完全平方数
判断完全平方数的方法

判断完全平方数的方法
判断一个数是否为完全平方数的方法有很多,以下是几种常用的方法:
1. 直接求平方根:对于一个非负整数 n,如果它的平方根是整数,那么它就是完全平方数。
可以使用数学库或者自己实现求平方根的算法来判断。
2. 利用公式:一个数 n 是完全平方数,当且仅当它可以表示成x^2 的形式,其中 x 是整数。
因此,我们可以对 n 开方取整,得到整数 x,再计算 x^2,判断是否等于 n。
3. 利用性质:完全平方数的末尾数字只能是 0、1、4、5、6 或9。
如果一个数的末尾数字不是这些数字中的一个,那么它肯定不是完全平方数。
如果末尾数字是其中一个,我们可以尝试对其进行平方运算,看看是否得到原数。
例如,对于数字 25,它的末尾数字是 5,可以直接判断它是完全平方数;而对于数字 27,它的末尾数字是 7,显然不是完全平方数。
- 1 -。
10.完全平方数

2.除以3余0或余1;反之不成立。
3.除以4余0或余1;反之不成立。
4.约数个数为奇数;反之成立。
5.奇数的平方的十位数字为偶数;反之不成立。
6.奇数平方个位数字是奇数;偶数平方个位数字是偶数。
7.两个相临整数的平方之间不可能再有平方数。
8.约数个数为3的是质数的平方。
************************************
完全平方数什么是完全平方数完全平方数英语完全平方数翻译平方数与完全平方数完全平方公式完全平方完全平方公式ppt完全平方公式教案完全平方公式练习题
完全平方数
一、什么是完全平方数?
*************************************
二、完全平方数特征:
1.末位数字只能是:0、1、4、5、6、9;反之不成立。
完全平方数整理

完全平方数一、完全平方数常用性质1.主要性质 1.完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
2.在两个连续正整数的平方数之间不存在完全平方数。
3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
4.若质数p 整除完全平方数2a ,则p 能整除a 。
2.重点公式回顾:平方差公式:22()()a b a b a b -=+-模块一、完全平方数基本性质和概念基础练习、指出下列哪些是平方数?1156,5487,5329,8008。
1. 在3240,8972,2116,2475,2400这五个数中,哪几个是完全平方数?2.正整数的平方按大小排成1 4 9 16 25 36 49 …,那么第85 个位置上的数字是几【例 1】 写出从360到630的自然数中有奇数个约数的数.1、在50~400中,有多少个平方数?2、在50~761中有多少个平方数?例题精讲 知识点拨3、123×134的积是平方数吗?4、一个数的完全平方有39个约数,求该数的约数个数是多少?【例2】从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?【巩固】1016与正整数a的乘积是一个完全平方数,则a的最小值是________.2、46035乘以一个自然数a,积是一个整数的平方,求最小的a及这个整数。
3、已知3528a恰是自然数b的平方数,a的最小值是。
【例3】已知自然数n满足:12!除以n得到一个完全平方数,则n的最小值是。
1、(04南京冬令营)一个数与2940的积是完全平方数,那么这个数最小是()。
2、(03甘肃冬令营)祖孙三人,孙子和爷爷的年龄的乘积是1512,而爷爷、父亲、孙子三人的年龄之积是完全平方数,则父亲的年龄是()岁。
3.求一个能被180整除的最小完全平方数.【例4】一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?1、能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?2、三个自然数,它们都是完全平方数,最大的数减去第二大的数的差为80,第二大的数减去最小的数的差为60,求这三个数.3、一个自然数减去45及加上44都仍是完全平方数,求此数。
奥数数论:完全平方数要点及解题技巧

奥数数论:完全平方数要点及解题技巧一、完全平方数的定义:一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。
二、完全平方数特征:1.末位数字只能是:0、1、4、5、6、9;反之不成立。
2.除以3余0或余1;反之不成立。
3.除以4余0或余1;反之不成立。
4.约数个数为奇数;反之成立。
5.奇数的平方的十位数字为偶数;反之不成立。
6.奇数平方个位数字是奇数;偶数平方个位数字是偶数。
7.两个相临整数的平方之间不可能再有平方数。
平方差公式:X2-Y2=(X-Y)(X+Y)完全平方和公式:(X+Y)2=X2+2XY+Y2完全平方差公式:(X-Y)2=X2-2XY+Y2三、完全平方数的性质:性质1:完全平方数的末位数只能是0,1,4,5,6,9。
性质2:奇数的平方的个位数字为奇数,十位数字为偶数。
性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。
性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1。
性质5:奇数的平方是8n+1型;偶数的平方为8n或8n+4型。
性质6:平方数的形式必为下列两种之一:3k,3k+1。
性质7:不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型。
性质8:平方数的形式具有下列形式之一:16m,16m+1,16m+4,16m+9。
性质9:完全平方数的数字之和只能是0,1,4,7,9。
性质10:为完全平方数的充要条件是b为完全平方数。
性质11:如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数。
性质12:在两个相邻的整数的平方数之间的所有整数都不是完全平方数,即若n^2<k^2<(n+1)^2,则k一定不是整数。
性质13:一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n本身)。
五年级春季第8讲——完全平方数

二、完全平方数的特征
有些题目需要判断一个或几个数是否是平方数,能用的方法有下面 3 个,但一定要记住,尾数和余数特征是多用来判断数不是平方数的,也就 是说满足了这些特征只能说这个数有可能是平方数,不满足就一定不是平 方数;而因数特征才是判断一个数是完全平方数的根本方法!也就是说, 满足因数特征的就一定是平方数,不满足的就一定不是。
3. 范围判断
在两个连续正整数的平方数之间不存在完全平方数,这个判断方法需要大家 多背一些平方数。
1
五年级春季知识点总结
吴超超
4. 因数特征——偶指奇约
⑴完全平方数分解质因数:每一个质因数的指数都必须是偶数! ——判断一个数是完全平方数的根本方法 ⑵完全平方数的因数个数:奇数个。 (反之,其他数的因数一定有偶数个)
三、练习题
【练习 1】 1234567654321 (1 2 3 4 5 6 7 6 5 4 3 2 1) 是______的平方.
【练习 2】写出从 360 到 630 的自然数中有奇数个约数的数.
【练习 3】从 1 到 100 的所有自然数中,乘以 72 后是完全平方数的数共有多少 个?
五年级春季知识点总结
吴超超
第八讲 完全平方数
完全平方数是数论板块中一个比较精华的小分支,从知识特点上讲属于约 数倍数和质数合数交叉的知识体系,其题目多为考察上述两块综合性知识,是杯 赛和小升初试卷中的一个热点。
一、完全平方数的定义
完全平方数:自然数的平方,也简称为平方数。 注意:完全平方数一定是自然数,也一定可以拆分成两个相同自然 与正整数 a 的乘积是一个完全平方数, 则 a 的最小值是________.
【练习 5】有一个正整数的平方,它的最后三位数字相同但不为 0,试求满足上 述条件的最小的正整数.
完全平方数

★20 完全平方数◎概念:一个自然数自乘所得的积称为完全平方数。
◎性质:1、分解质因数,每个质因数都有偶数个。
(即指数都是偶数)2、个位数字只能为0、1、4、5、6、9。
3、完全平方数是奇数被4或8除余1,是偶数能被4整除。
4、完全平方数如能被3整除,一定能被9整除,不能被3整除,一定余1。
5、两个完全平方数的积还是完全平方数。
一个完全平方数与一个非完全平方数的积不是完全平方数。
◎背诵:112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400 212=441 222=484 232=529 242=576 252=625 262 =676 272=729 282=784 292=841 302=900例1在1~2016的自然数中,完全平方数共有多少个?自主测试:在324、897、211、247、546中,哪些数是完全平方数?例2 46035乘以一个自然数a,是一个平方数,a最小是多少?自主测试:203500乘一个自然数a,是一个平方数,a最小是多少?例3 :1+1×2+1×2×3+1×2×3×4+1×2×3×4×5+1×2×3×4×5×6.这个算式的得数能否是某个数的平方?例4: 试问21世纪中那一年的年份数是一个完全平方数?自主测试:哥哥对弟弟说:“到21世纪的x2年,我恰好是x岁,哥哥生于哪年?例5 把一个两位数的个位数字与其十位数字交换后得到一个新数,它与原来的数加起来的和恰好是某个自然数的平方,这个和是多少?自主测试:一个两位数等于它个位数字的平方与十位数字之和,这个两位数是多少?例6 在前300个自然数中,去掉所有的完全平方数剩下的自然数的和是多少?公式1: 1+2+3+4┄+n=21n(n+1)公式2: 12+ 22+ 32+ 42+┄+ n2= 61n(n+1)(2n+1)自主测试:请说明从1开始的连续n个奇数的和是平方数?练习题1、祖孙三人,孙子年龄与爷爷年龄之积是1512,而爷爷、父亲、孙子三人年龄之积是完全平方数,则父亲年龄是多少岁?2、12+ 22+ 32+ 42+┄+ 20142除以7的余数是几?3、22015与20152的和除以7的余数是多少?4、在2024到2499之间有多少个平方数?5、1234567654321×(1+2+3+4+5+6+7+6+5+4+3+2+1)=____________________★6、少年宫游乐厅内悬挂着200个彩色灯泡,这些灯泡有的亮,有的灭,十分有趣。
小学数学精讲解析:完全平方数

完全平方数完全平方数的定义一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。
完全平方数的一般性质①完全平方数的末位数只能是0,1,4,5,6,9;②奇数的平方的个位数字为奇数,十位数字为偶数;③如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数;⑤平方数除以3余0或者余1;⑥平方数除以16余0或者余1或者余4或者余9;⑦平方数除以余0或者1或者4;⑧在两个相邻的整数的平方数之间的所有整数都不是完全平方数;⑨一个正整数n是完全平方数的充分必要条件是有奇数个因数(包括1和n本身)。
例1如从200到1800的自然数中有奇数个约数的数有多少个?例2有一个四位数的个位数字与千位数字相等,且正好等于其十位数字的5倍与1的和的完全平方,求这个四位数。
例3在2500以内所有完全平方数中,能被9整除的有多少个?例4(04浙江五年级夏令营)袋子里共有415只小球,第一次从袋子里取出1只小球,第二次从袋子里取出3只小球,第三次从袋子里取出5只小球…依次地取球,如果剩下的球不够取,则将剩下的球留在袋中。
那么,最后袋中留下()个球。
例5能不能找到一个自然数n,是完全平方数,且n+1999也是完全平方数?例6有两个两位数,它们的差是56,它们的平方数末两位数字相同,这两个两位数分别是()。
测试题1.从1到2000的所有正整数中,有多少个数乘以72后是完全平方数?2.请说明任意两个相邻的正整数的积不是平方数。
3.有一个由不同数字组成的四位数A,2;已知A的千位数字是2,十位数字是1,且A各个位数上的数A B字相加的和为3的倍数。
那么这个四位数是几?4.所有六位数中,末四位是2004的完全平方数有多少个?它们的和是多少?答案1.【解析】因为327223=⨯,而根据一个完全平方数的分解质因数形式中所有质因数的个数都必须是偶数的特征,可以得出与72相乘的这个正整数一定是2的倍数,还要再乘以一个完全平方数,这样得到的结果还是完全平方数,乘数应该是221⨯、222⨯、223⨯、 、22n ⨯。
完全平方考点总结

完全平方考点总结1. 完全平方定义在数学中,完全平方是指某个数的平方根是一个整数。
换句话说,完全平方是一个非负整数的平方。
数学表达式为:n=m2,其中n是完全平方数,m是整数。
完全平方数的例子有:0,1,4,9,16等。
2. 完全平方的性质完全平方数具有一些特殊的性质,可以帮助我们更好地理解和应用它们。
2.1 完全平方数的性质一:连续奇数和对于任意一个完全平方数n,它可以表示为连续奇数的和。
例如,9可以表示为4+5,16可以表示为7+9,25可以表示为12+13。
2.2 完全平方数的性质二:公式推导完全平方数有一个简单的公式推导,可以帮助我们更方便地计算完全平方数。
数学表达式为:n=2a+1,其中a是非负整数。
根据这个公式,我们可以列举一些完全平方数的例子:•当a = 0时,n = 2*0 + 1 = 1,得到完全平方数1;•当a = 1时,n = 2*1 + 1 = 3,得到非完全平方数3;•当a = 2时,n = 2*2 + 1 = 5,得到非完全平方数5;•当a = 3时,n = 2*3 + 1 = 7,得到非完全平方数7;•当a = 4时,n = 2*4 + 1 = 9,得到完全平方数9;可以发现,当a为完全平方数时,得到的n也是完全平方数。
2.3 完全平方数的性质三:奇数完全平方数所有的完全平方数都是奇数。
通过上面的公式推导可以看出,完全平方数的表达式是2a + 1,其中a是非负整数,所以n一定是奇数。
这一性质对于判断某个数是否为完全平方数很有用。
如果一个数是奇数,那么它一定不是完全平方数。
但是,如果一个数是偶数,它可能是完全平方数,我们需要进一步进行判断。
3. 完全平方数的应用完全平方数在数学以及其它领域都有广泛的应用。
3.1 完全平方数的应用一:素数判断在素数判断问题中,完全平方数有一个重要的作用。
首先,我们知道,除了2以外的所有素数一定是奇数。
如果一个数是完全平方数,并且大于2,那么它的平方根肯定是一个奇数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完全平方数
什么是完全平方数?
相等两个整数的乘积是完全平方数,常见的完全平方数有1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441……
例1.从1~10中最多可以选出个数,使得选出的数中,任何两个数的和不是完全平方数.
[答疑编号0518320101]
【解答】
选出2,3,4,8,9,10这六个数,可见其中任何两个数的和都不是完全平方数。
如果选出了七个数,将1~10分为6组,(10,6),(9,7),(8,1),(5,4),(2),(3),则必有一组中的两个数都被选出来了,那么它们的和是完全平方数。
所求的最大值是6。
完全平方数质因数分解的特征:
将一个完全平方数质因数分解后,每个质因数的次数都是偶数。
推论:只有完全平方数恰有奇数个约数。
例2.从1到2012的所有自然数中,有个数乘以72后是完全平方数.
1
[答疑编号0518320102]
【解答】因为,所以要想乘以72以后是完全平方数,这个数本身应该是某个完全平方数的2倍.因为,所以从1到2012中,符合要求的数有31个.
例3.素数A、B互不相等,已知A的平方的2倍有4个约数,则B的平方的4倍有个约数.
[答疑编号0518320103]
【解答】如果A不是2,则A平方的2倍有3×2=6个约数,故A=2.所以B就不能是2,它平方的4倍有3×3=9个约数.本题答案为9.
涉及到完全平方的公式:
例4. 一个正整数,加上100后的结果是一个完全平方数,加上168
后的结果也是一个完全平方数.那么这个正整数为.
[答疑编号0518320104]
【解答】设加上100后为,加上168后为,那么,
2
即.因为b+a和b-a
的奇偶性相同,所以只可能是
,
解得.因此原正整数是.
例5.一个正整数,如果能表示成两个完全平方数的差,就称它是一个“智慧数”,那么在1~2012中,有多少个“智慧数”?
[答疑编号0518320105]
【答案】1509
【解答】设这个正整数是n,。
两个完全平方数分别是a2和b.2。
.则n= a2-b2=(b-a)(b+a)。
(1)如果b-a和b+a都是奇数,则n是奇数。
(2)如果b-a和b+a都是偶数,则n是4的倍数。
下面,我们说明如下情况:
(1)被4除余2的数,不是“智慧数”。
(2)奇数都是“智慧数”。
因为n=2k+1=(k+1)2-k2
(3)4的倍数都是“智慧数”。
因为n=4k=(k+1)2-(k-1)2
所以,总共有2012÷4×3=1509个“智慧数”。
例6.证明:形如11,111,1111,11111,……的数中没有完全平方数。
[答疑编号0518320106]
3
【答案】根据完全平方数的特性:一个完全平方数要么是4的倍数,要么被4除余1。
形如4k+2和4k+3型的整数一定不是完全平方数,
而11、111、1111、......被4除的余数均为3,所以,它们中没有完全平方数。
我们不妨看一下奇数的平方:,
所以奇数的平方是除以4余1的数。
进一步思考:形如aa,aaa,aaaa,aaaaa,……的数中有没有完全平方数?
例7.四个质数的和是55,平方的和是1335,则这四个质数
是:.
[答疑编号0518320107]
【解答】四个质数的和是55,由于质数中只有2是偶数。
说明四个质数中有一个数是2。
所以,a+b+c=53,a2+b2+c2=1331。
继续分析,完全平方数除以3的余数是0或1,1331除以3是余2的。
所以,有一个数是3的倍数,又由于是质数,所以,只能是3。
我们不妨设a是3。
所以,b+c=50,b2+c2=1322。
代入数字进行验证,满足以上两式的数是19和31。
所以,这四个质数是:2,3,19,31。
4。