量子信息与量子计算

合集下载

量子计算和量子信息(量子计算部分,Nielsen等着)第二章答案

量子计算和量子信息(量子计算部分,Nielsen等着)第二章答案
2.6 (∑������ ������������|������������ > , |������ >) = (|������ >, ∑������ ������������|������������)∗ = ∑������ ������������∗ (|������ >, |������������ >)∗=∑������ ������������∗ (|������������ >, |������ >)∗
2.14
要证明
(aA)+ = ������∗������+


(������ + ������)+ = ������++������+ ②
证 2 设 C=A+B ,则 ������������������ = ������������������ + ������������������ ,
∴ ������������������+ = ������������������∗ = (������������������ + ������������������)∗
2.29 AA+=A+A=I , BB+=B+B=I 则 (A⨂B) (A⨂B) += (A⨂B) (A +⨂B +)=(AA +) ⨂(BB +)= I⨂I=I 同理 (A⨂B) +(A⨂B)=I 得证
2.30 A=A+,B+=B ,所以(A⨂B) +=A +⨂B +=A ⨂B
2.31 两个半正定算子张量积是半正定的
2.25 引证,当 A 是 Hermite 的,只要 A 的特征值大于等于 0,则 A 是半正定算子 设,|φi >是 A 的标准归一化的特征向量 则对任意的|v> 有 |v>=∑������ ������������|vi> ,则|v>+=∑������ ������������*<φi|* 则 A|v>=A ∑������ ������������|φi>=∑������ ������������ ������������|φi> , 所以<v|*A|v>=∑������ ������������ ������������∗������������<φi |*|φi> 而且有 CiCi*>=0 , <φi ||φi>=1 所以当������������>=0 有<v|A|v> >=0

l量子计算与量子信息。ppt

l量子计算与量子信息。ppt
• • 量子中继 量子隐形传态
量子纠缠的度量
• 我们说,一个可分态的纠缠度为0,对于 非可分态,则需要一个合适的量来度量其 纠缠度的大小。基于不同的考虑,纠缠度 量有很多种,它们都必须满足:对可分态, 其纠缠度为零;在局部幺正变换(LUT)下, 纠缠度不变;而在一般局部操作(LOCC) 下,纠缠度不增加。并发度(Concurrence) 就是一种很好的纠缠度量。
Solid line: our lower bound Dashed line: lower bound by PPT Dashed-dotted line: lower bound by realignment axis: lower bound by Breuer
X.S. Li, X.H. Gao and S.M. Fei, Phys. Rev. A 83 (2011) 034303
Quantum entanglement: Concurrence
Bipartite state
Multipartite state
Lower Bound for Concurrence
Uhlmann 2000, Rungta et al, Albeverio and Fei 2001
K. Chen, S. Albeverio, S.M. Fei, Phys. Rev. Lett. 95(2005)040504
Lower bound of concurrence based on positive maps Authors:Xiao-Sheng Li, Xiu-Hong Gao,Shao-Ming Fei 2011.7.15
量子计算和量子信息
《国家中长期科学和技术发展规划 纲要(2006-2020)》中基础性前沿研 究方面的四项重大科学计划之一

量子信息和量子计算的理论研究

量子信息和量子计算的理论研究

量子信息和量子计算的理论研究量子信息和量子计算领域是近年来备受关注的热门话题。

量子力学的奇特性质使得量子信息的传输和存储在很多方面都具有许多优势。

而量子计算作为一种新兴的计算模型,有着巨大的潜力在解决某些问题上超越传统的计算方法。

量子信息的理论研究主要聚焦在量子态的传输和纠错、量子通信和量子密钥分发等方面。

量子态的传输和纠错是实现可靠量子通信的基础。

通过光子或者原子之间的量子纠缠,可以实现量子态的传输。

然而,量子态很容易受到环境的干扰而发生错误,因此,发展出纠错方法来提高传输的可靠性是一个重要的研究方向。

量子通信利用了量子纠缠的特性,可以实现加密通信和量子隐形传态等目标。

而量子密钥分发是为了解决传统加密方式中可能存在的安全隐患而提出的一种安全的通信方式。

量子计算则是量子信息领域的另一个重要分支。

传统的计算机内部信息的储存和运算都是基于二进制位的,而量子计算采用的是量子比特(qubit)来存储和处理信息。

量子比特不仅可以表示0和1两种状态,还可以同时处于0和1的叠加态。

这使得量子计算具备并行计算的能力,能够在指数级别上提高计算效率。

相比之下,传统计算机在处理某些复杂问题时会遇到巨大的计算量,而量子计算可通过量子纠缠和量子门操作来实现高效的计算。

例如,Shor算法可以利用量子计算机快速地分解大整数,这对当前的RSA加密算法来说是一个巨大的威胁。

为了实现量子信息和量子计算的理论研究,科学家们提出了各种各样的理论模型和算法。

其中,量子线路模型是其中的一种重要模型。

量子线路模型将量子计算抽象成一系列的量子门操作,可以模拟各种量子算法的执行过程。

这种模型的优势在于可以直观地展示量子计算的过程和量子态的变化。

此外,量子算法中还有一些经典算法的量子版本,比如量子概率算法和量子模拟算法等。

这些算法在某些情况下可以显著提高计算效率。

然而,由于量子信息和量子计算的研究还处于初级阶段,目前还存在许多挑战需要克服。

首先,量子信息的纠错和传输需要有效的方法来降低噪声干扰,提高信号的传输质量。

量子信息与量子计算

量子信息与量子计算

量子信息与量子计算
《量子信息与量子计算》
1、量子信息
量子信息是指利用量子效应转移和存储信息和实现信息处理的科学理论和技术,是利用量子物理系统中量子状态的熵变化,构建信息处理模型和系统,采用量子机制实现信息的输入、输出、存储、处理、变换等高级功能的科学理论和技术。

近年来,量子信息受到越来越多的关注,在量子竞速、量子加密通信、量子调谐性、量子模拟计算等研究领域取得了一些突破性进展。

2、量子计算
量子计算是一种新型的计算机技术,它利用量子特性的效应,实现信息的处理。

它的主要思想是利用量子力学的量子系统来存储和处理信息,使信息在量子系统中构建一种传输和处理模式,实现量子信息处理的功能。

量子计算机则是将这种思想应用到计算机中,将量子处理器应用于计算机中,实现将量子信息处理技术应用到计算机中的功能,开发出新一代高性能的计算机来实现信息处理。

3、量子信息与量子计算的关系
量子信息和量子计算相互依存,量子信息是量子计算的基础,量子计算则是量子信息的一种应用。

他们的关系可总结为:量子信息是一种量子物理学原理,它提供了量子计算的基础原理和技术,量子计算则是将量子信息的基础原理和技术应用到计算机中,实现量子信息的处理,构建新一代更加高效、高性能的计算机。

量子计算和量子信息(量子计算部分,Nielsen等着)4(大部分)

量子计算和量子信息(量子计算部分,Nielsen等着)4(大部分)

4.14.2证明过程需要用到如下三个泰勒级数展开式:e^x= 1+x+x^2/2!+x^3/3!+...+x^n/n!+Rn(x )sin x = x -x^3/3!+x^5/5!-...(-1)^(k -1)*x^(2k -1)/(2k -1)!+Rn(x)(-∞<x<∞)cos x = 1-x^2/2!+x^4/4!-...(-1)^k*x^(2k)/(2k)!+... (-∞<x<∞)这种矩阵形式的指数表达式exp(iAx)就是用相应的泰勒级数展开来定义的,方法就是把上面的x 换成这里的矩阵iAx 即可。

上面的数字1,就是单位矩阵I ,n 次方也就是矩阵iAx 相乘n 次。

exp(iAx)=I+iAx -A^2x^2/2!-iA^3x^3/3!+A^4x^4/4!+......+(iAx)^n/n!+......=I+iAx -Ix^2/2!-iA^3x^3/3!+Ix^4/4!+......(注意到A^2=I)再结合sinx 和cosx 的泰勒级数展开式,就可以发现,cos(x)I = I -Ix^2/2!+Ix^4/4!-...isin(x)A=iAx -iA^3x^3/3!+iA^5x^5/5!-......所以就有exp(iAx)=cos(x)I+isin(x)A4.3y zH=(X+Z)/2=R x(π) R y(π/2)exp(iπ/2)R x(θ)=R z(−π/2) R y(θ) R z(π/2)所以H=R z(−π/2) R y(π) R z(π/2) R y(π/2)exp(iπ/2)4.5X^2=Y^2=Z^2=I 并且paili矩阵相互反对易,展开化简即得4.74.17H Z H4.18左边线路的作用:|00>→|00>|01>→|01>|10>→|10>|11>→-|11>右边线路的作用:|00>→|00>|01>→|01>|10>→|10>|11>→-|11>所以等价4.19[1001 00000000 0110][a b e f c d g ℎi j m n k l o p ][1001 00000000 0110]=[a b e f c d g ℎm n i j o p k l ][1001 00000000 0110]= [a b e f d c ℎg m n i j p o l k ]4.20左边=(H ⨂H)(|0><0|⨂I+|1><1|⨂X)(H ⨂H)= [1000 00010001 1000]=右边4.21直接输入8个状态进行验证即可4.22设V^2=U,而V=e^(i α)AXBXC, V +=e^(-i α) C +XB +XA +[100e^(i α)]可以无限穿越节点,但不能穿越X4.23U=R x (θ)=R z (−π2)R y (θ)R z (π2) 不能减少U=R y (θ) 能4.24控制比特:|00>: 第一比特位 T|0>=|0>第二比特位 T +T +S= (T 2)+S=S +S=I第三比特位 H T +T T +TH=I|01>: 第一比特位 T|0>=|0>第二比特位 T +T +S= (T 2)+S=S +S=I第三比特位 H XT +T XT +TH=I|10>: 第一比特位 T|1>=e^(i π/4)|1>第二比特位 T +XT +X S=e^(−i π/4) S,e^(−i π/4) S|0>= e^(−i π/4)|0>第三比特位 H T +X T T +X TH=I,e^(i π/4)|1>⨂ e^(−i π/4)|0>=|10>|11>: 第一比特位 T|1>=e^(i π/4)|1>第二比特位 T +XT +X S=e^(−i π/4) S,e^(−i π/4) S|1>= e^(i π/4)|1>第三比特位 H XT +X T XT +X TH= e^(-i π/2)HZH= e^(-i π/2)X e^(i π/4)|1>⨂ e^(i π/4)|1>= e^(i π/2)|11>R z (π2) R y (θ2) R z (−π2) R y (θ2) R y (θ2) R y (θ2)4.25(1)第三比特是控制位(2)第三比特是控制位或第一比特是控制位4.26直接输入8个状态进行验证即可(验算后没相位因子?)4.27构造如图:4.32ρ,=∑ρij00ij |i><j|⨂|0><0|+ ∑ρij11ij |i><j|⨂|1><1|ρ=Σρijmn |i><j|⨂|m><n|tr(ρ)= Σρijmn |i><j|tr(|m><n|)=Σρijm |i><j|4.33产生Bell 态的线路为而线路与恒等算子I完成的效果一样因而最后测量的是初始输入的计算基4.364.37U4U3U2U1U=I按照书上的步骤计算即可4.394.40E(U,V)=√<φ|(U −V )+(U −V )|φ>=√<φ|(U +U +V +V)|φ>−<φ|(U +V +V +U)|φ>=√2−<φ|(U +V +V +U)|φ>U=cos(α/2)-isin(α/2)n ⃗ *σV= cos((α+β)/2)-isin((α+β)/2)n ⃗ *σ<φ|(U +V +V +U)|φ>=<φ|2cos (β2)I|φ>=2cos (β2) E(U,V)= √2−2cos (β2)=|1-exp(i β/2)|4.41(S 为相位门)输入|00 φ>输出是|00>⨂(3/4 S| φ>+1/4 XSX| φ>)+(|01>+|10>−|11>⨂(1/4)(S| φ>− XSX| φ>)(3/4)^2+(1/4)^2=5/8所以以5/8的概率得到|00>3/4 S+1/4 XSX=(1/4) [3+i 001+3i]R z (θ)=exp(-i θ/2) [10035+45i ]而(3+i) [10035+45i ]= [3+i 001+3i]4.47利用练习2.54 A ,B 对易,则exp(A)*exp(B)=exp(A+B)4.49左边对e^[(A+B)△t]泰勒展开到O(△t^3)即可右边对e^(A △t ),e^(B △t )泰勒展开到O(△t^3) e^{-0.5[A,B] △t^2}泰勒展开到O(△t^4)右边再合并化简即可与左边相同4.50(1) 每项e^[-i H k △t] 泰勒展开到O(△t^2)即可(2)E(U △t m ,e^(-2miH △t)≤∑E(U △t ,e^(−2iH △t)m 1=m||U △t −e^(−2iH △t)|φ>||=m|| O(△t^3) |φ>||=ma △t^34.51[01−10]X=Z[0−i−i0]Y=Z 再用式4.113即可。

如何解决数学中的量子计算与量子信息问题

如何解决数学中的量子计算与量子信息问题

如何解决数学中的量子计算与量子信息问题量子计算和量子信息是近年来备受关注的热门话题,对于数学领域的学者们来说,解决这些问题是至关重要的。

在本文中,我们将探讨如何解决数学中的量子计算与量子信息问题。

一. 量子计算的现状量子计算是一种利用量子力学原理进行计算的计算模型。

与传统计算机使用的比特不同,量子计算机使用的是量子比特(qubits),它们具有超导性和叠加性的特点,使得量子计算机能够在同一时间内进行多个计算。

然而,尽管量子计算机在理论上具备强大的计算能力,但实际上,目前的量子计算技术仍然面临着很多挑战。

其中之一是量子比特的稳定性问题,量子比特的易受噪声影响导致计算结果的不准确性。

另外,量子计算机的建设和维护成本也非常高昂,限制了其在实际应用中的推广和发展。

二. 解决量子计算问题的方法尽管目前的量子计算技术还不够成熟,但学者们已经提出了一些解决方案,以期解决量子计算中的一些关键问题。

1. 误差校正代码对于量子计算中的误差问题,学者们提出了误差校正代码的方法。

该方法通过在量子比特之间建立冗余关系,并使用校正程序来检测和纠正误差,从而提高计算结果的准确性。

然而,误差校正代码方法的算法复杂度较高,需要更多的计算资源和更长的时间。

2. 量子纠缠技术量子纠缠是一种通过量子比特之间的相互作用建立起的特殊关系。

通过利用量子纠缠技术,可以将多个量子比特连接起来,形成更为复杂的计算单元,提升量子计算机的计算能力。

然而,目前尚缺乏实现高效量子纠缠的技术手段。

三. 量子信息的挑战与解决在量子信息领域,同样存在一些挑战需要解决。

1. 量子通信安全性量子通信的一个重要目标是保证通信的安全性。

由于量子信息传输的特殊性,通过量子密钥分发(QKD)等方式可以实现信息加密和解密过程的安全性。

然而,目前的量子通信设备和协议仍面临着安全性和效率问题。

2. 量子信息存储在量子信息存储方面,学者们也在进行积极的研究。

目前已经实现了一些量子存储的方法,如基于离子阱和超导线圈等技术。

量子计算和量子信息

量子计算和量子信息

量子计算和量子信息
量子计算和量子信息是两个相关但不同的概念。

量子计算是指利用量子力学的特性来进行计算的一种计算模型。

在传统计算机中,信息以二进制位(0或1)的形式存储和处理。

而在量子计算中,信息以量子比特(qubit)的形式存储和处理。

量子比特可以同时处于多种状态,这种特性被称为叠加态。

此外,量子比特还可以发生纠缠,即两个量子比特之间的状态是相互关联的,这种特性被称为量子纠缠。

利用这些特性,量子计算机可以在某些情况下比传统计算机更快地解决某些问题。

量子信息是指利用量子力学的特性来传输和处理信息的一种信息模型。

量子信息可以利用量子比特的叠加态和纠缠态来实现更高效的信息传输和处理。

例如,量子密钥分发是一种利用量子纠缠来实现安全通信的方法。

量子信息还可以用于量子隐形传态、量子计算等领域。

总之,量子计算和量子信息都是利用量子力学的特性来进行计算和信息处理的一种新型模型,具有广泛的应用前景。

(完整版)量子信息与量子计算课件

(完整版)量子信息与量子计算课件

(1.1-8)
i j ij
各种可观测量叫做作用于波函数上的算符。 任何一个物理量算符A的期待值或平均值为:
(1.1-9)
A A * r,t A r,t dr (1.1-10)
物理量A的测量值必须为实数
3. 自旋1/2体系的量子态
1
自旋
旋1
2 的粒子在z轴方向的投影只有自旋向上和向下两种可能,因此可自









量量


子子


密计


钥算


分机


第一章 量子信息与量子计算的基本概念
§ 1.1 量子信息 § 1.2 经典解读 § 1.3 量子逻辑门(量子逻辑电路)简介 § 1.4 图灵机、经典计算机与量子计算机 § 1.5 有关量子信息编码的基本概念
§ 1.1 量子信息
一、 量子力学基础

1


0 1

(1.1-25)
一个量子比特能够处于既不是 0 又不是 1 的状态上,而是处于 0 和 1 的一个线性组合的所谓中间状态之上,即处于 0 和 1 的叠加态上。
a 0 b 1
(1.1-26)
n个量子比特的状态:
L 1, 2,L , n
(1.1-33)
很显然集合 { 00 , 01 , 10 , 11 } 是四维向量空间的 生成集合。
(B).量子态叠加与量子态纠缠 当量子比特列的叠加状态无法用各量子比特的张量乘积表示的话, 这种叠加状态就称为量子纠缠状态。 例:有一量子叠加状态
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于量子信息与量子计算
量子计算是一种依照量子力学理论进行的新型计算,量子计算的基础原理以及重要量子算法为在计算速度上超越图灵机模型提供了可能。

量子计算(quantum computation) 的概念最早由IBM的科学家R. Landauer及C. Bennett于70年代提出,对于普通计算机运行时芯片会发热,极大地影响了芯片的集成度,科学家们想找到能有更高运算速度的计算机。

到了1994年,贝尔实验室的应用数学家P. Shor指出,相对于传统电子计算器,利用量子计算可以在更短的时间内将一个很大的整数分解成质因子的乘积。

这个结论开启量子计算的一个新阶段:有别于传统计算法则的量子算法确实有其实用性,绝非科学家口袋中的戏法。

自此之后,新的量子算法陆续的被提出来,而物理学家接下来所面临的重要的课题之一,就是如何去建造一部真正的量子计算器,来执行这些量子算法。

许多量子系统都曾被点名作为量子计算器的基础架构,例如光子的偏振(photon polarization)、空腔量子电动力学、离子阱以及核磁共振(nuclear magnetic resonance, NMR)等等。

以目前的技术来看,这其中以离子阱与核磁共振最具可行性。

事实上,核磁共振已经在这场竞赛中先驰得点:以I. Chuang为首的IBM研究团队在2002年的春天,成功地在一个人工合成的分子中(内含7个量子位)利用NMR完成N =15的因子分解。

到底是什么导致量子如此高的计算能力呢?答案是量子的重叠与牵连原理的巨大作用。

普通计算机中的2位寄存器在某一时间仅能存储4个二进制数(00、01、10、11)中的一个,而量子计算机中的2位量子位(qubit)寄存器可同时存储这四个数。

量子位是量子计算的理论基石。

在常规计算机中,信息单元用二进制的 1 个位来表示, 它不是处于“ 0” 态就是处于“ 1” 态. 在二进制量子计算机中, 信息单元称为量子位,它除了处于“ 0” 态或“ 1” 态外,还可处于叠加态(super posed state) . 叠加态是“ 0” 态和“ 1” 态的任意线性叠加,它既可以是“ 0” 态又可以是“ 1” 态, “ 0” 态和“ 1” 态各以一定的概率同时存在. 通过测量或与其它物体发生相互作用而呈现出“ 0” 态或“ 1” 态.任何两态的量子系统都可用来实现量子位, 例如氢原子中的电子的基态( ground state)和第 1 激发态( first excited state)、质子自旋在任意方向的+ 1/ 2 分量和- 1/ 2 分量、圆偏振光的左旋和右旋等。

一个量子系统包含若干粒子,这些粒子按照量子力学的规律运动,称此系统处于态空间的某种量子态.态空间由多个本征态( eigenstate ) ( 即基本的量子态)构成基本态空间可用Hilbert 空间( 线性复向量空间)来表述,即Hilbert 空间可以表述量子系统的各种可能的量子态.为了便于表示和运算, Dirac提出用符号x〉来表示量子态, x〉是一个列向量,称为ket ;它的共轭转置( conjugate transpose) 用〈x 表示,〈x 是一个行向量, 称为bra.一个量子位的叠加态可用二维Hilbert 空间( 即二维复向量空间)的单位向量〉来描述
无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。

遗憾的是,在实际系统中量子相干性很难保持。

在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干。

因此,要使量子计算成为现实,一个核心问题就是克服消相
干。

而量子编码是迄今发现的克服消相干最有效的方法。

主要的几种量子编码方案是:量子纠错码、量子避错码和量子防错码。

量子纠错码是经典纠错码的类比,是目前研究的最多的一类编码,其优点为适用范围广,缺点是效率不高。

把量子考虑成磁场中的电子。

电子的旋转可能与磁场一致,称为上旋转状态,或者与磁场相反,称为下旋状态。

通过提供脉冲能量使电子旋转从一种状态变为两种状态,例如从激光。

让我们假设我们用一单位激光能量。

但是假设我们仅用半单位的激光能量并完全消除外界对微粒的影响将会怎样呢?根据量子理论,微粒将进入重叠状态,即同时处于两种状态下,每一个量子比特呈现重叠状态0和1。

因此量子计算机的计算数是2的n次方,n 是量子比特的位数。

量子计算机如果有500个量子比特,就在每一步作2^500次运算。

这是一个可怕的数,2^500比地球上已知的原子数还要多(这是真正的并行处理,当今的经典计算机,所谓的并行处理器仍然是一次只做一件事情)。

但是这些微粒如何相互作用呢?他们通过量子牵连来做。

量子牵连:在某点上相互作用的微粒(像光子、电子)之间具有一种关系,能够成对的纠缠在一起,这一过程被称为相关性。

知道了纠缠在一起的一个微粒的状态是上或下的话,它同伴的旋转是在其相反的方向上。

令人惊奇的是,由于层叠现象,被测定的微粒没有单独的旋转方向,而是同时成对的处于上旋和下旋状态。

被测微粒的旋转状态由测量时间和与其相关的微粒决定,其相关微粒同时处于相反的旋转方向。

这一真实的现象(爱因斯坦称其为“一定距离之间的神奇行为”),至今没有任何恰当的理论可以解释,只是简单的被接受着。

量子牵连就是无论来自同一系统的粒子之间有多远的距离都能同时相互作用(不受光速限制)。

加拿大量子计算公司D-Wave近日正式发布了全球第一款商用型量子计算机“D-Wave One”,量子电脑的梦想距离我们又近了一大步。

D-Wave公司的口号就是——“Yes, you can have one.”。

其实早在2007年初,D-Wave公司就展示了全球第一台商用实用型量子计算机“Orion”(猎户座),不过严格来说当时那套系统还算不上真正意义的量子计算机,只是能用一些量子力学方法解决问题的特殊用途机器。

D-Wave One量子处理器晶圆[1]D-Wave One量子计算机系
统[2]
时隔四年之后,D-Wave One终于脱胎换骨、正式登场。

它采用了128-qubit(量子比特)的处理器,四倍于之前的原型机,理论运算速度已经远远超越现有任何超级电子计算机。

不过呢,也别太兴奋,这个大家伙现在还只能处理经
过优化的特定任务,通用任务方面还远不是传统硅处理器的对手,而且编程方面也需要重新学习。

D-Wave One在散热方面的要求也非常苛刻,必须由液氦全程保护,但这至少比原型机离不开接近绝对零度的液氮好多了。

最后就是价格,D-Wave One目前的售价高达10000000美元,也就是一千万美元。

这绝对是天价中的天价了,不过也是新技术开端的必然,就像当初的第一台电子计算机ENIAC造价就有40万美元(二十世纪四十年代的40万美元)。

让我们耐心地期待量子计算未来的宏大发展!。

相关文档
最新文档