+(a +1)2k+1也能被a 2+a +1整除,即n =k +1时命题也成立,由(1)(2)知,对任意n ∈N *原命题成立.2.在数列{a n }中,a 1=1,a n +1=ca n +c n +1(2n +1),n ∈N *,其中c ≠0.求数列{a n }的通项公式.解:由a 1=1,a 2=ca 1+c 2·3=3c 2+c =(22-1)c 2+c ,a 3=ca 2+c 3·5=8c 3+c 2=(32-1)c 3+c 2, a 4=ca 3+c 4·7=15c 4+c 3=(42-1)c 4+c 3,猜测a n =(n 2-1)c n +c n -1,n ∈N *.下面用数学归纳法证明. 当n =1时,等式成立; 假设当n =k 时,等式成立,即a k =(k 2-1)c k +c k -1,则当n =k +1时,a k +1=ca k +c k +1(2k +1)=c [(k 2-1)c k +c k -1]+c k +1(2k +1)=(k 2+2k )c k +1+c k =[(k +1)2-1]c k +1+c k ,综上,a n =(n 2-1)c n +c n -1对任何n ∈N *都成立.不等式、推理与证明一、选择题(本题共12小题,每小题5分,共60分) 1.不等式x -2x +1≤0的解集是( )A .(-∞,-1)∪(-1,2]B .(-1,2]C .(-∞,-1)∪[2,+∞)D .[-1,2]解析:选B ∵x -2x +1≤0,∴-1<x ≤2.2.把下面在平面内成立的结论类比推广到空间,结论还正确的是( ) A .如果一条直线与两条平行线中的一条相交,则也与另一条相交 B .如果一条直线与两条平行线中的一条垂直,则也与另一条垂直 C .如果两条直线没有公共点,则这两条直线平行D .如果两条直线同时与第三条直线垂直,则这两条直线平行 解析:选B 由空间立体几何的知识可知B 正确. 3.(·保定模拟)已知a >b ,则下列不等式成立的是( ) A .a 2-b 2≥0 B .ac >bc C .ac 2>bc 2D .2a >2b解析:选D A 中,若a =-1,b =-2,则a 2-b 2≥0不成立;当c =0时,B 、C 不成立.由a >b 知2a >2b 成立.4.若规定⎪⎪⎪⎪a b c d =ad -bc ,则不等式0<⎪⎪⎪⎪x 11 x <1的解集是( ) A .(-1,1)B .(-1,0) ∪(0,1)C .(-2,-1) ∪(1,2)D .(1,2)解析:选C 由题意可知0<x 2-1<1⇔1<x 2<2⇔1<|x |<2⇔-2<x <-1或1<x < 2.5.(·天津高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,x -1≤0,则目标函数z =3x -2y 的最小值为( )A .-5B .-4C .-2D .3解析:选B 不等式表示的平面区域是如图所示的阴影部分,作辅助线l 0:3x -2y =0,结合图形可知,当直线3x -2y =z 平移到过点(0,2)时,z =3x -2y 的值最小,最小值为-4.6.设a ∈R ,则“a -1a 2-a +1<0”是“|a |<1” 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既非充分也非必要条件解析:选C 因为a 2-a +1=⎝⎛⎫a -122+34≥34>0,所以由a -1a 2-a +1<0得a <1,不能得知|a |<1;反过来,由|a |<1得-1<a <1,所以a -1a 2-a +1<0,因此,“a -1a 2-a +1<0”是“|a |<1”成立的必要不充分条件.7.设M =⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1,且a +b +c =1(a ,b ,c 均为正数),由综合法得M 的取值范围是( )A.⎣⎡⎦⎤0,18 B.⎣⎡⎭⎫18,1 C. [1,8]D .[8,+∞)解析:选D 由a +b +c =1,M =⎝⎛⎭⎫b a +c a ⎝⎛⎭⎫a b +c b ⎝⎛⎭⎫a c +bc ≥8(当且仅当a =b =c 时取等号).8.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( ) A .ab >acB .c (b -a )>0C .cb 2<ab 2D .ac (a -c )<0解析:选C 由题意知c <0,a >0,则A 一定正确;B 一定正确;D 一定正确;当b =0时C 不正确.9.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,x 2,x <0,,则f (f (x ))≥1的充要条件是( )A .x ∈(-∞,- 2 ]B .x ∈[42,+∞)C .x ∈(-∞,-1]∪[42,+∞)D .x ∈(-∞,-2]∪[4,+∞)解析:选D 当x ≥0时,f (f (x ))=x 4≥1,所以x ≥4;当x <0时,f (f (x ))=x 22≥1,所以x 2≥2,解得x ≥2(舍去)或x ≤-2,因此f (f (x ))≥1的充要条件是x ∈(-∞,-2]∪[4,+∞).10.(·山西省四校联考)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +2≥0,8x -y -4≤0,x ≥0,y ≥0,若目标函数z =abx+y (a >0,b >0)的最大值为13,则a +b 的最小值为( )A .2B .4C .6D .8解析:选C 在坐标平面内画出题中的不等式组表示的平面区域及直线abx +y =0,平移该直线,当平移到经过该平面区域内的点(1,4)时,相应直线在y 轴上的截距达到最大,此时目标函数z =abx +y (a >0,b >0)取得最大值,依题意有ab ×1+4=13,即ab =9,其中a >0,b >0,a +b ≥2ab =29=6,当且仅当a =b =3时取等号,因此a +b 的最小值为6.11.已知M 是△ABC 内的一点,且AB ·AC=23,∠BAC =30°,若△MBC 、△MCA和△MAB 的面积分别是12、x 、y ,则1x +4y的最小值是( )A .9B .18C .16D .20解析:选B AB ·AC =|AB ||AC|cos 30°=23,∴|AB ||AC |=4,∴S △ABC =12×4×sin 30°=1,∴12+x +y =1,即2(x +y )=1, ∴1x +4y =⎝⎛⎭⎫1x +4y ·2(x +y )=2⎝⎛⎭⎫5+y x +4xy ≥2⎝⎛⎭⎫5+2 y x ·4x y =2×(5+4)=18,当且仅当y =2x ,即x =16,y =13时等号成立.12.(·湖南高考)设a >b >1,c <0,给出下列三个结论: ①c a >cb ;②ac <b c ;③log b (a -c )>log a (b -c ). 其中所有的正确结论的序号是( ) A .① B .①② C .②③D .①②③解析:选D 由a >b >1,c <0得,1a <1b ,c a >cb ;幂函数y =xc (c <0)是减函数,所以a c <b c ;因为a -c >b -c ,所以log b (a -c )>log a (a -c )>log a (b -c ),①②③均正确.二、填空题(本题共4个小题,每小题5分,共20分)13.(文)若不等式-4<2x -3<4与不等式x 2+px +q <0的解集相同,则pq =________.解析:由-4<2x -3<4 得-12<x <72,由题意得72-12=-p ,⎝⎛⎭⎫-12×72=q , 即p =-3,q =-74,∴p q =127.答案:12713.(理)若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析:∵f (k )=12+22+…+(2k )2,∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案:f (k +1)=f (k )+(2k +1)2+(2k +2)214.(·福州模拟)如图,一个类似杨辉三角的递推式,则第n 行的首尾两个数均为________,第n 行的第2个数为________.解析:每行的第一个数可构成数列1,3,5,7,9,…,是以1为首项,以2为公差的等差数列,故第n 行第一个数为1+2(n -1)=2n -1.从第2行起,每行的第2个数可构成数列3,6,11,18,…,可得a 3-a 2=3,a 4-a 3=5,a 5-a 4=7,…,a n -a n -1=2n -3.(其中n 为行数),以上各式两边分别相加,可得a n =[3+5+7+…+(2n -3)]+a 2=(n -2)[3+(2n -3)]2+3=n 2-2n +3.答案:2n -1 n 2-2n +315.(·浙江调研)已知实数x ,y 满足⎩⎪⎨⎪⎧x +y +1≥0,2x -y +2≥0,若(-1,0)是使ax +y 取得最大值的可行解,则实数a 的取值范围是________.解析:题中不等式组表示的平面区域如图中阴影所示,令z =ax +y ,则y =-ax +z ,因为(-1,0)是使ax +y 取得最大值的可行解,所以结合图形可知-a ≥2,即a ≤-2.答案:(-∞,-2]16.(· 北京西城模拟)设λ>0,不等式组⎩⎪⎨⎪⎧x ≤2,λx -y ≥0,x +2λy ≥0所表示的平面区域是W .给出下列三个结论:①当λ=1时,W 的面积为3; ②∃λ>0,使W 是直角三角形区域; ③设点P (x ,y ),∀P ∈W 有x +yλ≤4.其中,所有正确结论的序号是________. 解析:当λ=1时,不等式组变成⎩⎪⎨⎪⎧x ≤2,x -y ≥0,x +2y ≥0,其表示以点(0,0),(2,2),(2,-1)为顶点的三角形区域,易得W 的面积为3,①正确;∵直线λx -y =0的斜率为λ,直线x +2λy =0的斜率为-12λ,λ×⎝⎛⎭⎫-12λ=-12≠-1,且直线x =2垂直于x 轴,∴W 不可能成为直角三角形区域,②错误;显然,不等式组⎩⎪⎨⎪⎧x ≤2,λx -y ≥0,x +2λy ≥0表示的区域是以点(0,0),(2,2λ),⎝⎛⎭⎫2,-1λ为顶点的三角形区域,令z =x +y λ,则其在三个点处的值依次为:0,4,2-1λ2,∴z =x +yλ的最大值z max =4,③正确.答案:①③三、解答题(本题共6小题,共70分)17.(本小题满分10分)已知集合A ={x |x 2<4},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪1<4x +3. (1)求集合A ∩B ;(2)若不等式2x 2+ax +b <0的解集为B ,求a 、b 的值. 解:(1)A ={x |-2<x <2}, ∵4x +3>1⇒4x +3-1>0⇒x -1x +3<0⇒-3<x <1, ∴B ={x |-3<x <1}. ∴A ∩B ={x |-2<x <1}.(2)由(1)及题意知,不等式2x 2+ax +b <0的解集为(-3,1), ∴-3+1=- a 2,-3×1=b 2,∴a =4,b =-6.18.(本小题满分12分)已知x >0,y >0,且2x +8y -xy =0, 求:(1)xy 的最小值; (2)x +y 的最小值.解:x >0,y >0,2x +8y -xy =0, (1)xy =2x +8y ≥216xy , ∴xy ≥8, ∴xy ≥64.故xy 的最小值为64.(2)由2x +8y =xy ,得2y +8x =1,则x +y =(x +y )·1=(x +y )⎝⎛⎭⎫2y +8x =10+2x y +8yx ≥10+8=18.故x +y 的最小值为18.19.(本小题满分12分)已知函数f (x )=x 2+ax +b ,a ,b ∈R .(1)若对任意的实数x ,都有f (x )≥2x +a ,求b 的取值范围; (2)当x ∈[-1,1]时,f (x )的最大值为M ,求证:M ≥b +1.解:(1)对任意的x ∈R ,都有f (x )≥2x +a ⇔对任意的x ∈R ,x 2+(a -2)x +(b -a )≥0⇔Δ=(a -2)2-4(b -a )≤0⇔b ≥1+a 24⇔b ≥1.∵a ∈R ,∴b ∈[1,+∞),即b 的取值范围为[1,+∞). (2)证明∵f (1)=1+a +b ≤M ,f (-1)=1-a +b ≤M , ∴2M ≥2b +2,即M ≥b +1.20.(本小题满分12分) 在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求1S 2,1S 3,1S 4,…,并求1S n (不需证明);(2)求数列{a n }的通项公式.解:(1)当n ≥2时,由a n =S n -S n -1和S 2n =a n ⎝⎛⎭⎫S n -12, 得S 22=(S 2-S 1)⎝⎛⎭⎫S 2-12, 得1S 2=1+2S 1S 1=2+11=3, 由S 23=(S 3-S 2)⎝⎛⎭⎫S 3-12, 得1S 3=2+1S 2=5, 由S 24=(S 4-S 3)⎝⎛⎭⎫S 4-12, 得1S 4=2+1S 3=7, …由S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12得 1S n =2+1S n -1=2n -1. (2)由(1)知,S n =12n -1,当n ≥2时,a n =S n -S n -1=12n -1-12n -3=-2(2n -1)(2n -3), 显然,a 1=1不符合上述表达式, 所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,-2(2n -1)(2n -3),n ≥2. 21.(本小题满分12分)(·福州质检)某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:(1)每套丛书售价定为100元时,书商所获得的总利润是多少万元? (2)每套丛书售价定为多少元时,单套丛书的利润最大?解:(1)每套丛书售价定为100元时,销售量为15-0.1×100=5万套, 此时每套丛书的供货价格为30+105=32元,书商所获得的总利润为5×(100-32)=340万元.(2)每套丛书售价定为x 元时,由⎩⎪⎨⎪⎧15-0.1x >0,x >0,得0<x <150,由题意,单套丛书利润P =x -⎝⎛⎭⎫30+1015-0.1x =x -100150-x -30.∵0<x <150, ∴150-x >0,P =- ⎣⎡⎦⎤(150-x )+100150-x +120. ∵(150-x )+100150-x≥2(150-x )·100150-x=2×10=20,当且仅当150-x =100150-x ,即x =140时等号成立,∴此时,P max =-20+120=100.每套丛书售价定为100元时,书商所获得的总利润为340万;每套丛书售价定为140元时,单套丛书的利润取得最大值.22.(本小题满分12分)(·江西模拟)设集合W 是满足下列两个条件的无穷数列{a n }的集合:①a n +a n +22≤a n +1;②a n ≤M ,其中n ∈N *,M 是与n 无关的常数. (1)若{a n }是等差数列,S n 是其前n 项的和,a 3=4,S 3=18,试探究{S n }与集合W 之间的关系;(2)设数列{b n }的通项为b n =5n -2n ,且{b n }∈W ,M 的最小值为m ,求m 的值;(3)在(2)的条件下,设C n =15[b n +(m -5)n ]+2, 求证:数列{C n }中任意不同的三项都不能成为等比数列. 解:(1)∵a 3=4,S 3=18,∴a 1=8,d =-2,∴S n =-n 2+9n ,S n +S n +22<S n +1满足条件①,∴S n =-⎝⎛⎭⎫n -922+814,当n =4或5时,S n 取最大值20. ∴S n ≤20满足条件②,∴{S n }∈W .(2)b n +1-b n =5-2n 可知{b n }中最大项是b 3=7, ∴M ≥7,M 的最小值为7.(3)证明:由(2)知C n =n +2,假设{C n }中存在三项c p 、c q 、c r (p 、q 、r 互不相等)成等比数列,则c 2q =c p ·c r , ∴(q +2)2=(p +2)(r +2),∴(q 2-pr )+(2q -p -r )2=0.∵p 、q 、r ∈N *,∴⎩⎪⎨⎪⎧q 2=pr ,2q -p -r =0, 消去q 得(p -r )2=0,∴p =r ,与p ≠r 矛盾.∴{C n }中任意不同的三项都不能成为等比数列.。

高中数学《二项式定理》教学设计

高中数学《二项式定理》教学设计

高中数学《二项式定理》教学设计教学目标:1.理解二项式定理的概念和公式;2.掌握二项式定理的应用方法,能够将其用于多项式展开和计算;3.培养学生的逻辑思维能力和数学推理能力。

教学重点:1.二项式定理的概念和公式;2.二项式定理的应用方法。

教学难点:1.二项式定理的应用方法;2.数学推理能力的培养。

教学准备:1.教材《高中数学》;2.黑板、彩色粉笔;3.教学投影仪。

教学过程:Step 1 引入(5分钟)1. 在黑板上写出“(a+b)² = a² + 2ab + b²”这个式子,让学生观察这个式子有什么特点。

2.引导学生思考,当我们展开一个形如“(a+b)ⁿ”的式子时,会得到怎样的结果。

Step 2 概念讲解(10分钟)1.分析上面提到的式子,得出一个结论:“当一个多项式的指数为2时,展开后的结果是一个三项式”。

2.引入二项式的概念:“若为任意正整数n,a和b为任意常数,则(a+b)ⁿ展开后得到的多项式称为二项式。

”3.引入二项式定理的公式:“对任意正整数n,有(a+b)ⁿ=C(n,0)aⁿ·b⁰+C(n,1)aⁿ⁻¹·b¹+C(n,2)aⁿ⁻²·b²+...+C(n,n-1)a¹·bⁿ⁻¹+C(n,n)a⁰·bⁿ。

”4.解释公式中的C(n,k)为组合数,表示从n个元素中选择k个元素的组合数。

Step 3 示例讲解(15分钟)1.通过一个具体的示例,将二项式定理的应用方法展示给学生。

2.示范展开一个二项式“(a+b)³”。

3.计算C(3,0)、C(3,1)、C(3,2)、C(3,3)的值。

4.将计算结果代入公式,展开“(a+b)³”。

Step 4 练习(20分钟)1.让学生尝试展开不同次数的二项式,并听取他们的答案。

2.提示学生根据二项式定理的公式,计算组合数的值,并将其应用于展开计算中。

高中数学《二项式定理》教案

高中数学《二项式定理》教案

二项式定理教案
(一)教学目标
1.知识与技能:掌握二项式定理①能根据组合思想及不完全归纳,得出二项式定理和二项展开式的通项。

②能正确区分二项式系数和某一项的系数。

③能正确利用二项式定理对任意给定的一个二项式进行展开,并求出它的特定项。

2.过程与方法:通过定理的发现推导提高学生的观察,比较,分析,概括等能力。

(二)教学重点与难点
重点:二项式定理的发现,理解和初步应用。

难点:二项式定理的发现。

(三)教学方法
启发诱导,师生互动
(四)教学过程。

【2018新课标 高考必考知识点 教学计划 教学安排 教案设计】高二数学:精讲二项式定理及其应用

【2018新课标 高考必考知识点 教学计划 教学安排 教案设计】高二数学:精讲二项式定理及其应用

+„+ Cn 5 + Cn 5 + Cn )+5n-a
n2
2
n 1
n
0 n 1 n 1 n2 2 =4( Cn 5 + Cn 5 +„+ Cn 5 )+25n+4-a,
显然正整数 a 的最小值为 4。 (2)1.028=(1+0.02)8≈ C8 + C8 · 0.02+ C8 · 0.022+ C8 · 0.023≈1.172。 点拨: (1)整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中要关 注展开式的最后几项,而求近似值则应关注展开式的前几项。 (2)二项式定理的应用基本思路是正用或逆用二项式定理,注意选择合适的形式。
m n m
0 1 n 1 n k n k
k
k
n 增减性: 二项式系数 Cn ,当 k
k
当k
n 1 时,二项式系数是递减的。 2
n
n 1 时,二项式系数是递增的; 2
(3)最大值: 当 n 是偶数时,中间的一项 Cn2 取得最大值。
n 1 n 1
高中数学 编稿老师
精讲二项式定理及其应用 刘咏霞 一校 程文军 二校 黄楠 审核 隋冬梅
1. 二项式定理
0 n 1 n 1 1 k nk k n n (a b) n Cn a Cn a b Cn a b Cn b (n N * )
这个公式所表示的定理叫做二项式定理,右边的多项式叫做(a+b)n 的二项展开式, 其中的系数 Cn (k=0,1,2,„,n)叫做二项式系数。式中的 Cn a 的通项,用 Tk+1 表示,即展开式的第 k+1 项;Tk+1= Cn a 2. 二项展开式形式上的特点 (1)项数为 n+1。 (2)各项的次数都等于二项式的幂指数 n,即 a 与 b 的指数的和为 n。 (3)字母 a 按降幂排列,从第一项开始,次数由 n 逐项减 1 直到零;字母 b 按升幂排 列,从第一项起,次数由零逐项增 1 直到 n。 (4)二项式的系数为 Cn , Cn ,„, Cn , Cn 。 3. 二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等,即 Cn Cn

二项式定理及数学归纳法(热点难点突破)-2018年高考数学(理)考纲解读与热点难点突破含解析

二项式定理及数学归纳法(热点难点突破)-2018年高考数学(理)考纲解读与热点难点突破含解析

专题14 二项式定理及数学归纳法(热点难点突破)2018年高考数学(理)考纲解读与热点难点突破1.在二项式错误!n(n∈N*)的展开式中,常数项为28,则n的值为( )A.12 B.8 C.6 D.42.设二项式错误!错误!n(∈N*)展开式的二项式系数和与各项系数和分别为a n、b n,则错误!=()A.2n-1+3 B.2(2n-1+1)C.2n+1D.1解析由题意知a n=2n成等比数列,令x=1则b n=错误!错误!也成等比数列,所以错误!=2n+1,故选C.答案C3.已知(1+x)10=a0+a1(1-x)+a2(1-x)2+…+a10(1-x)10,则a8等于()A.180 B.90 C.-5 D.5解析(1+x)10=[2-(1-x)]10,其通项公式为T r+1=C r10210-r·(-1)r(1-x)r,a8是r=8时,第9项的系数.∴a8=C8,1022(-1)8=180。

故选A。

答案A4.(x-错误!y)8的展开式中,x6y2项的系数是()A.56 B.-56 C.28 D.-28解析二项式的通项为T r+1=C r,8x8-r(-错误!y)r,令8-r=6,即r=2,得x6y2项的系数为C2,8(-错误!)2=56.答案A5.在错误!错误!的展开式中,x的幂指数是整数的项共有()A.3项 B.4项 C.5项 D.6项解析T r+1=C错误!(错误!)24-r错误!错误!=C错误!x12-错误!,故当r=0,6,12,18,24时,幂指数为整数,共5项.答案C6.已知f(x)=|x+2|+|x-4|的最小值为n,则二项式错误!错误!展开式中x2项的系数为()A.15 B.-15 C.30 D.-30解析因为函数f(x)=|x+2|+|x-4|的最小值为4-(-2)=6,即n=6。

展开式的通项公式为T k+1=C k6x6-k错误!k=C错误!x6-2k(-1)k,由6-2k=2,得k=2,所以T3=C错误!x2(-1)2=15x2,即x2项的系数为15,选A。

二项式定理教学设计高三

二项式定理教学设计高三

二项式定理教学设计高三一、教学目标1. 理解二项式定理的定义和基本性质。

2. 掌握二项式定理的运用方法。

3. 培养学生的逻辑思维和数学推理能力。

4. 培养学生对数学问题的兴趣和探索精神。

二、教学重点1. 掌握二项式定理的展开和应用。

2. 培养学生的数学思维和运算能力。

三、教学难点1. 帮助学生理解二项式定理的证明过程。

2. 培养学生抽象思维和推理能力。

四、教学过程1. 导入(5分钟)教师通过提问和讲述引导学生回顾高中阶段已学习的数学知识,如排列组合、多项式等内容。

然后向学生介绍今天的学习内容:二项式定理。

2. 概念解释(10分钟)教师通过示意图和具体例子,向学生阐述二项式定理的概念和基本性质。

帮助学生理解二项式定理是将两个数相加或相乘的展开式。

3. 二项式定理的展开(15分钟)教师通过板书和示范展示如何将二项式展开。

先给出一个简单的二项式,并指导学生按照二项式定理的公式进行展开。

然后通过一些具体的例子,让学生逐步掌握二项式定理展开的方法和技巧。

4. 二项式定理的应用(20分钟)教师通过实际问题和应用题,引入二项式定理的应用领域。

如组合数学、概率统计等。

通过解答一些实际问题,让学生认识到二项式定理在数学和实际生活中的重要性和应用价值。

5. 二项式定理的证明(20分钟)教师通过逻辑推理和数学推导,带领学生理解和证明二项式定理。

可以使用归纳法和数学归纳法等方法,引导学生参与证明的过程,提高学生的抽象思维和逻辑推理能力。

6. 练习和巩固(15分钟)教师设计一些练习题,让学生巩固和应用所学知识。

通过学生的练习,检验学生对二项式定理的掌握程度和运算能力。

7. 总结和拓展(5分钟)教师对本节课的内容进行总结,并给出一些延伸阅读和学习资料,鼓励学生在课后继续学习和探索。

五、教学评价1. 教师通过课堂讨论、学生练习和问题解答等形式,对学生的学习情况进行评价和反馈。

2. 鼓励学生积极参与课堂活动,发表自己的观点和思考。

高三数学教案《二项式定理》

高三数学教案《二项式定理》

高三数学教案《二项式定理》高三数学教案《二项式定理》二项式定理说课稿高三第一阶段复习,也称“知识篇”。

在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。

在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。

对于普通高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。

一、内容分析说明1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他部分有密切的联系:(1)二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。

(2)二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识网络。

(3)二项式定理是解决某些整除性、近似计算等问题的一种方法。

2、高考中二项式定理的试题几乎年年有,多数试题的难度与课本习题相当,是容易题和中等难度的试题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求某些数、式的近似值。

二、学校情况与学生分析(1)我校是一所镇普通高中,学生的.基础不好,记忆力较差,反应速度慢,普遍感到数学难学。

但大部分学生想考大学,主观上有学好数学的愿望。

(2)授课班是政治、地理班,学生听课积极性不高,听课率低(60﹪),注意力不能持久,不能连续从事某项数学活动。

课堂上喜欢轻松诙谐的气氛,大部分能机械的模仿,部分学生好记笔记。

三、教学目标复习课二项式定理计划安排两个课时,本课是第一课时,主要复习二项展开式和通项。

根据历年高考对这部分的考查情况,结合学生的特点,设定如下教学目标:1、知识目标:(1)理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式。

二项式定理教案

二项式定理教案

二项式定理教案一、引言二项式定理是初中数学中的重要内容,也是高中数学中的基础知识。

它是指对于任意实数a和b,以及任意正整数n,有以下公式成立:(a+b)n=∑(n k )nk=0a n−kb k其中,(nk )表示从n个不同元素中取出k个元素的组合数,也称为二项式系数。

二项式定理的应用非常广泛,例如在概率论、组合数学、统计学等领域都有重要的应用。

因此,掌握二项式定理的基本概念和应用方法对于学生的数学学习和未来的职业发展都具有重要意义。

本教案旨在通过讲解二项式定理的基本概念、证明方法和应用实例,帮助学生深入理解二项式定理的本质和应用,提高数学思维和解决问题的能力。

二、基本概念1. 二项式系数二项式系数是指从n个不同元素中取出k个元素的组合数,用符号(nk )表示,读作“n选k”。

二项式系数的计算公式为:(nk)=n!k!(n−k)!其中,n!表示n的阶乘,即n!=n×(n−1)×⋯×2×1。

二项式系数具有以下性质:1.对称性:(nk)=(nn−k)2.加法公式:(nk)+(nk+1)=(n+1k+1)3.乘法公式:(nk)(km)=(nm)(n−mk−m)2. 二项式定理二项式定理是指对于任意实数 a 和 b ,以及任意正整数 n ,有以下公式成立:(a +b)n=∑(n k )nk=0a n−k b k 其中,(n k ) 表示从 n 个不同元素中取出 k 个元素的组合数,也称为二项式系数。

二项式定理的证明可以采用数学归纳法或组合意义等方法,具体证明过程将在下一节中介绍。

3. 二项式定理的特殊情况当 n =2 时,二项式定理可以简化为:(a +b)2=a 2+2ab +b 2当 n =3 时,二项式定理可以简化为:(a +b)3=a 3+3a 2b +3ab 2+b 3当 n =4 时,二项式定理可以简化为:(a +b)4=a 4+4a 3b +6a 2b 2+4ab 3+b 4以此类推,可以得到任意正整数 n 的二项式定理的展开式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题14 二项式定理及数学归纳法【2018年高考考纲解读】高考对本内容的考查主要有:(1) 二项式定理的简单应用,B级要求;(2)数学归纳法的简单应用,B级要求【重点、难点剖析】1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n,上式中右边的多项式叫做(a+b)n的二项展开式,其中C r n(r=1,2,3,…,n)叫做二项式系数,式中第r+1项叫做展开式的通项,用T r+1表示,即T r+1=C r n a n-r b r;(2)(a+b)n展开式中二项式系数C r n(r=1,2,3,…,n)的性质:①与首末两端“等距离”的两项的二项式系数相等,即C r n=C n-rn;②C0n+C1n+C2n+…+C n n=2n;C0n+C2n+…=C1n+C3n+…=2n-1.2.二项式定理的应用(1)求二项式定理中有关系数的和通常用“赋值法”.(2)二项式展开式的通项公式T r+1=C r n a n-r b r是展开式的第r+1项,而不是第r项.3.数学归纳法运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n取第一个值n0(n0∈N*)时命题成立,第二步是归纳递推(或归纳假设)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立,只要完成这两步,就可以断定命题对从n0开始的所有的正整数都成立,两步缺一不可.4.数学归纳法的应用(1)利用数学归纳法证明代数恒等式的关键是将式子转化为与归纳假设的结构相同的形式,然后利用归纳假设,经过恒等变形,得到结论.(2)利用数学归纳法证明三角恒等式时,常运用有关的三角知识、三角公式,要掌握三角变换方法.(3)利用数学归纳法证明不等式问题时,在由n=k成立,推导n=k+1成立时,过去讲的证明不等式的方法在此都可利用.(4)用数学归纳法证明整除性问题时,可把n=k+1时的被除式变形为一部分能利用归纳假设的形式,另一部分能被除式整除的形式.(5)解题时经常用到“归纳——猜想——证明”的思维模式.【题型示例】题型一 二项式定理的应用 【例1】【2017课标1,理6】621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C【变式探究】【2016年高考北京理数】在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答) 【答案】60.【解析】根据二项展开的通项公式16(2)r r r r T C x +=-可知,2x 的系数为226(2)60C -=。

【变式探究】(2015·新课标全国Ⅰ,10)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 解析 T k +1=C k 5(x 2+x )5-k y k,∴k =2.∴C 25(x 2+x )3y 2的第r +1项为C 25C r 3x 2(3-r )x r y 2,∴2(3-r )+r =5,解得r =1,∴x 5y 2的系数为C 25C 13=30.答案 C【变式探究】(1)(2014·辽宁五校联考)若⎝ ⎛⎭⎪⎫x +2x 2n 展开式中只有第6项的二项式系数最大,则展开式的常数项是( ) A .360B .180C .90D .45(2)(2014·浙江)在(1+x )6(1+y )4的展开式中,记x m y n项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( ) A .45 B .60 C .120D .210【命题意图】 (1)本题主要考查二项展开式的通项、系数问题,对思维能力有一定要求. (2)本题主要考查二项展开式的系数问题,需要考生结合二项式定理进行求解. 【答案】(1)B (2)C【感悟提升】二项式定理是一个恒等式,对待恒等式通常有两种思路:一是利用恒等定理(两个多项式恒等,则对应项系数相等);二是赋值,这两种思路相结合可以使得二项展开式的系数问题迎刃而解.另外,通项公式主要用于求二项式的指数,求满足条件的项或系数,求展开式的某一项或系数,在运用公式时要注意以下几点: (1)C r n an -r b r是第r +1项,而不是第r 项;(2)运用通项公式T r +1=C r n a n -r b r解题,一般都需先转化为方程(组)求出n ,r ,然后代入通项公式求解;(3)求展开式的特殊项,通常都是由题意列方程求出r ,再求出所需的某项;有时需先求n ,计算时要注意n 和r 的取值范围及它们之间的大小关系.【举一反三】1.(2015·北京,9)在(2+x )5的展开式中,x 3的系数为________(用数字作答). 解析 展开式通项为:T r +1=C r 525-r x r,∴当r =3时,系数为C 35·25-3=40. 答案 402.(2015·天津,12)在⎝ ⎛⎭⎪⎫x -14x 6的展开式中,x 2的系数为________.解析 ⎝ ⎛⎭⎪⎫x -14x 6的展开式的通项T r +1=C r 6x 6-r ⎝ ⎛⎭⎪⎫-14x r =C r 6⎝ ⎛⎭⎪⎫-14rx 6-2r ; 当6-2r =2时,r =2,所以x 2的系数为C 26⎝ ⎛⎭⎪⎫-142=1516. 答案1516【变式探究】已知a n =(1+2)n(n ∈N *) (1)若a n =a +b 2(a ,b ∈Z ),求证:a 是奇数;(2)求证:对于任意n ∈N *都存在正整数k ,使得a n =k -1+k .【证明】(1)由二项式定理,得a n =C 0n +C 1n 2+C 2n (2)2+C 3n (2)3+…+C n n (2)n, 所以a =C 0n +C 2n (2)2+C 4n (2)4+…=1+2C 2n +22C 4n +…,因为2C 2n +22C 4n +…为偶数,所以a 是奇数.(2)由(1)设a n =(1+2)n =a +b 2(a ,b ∈Z ),则(1-2)n=a -b 2, 所以a 2-2b 2=(a +b 2)(a -b 2)=(1+2)n (1-2)n =(1-2)n,当n 为偶数时,a 2=2b 2+1,存在k =a 2,使得a n =a +b 2=a 2+2b 2=k +k -1, 当n 为奇数时,a 2=2b 2-1,存在k =2b 2,使得a n =a +b 2=a 2+2b 2=k -1+k , 综上,对于任意n ∈N *,都存在正整数k ,使得a n =k -1+k .【规律方法】二项式系数的最大项与展开式系数的最大项不同,本题的第r +1项的二项式系数是C r8,而展开式系数却是2r C r8,解题时要分清.【变式探究】已知数列{a n }的首项为1,p (x )=a 1C 0n (1-x )n +a 2C 1n x (1-x )n -1+a 3C 2n x 2(1-x )n -2+…+a n C n -1n xn -1(1-x )+a n +1C n n x n(1)若数列{a n }是公比为2的等比数列,求p (-1)的值;(2)若数列{a n }是公比为2的等差数列,求证:p (x )是关于x 的一次多项式.(2)证明 若数列{a n }是公差为2的等差数列,则a n =2n -1.p (x )=a 1C 0n (1-x )n +a 2C 1n x (1-x )n -1+…+a n C n -1n x n -1·(1-x )+a n +1C n n x n=C 0n (1-x )n +(1+2)C 1n x (1-x )n -1+(1+4)C 2n x 2(1-x )n -2+…+(1+2n )C n n x n=[C 0n (1-x )n +C1n x (1-x )n -1+C 2n x 2(1-x )n -2+…+C n n x n ]+2[C 1n x (1-x )n -1+2C 2n x 2(1-x )n -2+…+C n n x n].由二项式定理知, C 0n (1-x )n +C 1n x (1-x )n -1+C 2n x 2(1-x )n -2+…+C n n x n =[(1-x )+x ]n=1.因为k C kn =k ·n !k !n -k !=n ·n -!k -!n -k !=n C k -1n -1,所以C 1n x (1-x )n -1+2C 2n x 2(1-x )n -2+…+n C n n x n=n C 0n -1x (1-x )n -1+n C 1n -1x 2(1-x )n -2+…+n C n -1n -1x n=nx [C 0n -1(1-x )n -1+C 1n -1x (1-x )n -2+…+C n -1n -1x n -1]=nx [(1-x )+x ]n -1=nx ,所以p (x )=1+2nx .即p (x )是关于x 的一次多项式. 题型二 二项展开式中的常数项例2.【2016年高考四川理数】设i 为虚数单位,则6()x i +的展开式中含x 4的项为(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4【答案】A【解析】二项式6()x i +展开的通项616r r rr T C xi -+=,令64r -=,得2r =,则展开式中含4x 的项为2424615C x i x =-,故选A.【变式探究】(2015·湖南,6)已知⎝ ⎛⎭⎪⎫x -a x 5的展开式中含x 32的项的系数为30,则a =( )A. 3 B .- 3 C .6 D .-6【变式探究】使得⎝⎛⎭⎪⎫3x +1x x n(n ∈N +)的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .7 解析 展开式的通项公式为T k +1=C kn (3x )n -k⎝ ⎛⎭⎪⎫1x x k =C k n 3n -kxn -5k 2.由n -5k 2=0得n =5k 2,所以当k =2时,n 有最小值5,选B. 答案 B【举一反三】设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0.则当x >0时,f [f (x )]表达式的展开式中常数项为( )A .-20B .20C .-15D .15解析 当x >0时,f [f (x )]=⎝ ⎛⎭⎪⎫-x +1x 6=⎝ ⎛⎭⎪⎫1x -x 6的展开式中,常数项为C 36⎝ ⎛⎭⎪⎫1x 3(-x )3=-20.所以选A. 答案 A题型三 二项式定理的综合应用例3.【2017山东,理11】已知()13nx +的展开式中含有2x 项的系数是54,则n = . 【答案】4【解析】由二项式定理的通项公式()1C 3C 3rr r r r r n n x x +T ==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =. 【变式探究】【2016高考山东理数】若(a x 25的展开式中x 5的系数是—80,则实数a =_______. 【答案】-2【解析】因为5102552155()rrrrr rr T C ax C ax---+==,所以由510522r r -=⇒=,因此252580 2.C a a -=-⇒=-【变式探究】(2015·陕西,4)二项式(x +1)n (n ∈N +)的展开式中x 2的系数为15,则n =( ) A .4 B .5C .6D .7解析 由题意易得:C n -2n =15,C n -2n =C 2n =15,即n (n -1)2=15,解得n =6.答案 C【变式探究】(2014·湖北,2)若二项式⎝⎛⎭⎪⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( ) A .2 B.54 C .1 D.24解析 T r +1=C r7·(2x )7-r·⎝ ⎛⎭⎪⎫a x r=27-r C r 7a r ·1x 2r -7.令2r -7=3,则r =5.由22·C 57a 5=84得a =1,故选C.答案 C【举一反三【(2014·浙江,5)在(1+x )6(1+y )4的展开式中,记x m y n项的系数f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( ) A .45 B .60 C .120D .210解析 在(1+x )6的展开式中,x m的系数为C m6,在(1+y )4的展开式中,y n 的系数为C n 4,故f (m ,n )=C m 6·C n4.从而f (3,0)=C 36=20,f (2,1)=C 26·C 14=60,f (1,2)=C 16·C 24=36,f (0,3)=C 34=4,故选C. 答案 C题型四 数学归纳法的应用例4、等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N +,点(n ,Sn )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N +),证明:对任意的n ∈N +,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.(2)证明:由(1)知a n =2n -1,因此b n =2n (n ∈N +),所证不等式为2+12·4+14·…·2n +12n >n +1.①当n =1时,左式=32,右式=2,左式>右式,所以结论成立.②假设n =k (k ≥1,k ∈N +)时结论成立,即2+12·4+14·…·2k +12k>k +1,则当n =k +1时, 2+12·4+14·…·2k +12k ·2k +3k +>k +1·2k +3k +=2k +32k +1, 要证当n =k +1时结论成立, 只需证2k +32k +1≥k +2.即证2k +32≥k +k +, 由基本不等式知2k +32=k ++k +2≥k +k +成立,故2k +32k +1≥k +2成立,所以,当n =k +1时,结论成立. 由①②可知,n ∈N +时,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1 成立.【感悟提升】 应用数学归纳法证明不等式应注意的问题(1)当遇到与正整数n 有关的不等式证明时,若用其他办法不容易证,则可考虑应用数学归纳法. (2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法等证明.【变式探究】记⎝ ⎛⎭⎪⎫1+x 2⎝ ⎛⎭⎪⎫1+x 22…⎝ ⎛⎭⎪⎫1+x 2n 的展开式中,x 的系数为a n ,x 2的系数为b n ,其中n ∈N *.(1)求a n ;(2)是否存在常数p ,q (p <q ),使b n =13⎝⎛⎭⎪⎫1+p 2n ⎝ ⎛⎭⎪⎫1+q 2n ,对n ∈N *,n ≥2恒成立?证明你的结论.【解析】(1)根据多项式乘法运算法则,得a n =12+122+…+12n =1-12n .(2)计算得b 2=18,b 3=732.代入b n =13⎝ ⎛⎭⎪⎫1+p 2n ⎝⎛⎭⎪⎫1+q 2n ,解得p =-2,q =-1.下面用数学归纳法证明b n =13⎝ ⎛⎭⎪⎫1-12n -1⎝ ⎛⎭⎪⎫1-12n =13-12n +23×14n (n ≥2且n ∈N *)①当n =2时,b 2=18,结论成立.②设n =k 时成立,即b k =13-12k +23×14k ,则当n =k +1时,b k +1=b k +a k2k +1=13-12k +23×14k +12k +1-122k +1 =13-12k +1+23×14k +1. 由①②可得结论成立.【规律方法】运用数学归纳法证明命题P (n ),由P (k )成立推证P (k +1)成立,一定要用到条件P (k ),否则不是数学归纳法证题.【变式探究】已知△ABC 的三边长都是有理数. (1)求证:cos A 是有理数;(2)求证:对任意正整数n,cos nA是有理数.【解析】(1)证明设三边长分别为a,b,c,cos A=b2+c2-a22bc,∵a,b,c是有理数,b2+c2-a2是有理数,分母2bc为正有理数,又有理数集对于除法具有封闭性,∴b2+c2-a22bc必为有理数,∴cos A是有理数.解得:cos(k+1)A=2cos kA cos A-cos(k-1)A ∵cos A,cos kA,cos(k-1)A均是有理数,∴2cos kA cos A-cos(k-1)A是有理数,∴cos(k+1)A是有理数.即当n=k+1时,结论成立.综上所述,对于任意正整数n,cos nA是有理数.。

相关文档
最新文档