2016年河北省沧州市七年级下学期数学期末试卷及解析答案(新人教版)
沧州市人教版(七年级)初一下册数学期末测试题及答案

沧州市人教版(七年级)初一下册数学期末测试题及答案一、选择题1.如图,∠1=∠2,则下列结论一定成立的是( )A .AB ∥CD B .AD ∥BC C .∠B =∠D D .∠1=∠2 2.下列计算正确的是( )A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a = 3.若(x+2)(2x-n)=2x 2+mx-2,则( )A .m=3,n=1;B .m=5,n=1;C .m=3,n=-1;D .m=5,n=-1;4.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度教是( )A .1902α- B .1902α︒+C .12αD .15402α︒-5.32236x y 3x y -分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y6.观察下列等式: 133=,239=,3327=,4381=,53243=,63729=,732187=,试利用上述规律判断算式234202033333+++++…结果的末位数字是( )A .0B .1C .3D .7 7.下列计算中,正确的是( )A .(a 2)3=a 5B .a 8÷ a 2=a 4C .(2a )3=6a 3D .a 2+ a 2=2 a 28.端午节前夕,某超市用1440元购进A 、B 两种商品共50件,其中A 种商品每件24元,B 品件36元,若设购进A 种商品x 件、B 种商品y 件,依题意可列方程组( ) A .5036241440x y x y +=⎧⎨+=⎩B .5024361440x y x y +=⎧⎨+=⎩C .144036241440x y x y +=⎧⎨+=⎩D .144024361440x y x y +=⎧⎨+=⎩9.已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( ) A .13B .9C .9-D .13-10.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是( )A .0个B .1个C .2个D .3个二、填空题11.计算()()12x x --的结果为_____;12.已知关于x 的不等式组()531235x a x x ⎧->-⎨-≤⎩的所有整数解的和为7则a 的取值范围是__________.13.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.14.a m =2,b m =3,则(ab )m =______. 15.若29x kx -+是完全平方式,则k =_____. 16.多项式4a 3bc +8a 2b 2c 2各项的公因式是_________.17.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.18.()a b -+(__________) =22a b -.19.若2(1)(23)2x x x mx n +-=++,则m n +=________.20.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.三、解答题21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使点C 变换为点D ,点A 、B 的对应点分别是点E 、F . (1)在图中请画出△ABC 平移后得到的△EFD ; (2)在图中画出△ABC 的AB 边上的高CH ; (3)△ABC 的面积为_______.22.⑴ 如图,试用a 的代数式表示图形中阴影部分的面积; ⑵ 当a =2时,计算图中阴影部分的面积.23.先化简,再求值:(2a﹣b)2﹣(a+1﹣b)(a+1+b)+(a+1)2,其中a=12,b=﹣2.24.若规定acbd=a﹣b+c﹣3d,计算:223223xy xx---2574xy xxy-+-+的值,其中x=2,y=﹣1.25.如图,已知AB∥CD,∠1=∠2,求证:AE∥DF.26.阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×12)100=,2100×(12)100=;(2)通过上述验证,归纳得出:(a•b)n=;(abc)n=.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.27.计算:(1)22(2).(3)xy xy(2)23(21)ab a b ab-+-(3)(32)(32)x y x y+-(4)()()a b c a b c++-+28.解下列方程组:(1)32316x yx y-=⎧⎨+=⎩(2)234229x y zx y z⎧==⎪⎨⎪-+=-⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据内错角相等,两直线平行即可得出结论.【详解】 ∵∠1=∠2,∴AB ∥DC(内错角相等,两直线平行). 故选A . 【点睛】考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.2.C解析:C 【分析】根据同底幂的运算法则依次判断各选项. 【详解】A 中,a 3.a 2=a 5,错误;B 中,不是同类项,不能合并,错误;C 中,(a 3)2=a 6,正确;D 中,224(3)9a a ,错误 故选:C . 【点睛】本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的.3.A解析:A 【解析】先根据多项式乘多项式的法则展开,再根据对应项的系数相等求解即可.∵(x+2)(2x-n )=2x 2+4x-nx-2n , 又∵(x+2)(2x-n)=2x 2+mx-2,∴2x 2+(4-n)x-2n=2x 2+mx-2, ∴m=3,n=1.“点睛”本题考查多项式乘以多项式的法则,利用多项式的乘法法则展开多项式,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.4.A解析:A 【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数. 【详解】∵五边形的内角和等于540°,∠A+∠B+∠E=α, ∴∠BCD+∠CDE=540°-α,∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=12(∠BCD+∠CDE )=270°-12α, ∴∠P=180°-(270°-12α)=12α-90°. 故选:A . 【点睛】此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.5.D解析:D 【解析】 【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式. 【详解】解:6x 3y 2-3x 2y 3=3x 2y 2(2x-y ), 因此6x 3y 2-3x 2y 3的公因式是3x 2y 2. 故选:D. 【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.6.A解析:A 【分析】观察可以发现3n 的末位数字为4个一循环,故相加后末位数字为定值,而2020是4的整数倍,即可求解. 【详解】解:通过观察可以发现3n 的末位数字为3、9、7、1……,4个为一循环, 而12343333=392781=120++++++末尾数字为0, ∵20204=505÷,故234202033333+++++…的末尾数字也为0. 故选A . 【点睛】本题属于找规律题型,难度不大,是中考的常考知识点,细心观察,总结规律是顺利解题的关键.7.D解析:D 【分析】直接利用同底数幂的乘除运算法则,积的乘方运算法则以及合并同类项法则分别计算得出【详解】解:A、(a2)3=a6,故此选项错误;B、a8÷a2=a6,故此选项错误;C、(2a)3=8a3,,故此选项错误;D、a2+ a2=2 a2,故此选项正确.故选:D【点睛】此题主要考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握运算法则是解题关键.8.B解析:B【分析】本题有2个相等关系:购进A种商品件数+购进B种商品件数=50,购进A种商品x件的费用+购进B种商品y件的费用=1440元,据此解答即可.【详解】解:设购进A种商品x件、B种商品y件,依题意可列方程组50 24361440 x yx y+=⎧⎨+=⎩.故选:B.【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.9.A解析:A【分析】先解方程组425x yx y+=⎧⎨-=⎩求出该方程组的解,然后把这个解分别代入7ax y+=与32x by+=-即可求出a、b的值,进一步即可求出答案.【详解】解:解方程组425x yx y+=⎧⎨-=⎩,得31xy=⎧⎨=⎩,把31xy=⎧⎨=⎩代入7ax y+=,得317a+=,解得:a=2,把31xy=⎧⎨=⎩代入32x by+=-,得92b+=-,解得:b=﹣11,∴a-b=2-(﹣11)=13.故选:A.本题考查了同解方程组的知识,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.10.B解析:B【分析】观察图象,明确每一段行驶的路程、时间,即可做出判断.【详解】由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确;从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确,故选:B.【点睛】此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.二、填空题11.【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x²−2x−x+2=x²−3x+2,故答案为:x²−3x+2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则解析:2-32x x【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x²−2x−x+2=x²−3x+2,故答案为:x²−3x+2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.12.7≤a<9或-3≤a<-1.【分析】先求出求出不等式组的解集,再根据已知得出关于a的不等式组,求出不等式组的解集即可. 【详解】 解:,∵解不等式①得:, 解不等式②得:x≤4, ∴不等式组的解析:7≤a <9或-3≤a <-1. 【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可. 【详解】解:()531235x a x x ⎧->-⎨-≤⎩①②,∵解不等式①得:32a x ->, 解不等式②得:x≤4, ∴不等式组的解集为342a x -<≤, ∵关于x 的不等式组()531235x a x x ⎧->-⎨-≤⎩的所有整数解的和为7,∴当32a ->0时,这两个整数解一定是3和4, ∴2≤32a -<3, ∴79a ≤<,当32a -<0时,-3≤32a -<−2, ∴-3≤a <-1,∴a 的取值范围是7≤a <9或-3≤a <-1. 故答案为:7≤a <9或-3≤a <-1. 【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.13.105°. 【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.14.6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为am=2,bm=3,所以(ab)m=am•bm=2×3=6,故答案为:6.【点睛】此题考查积解析:6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为a m=2,b m=3,所以(ab)m=a m•b m=2×3=6,故答案为:6.【点睛】此题考查积的乘方,关键是根据积的乘方运算法则将未知转化为已知.15.【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值.【详解】解:∵是完全平方式,即.故答案为:.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式解析:6±【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .【详解】解:∵29x kx -+是完全平方式,即()2293x kx x -+=± 236k ∴=±⨯=±.故答案为:6±.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键 16.4a2bc【分析】多项式的公因式的系数是指多项式中各项系数的最大公约数,字母取各项相同字母的最低次幂.【详解】多项式4a3bc8a2b2c2的各项公因式是4a2bc . 故答案为:4a2bc 解析:4a 2bc【分析】多项式的公因式的系数是指多项式中各项系数的最大公约数,字母取各项相同字母的最低次幂.【详解】多项式4a 3bc +8a 2b 2c 2的各项公因式是4a 2bc .故答案为:4a 2bc .【点睛】本题属于基础题型,注意一个多项式的各项都含有的公共因式是这个多项式的公因式. 17.20cm .【分析】根据平移的性质可得DF =AE ,然后判断出四边形ABFD 的周长=△ABE 的周长+AD+EF ,然后代入数据计算即可得解.【详解】解:∵△ABE 向右平移2cm 得到△DCF ,∴D解析:20cm .根据平移的性质可得DF =AE ,然后判断出四边形ABFD 的周长=△ABE 的周长+AD+EF ,然后代入数据计算即可得解.【详解】解:∵△ABE 向右平移2cm 得到△DCF ,∴DF =AE ,∴四边形ABFD 的周长=AB+BE+DF+AD+EF ,=AB+BE+AE+AD+EF ,=16+AD+EF ,∵平移距离为2cm ,∴AD =EF =2cm ,∴四边形ABFD 的周长=16+2+2=20cm .故答案为20cm .【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.18.【分析】根据平方差公式即可求出答案.【详解】解:,故答案为:.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.解析:a b --【分析】根据平方差公式即可求出答案.【详解】解:()2222()()a b a b a b a b -+--==---,故答案为:a b --.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 19.【分析】根据多项式与多项式相乘的法则进行运算,得一次项系数与常数项分别为、,进而求得 .【详解】解:∵,∴.故答案为.【点睛】本题目考查整式的乘法,难度不大,熟练掌握多项解析:4-【分析】根据多项式与多项式相乘的法则进行运算,得一次项系数与常数项分别为m 、n ,进而求得m n + .【详解】解:∵22(1)(23)23=2x x x x x mx n +-=--++,∴1m =- 、3n =- ,∴()=13=13=4m n +-+----.故答案为4-.【点睛】本题目考查整式的乘法,难度不大,熟练掌握多项式与多项式相乘的运算方法即可顺利解题. 20.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键.三、解答题21.(1)见详解;(2)见详解;(3)152.【分析】(1)按要求作图即可;(2)按要求作图即可;(3)根据勾股定理求出AB和CH的长即可得出面积.【详解】(1)△EFD如图所示,;(2)CH如图所示,;(3)根据勾股定理可得:223+635221+25∴S△ABC=12×AB×CH=12×355152.【点睛】本题考查了平移作图,勾股定理,掌握知识点是解题关键.22.24【分析】(1)由2个矩形面积之和表示出阴影部分面积即可;(2)将x的值代入计算即可求出值.【详解】(1)根据题意得:阴影部分的面积=a(2a+3)+a(2a+3−a)=3a2+6a;(2)当a=2时,原式=3×22+2×6=24.答:图中阴影部分的面积是24.【点睛】本题考查代数式求值和列代数式,解题的关键是根据题意列代数式.23.22442a ab b-+;13【分析】原式利用平方差公式及完全平方公式展开,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】解:原式=4a2﹣4ab+b2﹣(a2+2a+1﹣b2)+a2+2a+1=4a2﹣4ab+b2﹣a2﹣2a﹣1+b2+a2+2a+1=4a2﹣4ab+2b2,当a=12,b=﹣2时,原式=1+4+8=13.【点睛】此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.24.﹣5x2﹣4xy+18,6.【分析】将原式利用题中的新定义化简得到最简结果,把x与y的值代入计算即可求值.【详解】原式=(3xy﹣2x2)﹣(﹣5xy+x2)+(﹣2x2﹣3)﹣3(﹣7+4xy)=3xy﹣2x2+5xy﹣x2﹣2x2﹣3+21﹣12xy=﹣5x2﹣4xy+18,当x=2,y=﹣1时,原式=﹣20+8+18=6.【点睛】本题考查了整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.25.见解析.【分析】首先根据直线平行得到∠CDA=∠DAB,结合题干条件得到∠FDA=∠DAE,进而得到结论.【详解】证明:∵AB∥CD,∴∠CDA=∠DAB,∵∠1=∠2,∴∠CDA﹣∠1=∠DAB﹣∠2,∴∠FDA=∠DAE,∴AE ∥DF .【点睛】本题主要考查了平行线的判断与性质,解题的关键是掌握两直线平行,内错角相等,此题比较简单.26.(1)1, 1, (2)a n b n , a n b n c n ,(3)132-. 【解析】【分析】(1)先算括号内的乘法,再算乘方;先乘方,再算乘法;(2)根据有理数乘方的定义求出即可;(3)根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.【详解】 解:(1)(2×12)100=1,2100×(12)100=1; (2)(a•b )n =a n b n ,(abc )n =a n b n c n , (3)原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×132 =(﹣1)2015×132 =﹣1×132 =﹣132. 【点睛】本题主要考查了同底数幂的乘法和积的乘方,掌握运算法则是解答此题的关键.27.(1) 3512x y ;(2)3222-6-33a b a b ab +;(3) 229-4x y ;(4)2222-a ac c b ++ 【分析】(1)直接利用积的乘方和单项式乘单项式法则计算即可;(2)直接利用单项式乘多项式法则计算即可;(3)直接利用平方差公式计算即可;(4)先利用平方差公式展开,再利用完全平方公式计算即可.【详解】解:(1)原式2443x y xy =⋅3512x y =;(2)原式23233ab a b ab ab ab =-⋅-⋅+2232633a b a b ab =--+;(3)原式2294x y =-;(4)原式22()a c b =+-2222a ac c b =++-.【点睛】本题考查了整式乘法和乘法公式的运用,熟练掌握整式的乘法法则及乘法公式是解决本题的关键.28.(1)52x y =⎧⎨=⎩(2)234x y z =-⎧⎪=-⎨⎪=-⎩【分析】(1)用加减消元法求解即可;(2)令234x y z k ===,用k 表示出x ,y 和z ,代入229x y z -+=-中,求出k 值,从而得到方程组的解.【详解】解:(1)32316x y x y -=⎧⎨+=⎩①②, ①×3+②得:525x =,解得:x=5,代入①中,解得:y=2,∴方程组的解为:52x y =⎧⎨=⎩; (2)∵设234x y z k ===, ∴x=2k ,y=3k ,z=4k ,代入229x y z -+=-中,4389k k k -+=-,解得:k=-1,∴x=-2,y=-3,z=-4,∴方程组的解为:234x y z =-⎧⎪=-⎨⎪=-⎩. 【点睛】本题考查了二元一次方程组和三元一次方程组,解题的关键是选择合适的方法求解.。
沧州市人教版七年级下册数学期末试卷及答案百度文库

沧州市人教版七年级下册数学期末试卷及答案百度文库一、选择题1.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )2.下列图形可由平移得到的是( )A .B .C .D .3.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( )A .-98.110⨯B .-88.110⨯C .-98110⨯D .-78.110⨯ 4.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( ) A .﹣4B .2C .3D .4 5.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A .12 B .15C .12或15D .18 6.已知,()()212x x x mx n +-=++,则m n +的值为( )A .3-B .1-C .1D .3 7.若一个三角形的两边长分别为3和6,则第三边长可能是( )A .6B .3C .2D .10 8.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150° 9.下列各式中,不能够用平方差公式计算的是( ) A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c ) 10..已知2x a y =⎧⎨=-⎩是关于x ,y 的方程3x ﹣ay =5的一个解,则a 的值为( ) A .1 B .2 C .3 D .4二、填空题11.若{14x y =-=是二元一次方程3x +ay =5的一组解,则a = ______ .12.若(2x +3)x +2020=1,则x =_____.13.已知关于x ,y 的方程组2133411x y m x y m+=+⎧⎨-=-⎩(m 为大于0的常数),且在x ,y 之间(不包含x ,y )有且只有3个整数,则m 取值范围______.14.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____.15.已知2x +3y -5=0,则9x •27y 的值为______.16.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________.17.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=_____.18.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.19.已知:如图,△ABC 的周长为21cm ,AB =6cm ,BC 边上中线AD =5cm ,△ACD 周长为16cm ,则AC 的长为__________cm .20.已知(x ﹣4)(x +6)=x 2+mx ﹣24,则m 的值为_____.三、解答题21.因式分解:(1)a 3﹣a ;(2)4ab 2﹣4a 2b ﹣b 3;(3)a 2(x ﹣y )﹣9b 2(x ﹣y );(4)(y 2﹣1)2+6 (1﹣y 2)+9.22.先化简,再求值:(a -1)(2a +1)+(1+a )(1-a ),其中a =2.23.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半. (1)求这个多边形是几边形;(2)求这个多边形的每一个内角的度数.24.已知:方程组2325x y a x y +=-⎧⎨+=⎩,是关于x 、y 的二元一次方程组. (1)求该方程组的解(用含a 的代数式表示);(2)若方程组的解满足0x <,0y >,求a 的取值范围.25.如图,在数轴上,点A 、B 分别表示数1、23x -+.(1)求x 的取值范围.(2)数轴上表示数2x -+的点应落在( )A .点A 的左边B .线段AB 上C .点B 的右边26.计算:(1)101223; (2)3258232a a a a a ; (3)223113x x x x x x .27.利用多项式乘法法则计算:(1)()()22+-+a b a ab b = ;()()22a b a ab b -++ = .在多项式的乘法公式中,除了平方差公式,完全平方公式之外,如果把上面计算结果作为结论逆运用,则成为因式分解中的立方和与立方差公式.已知2,1a b ab -==,利用自己所学的数学知识,以及立方和与立方差公式,解决下列问题:(2)22a b += ;(直接写出答案)(3)33a b -= ;(直接写出答案)(4)66a b += ;(写出解题过程)28.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解.考点:因式分解2.A解析:A【详解】解:观察可知A 选项中的图形可以通过平移得到,B 、C 选项中的图形需要通过旋转得到,D 选项中的图形可以通过翻折得到,故选:A3.B解析:B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000081=-88.110 ;故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x 的一次项,所以让一次项的系数等于0,得a 的等式,再求解.【详解】解:(4x-a )(x+1),=4x 2+4x-ax-a ,=4x 2+(4-a )x-a ,∵积中不含x 的一次项,∴4-a=0,解得a=4.故选D .【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.5.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去. ②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B .考点:等腰三角形的性质.6.A解析:A【解析】【分析】根据多项式的乘法法则即可化简求解.【详解】∵()()2212222x x x x x x x +-=-+-=-- ∴m=-1,n=-2,故m n +=-3故选A.【点睛】此题主要考查整式的乘法运算,解题的关键是熟知多项式乘多项式的运算法则.7.A解析:A【分析】根据三角形三边关系即可确定第三边的范围,进而可得答案.【详解】解:设第三边为x ,则3<x <9,纵观各选项,符合条件的整数只有6.故选:A .【点睛】本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.8.A解析:A【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故选:A .【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.9.B解析:B【分析】根据平方差公式:22()()a b a b a b +-=-进行判断.【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意;故选B .【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键. 10.A解析:A【解析】【分析】将x 和y 的值代入方程计算即可.【详解】将2x a y =⎧⎨=-⎩代入方程得:3(2)5a a -⋅-= 解得:1a =故选:A.【点睛】本题考查了已知二元一次方程的解求方程中未知数的值,理解题意是解题关键.二、填空题11.2【解析】【分析】把方程的解代入二元一次方程,即可得到一个关于a 的方程,即可求解.【详解】解:把代入方程得:-3+4a=5,解得:a=2.故答案是:2.【点睛】本题主要考查了二解析:2【解析】【分析】把方程的解代入二元一次方程,即可得到一个关于a 的方程,即可求解.【详解】解:把14x y =-⎧⎨=⎩代入方程得:-3+4a=5, 解得:a=2.故答案是:2.【点睛】本题主要考查了二元一次方程的解的定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.正确解一元一次方程是解题的关键.12.﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此解析:﹣2020或﹣1或﹣2【分析】直接利用当2x +3=1时,当2x +3=﹣1时,当x +2020=0时,分别得出答案.【详解】解:当2x +3=1时,解得x =﹣1,故x +2020=2019,此时:(2x +3)x +2020=1,当2x +3=﹣1时,解得x =﹣2,故x +2020=2018,此时:(2x +3)x +2020=1,当x +2020=0时,解得x =﹣2020,此时:(2x +3)x +2020=1,综上所述,x 的值为:﹣2020或﹣1或﹣2.故答案为:﹣2020或﹣1或﹣2.【点睛】此题主要考查了零指数幂的性质以及有理数的乘方,正确分类讨论是解题关键.13.【分析】由中的上式加下式乘以2得到,由中的上式乘以3减下式得到,则可得,再由题意为大于0的常数,在,之间(不包含,)有且只有3个整数得到,计算即可得到答案.【详解】由中的上式加下式乘以2得到解析:04m <<【分析】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m +=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m=-⎧⎨=+⎩,再由题意m 为大于0的常数,在x ,y 之间(不包含x ,y )有且只有3个整数得到33(52)x y m m -=--+,计算即可得到答案.【详解】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m +=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m=-⎧⎨=+⎩,因为在x ,y 之间(不包含x ,y )有且只有3个整数,而33(52)25x y m m m -=--+=--,又由于m 为大于0的常数,则x ,y 之差可以为-7,-12-17,即m 的值为1、2或者3,所以可得04m <<.【点睛】本题考查二元一次方程组和不等式,解题的关键是掌握解二元一次方程组.14.【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:故答案为【点睛】此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 解析:1.3- 【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:()20202019133⎛⎫-⋅- ⎪⎝⎭()2019201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭ ()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 1.3=- 故答案为1.3-【点睛】 此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 15.243【解析】【分析】先将9x•27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x 27y=32x解析:243【解析】【分析】先将9x •27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x ⋅27y =32x ⋅33y =32x+3y =35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则. 16.【分析】首先求得方程的解,然后将代入到方程中,即可求得.【详解】解:,移项,得,合并同类项,得,系数化为1,得,∵两方程同解,那么将代入方程,得,移项,得,系数化为1,得.故 解析:12【分析】首先求得方程23x x =-的解x ,然后将x 代入到方程4232x m x -=+中,即可求得m .【详解】解:23x x =-,移项,得23x x -=-,合并同类项,得3x -=-,系数化为1,得=3x ,∵两方程同解,那么将=3x 代入方程4232x m x -=+,得12211m -=,移项,得21m -=-,系数化为1,得12m =. 故12m =. 【点睛】 本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.17.10cm【分析】依据AE 是△ABC 的边BC 上的中线,可得CE =BE ,再根据AE =AE ,△ACE 的周长比△AEB 的周长多2cm ,即可得到AC 的长.【详解】解:∵AE 是△ABC 的边BC 上的中线,解析:10cm【分析】依据AE 是△ABC 的边BC 上的中线,可得CE =BE ,再根据AE =AE ,△ACE 的周长比△AEB 的周长多2cm ,即可得到AC 的长.【详解】解:∵AE 是△ABC 的边BC 上的中线,∴CE =BE ,又∵AE =AE ,△ACE 的周长比△AEB 的周长多2cm ,∴AC−AB =2cm ,即AC−8cm =2cm ,∴AC =10cm ,故答案为10cm.【点睛】本题考查了三角形中线的有关计算,分析得到两个三角形的周长的差等于两边的差是解题的关键.18.a >﹣1【分析】根据新运算法则可得关于a 、b 的方程与不等式:2a ﹣b=﹣4①,3a+2b >1②,于是由①可用含a 的代数式表示出b ,所得的式子代入②即得关于a 的不等式,解不等式即得答案.【详解】解析:a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a﹣b=﹣4①,3a+2b>1②,由①得,b=2a+4③,把③代入②,得3a+2(2a+4)>1,解得:a>﹣1.故答案为:a>﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.19.7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD解析:7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15-6-5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21-6-8=7cm.故AC长为7cm.“点睛”此题考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC的长,题目难度中等.20.2【分析】利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m =2.解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,∴m=2,故答案为2解析:2【分析】利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m=2.【详解】解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,∴m=2,故答案为2.【点睛】本题主要考查了整式乘法的运算,准确分析题目中的式子是解题的关键.三、解答题21.(1)a(a+1)(a﹣1);(2)﹣b(2a﹣b)2;(3)(x﹣y)(a+3b)(a﹣3b);(4)(y+2)2(y﹣2)2【分析】(1)直接提取公因式a,进而利用平方差公式分解因式得出答案;(2)直接提取公因式﹣b,进而利用完全平方公式分解因式即可;(3)直接提取公因式(x﹣y),进而利用平方差公式分解因式得出答案;(4)直接利用完全平方公式分解因式,再利用平方差公式分解因式即可.【详解】解:(1)a3﹣a=a(a2﹣1)=a(a+1)(a﹣1);(2)4ab2﹣4a2b﹣b3=﹣b(﹣4ab+4a2+b2)=﹣b(2a﹣b)2;(3)a2(x﹣y)﹣9b2(x﹣y)=(x﹣y)(a2﹣9b2)=(x﹣y)(a+3b)(a﹣3b);(4)(y2﹣1)2+6(1﹣y2)+9=(y2﹣1)2﹣6 (y2﹣1)+9=(y2﹣1﹣3)2=(y+2)2(y﹣2)2.【点睛】此题主要考查因式分解的几种方法:提公因式法,公式法等,能熟练运用是解题关键.【分析】分别根据多项式的乘法法则和平方差公式计算每一项,再合并同类项,然后把a的值代入化简后的式子计算即可.【详解】解:(a-1)(2a+1)+(1+a)(1-a)=2a2-a-1+1-a2= a2-a,当a=2时,原式=22-2=2.【点睛】本题考查了整式的混合运算和代数式求值,属于基本题型,熟练掌握多项式的乘法法则是解题的关键.23.(1)这个多边形是六边形;(2)这个多边形的每一个内角的度数是120°.【分析】(1)先设内角为x,根据题意可得:外角为12x,根据相邻内角和外角的关系可得:,x+12x=180°,从而解得:x=120°,即外角等于60°,根据外角和等于360°可得这个多边形的边数为:360 60=6,(2)先设内角为x,根据题意可得:外角为12x,根据相邻内角和外角的关系可得:,x+12x=180°,从而解得内角:x=120°,内角和=(6﹣2)×180°=720°.【详解】(1)设内角为x,则外角为12x,由题意得,x+12x =180°,解得:x=120°, 12x=60°,这个多边形的边数为:360 60=6,答:这个多边形是六边形,(2)设内角为x,则外角为12x,由题意得: x+12x =180°,解得:x=120°,答:这个多边形的每一个内角的度数是120度.内角和=(6﹣2)×180°=720°.【点睛】本题主要考查多边形内角和外角,多边形内角和以及多边形的外角和,解决本题的关键是要熟练掌握多边形内角和外角的关系以及多边形内角和.24.(1)1213x a y a=+⎧⎨=-⎩;(2)12a <- 【分析】(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)①2⨯,得 2242x y a +=-.③②-③,得12x a =+把12x a =+代入①,得13y a =-所以原方程组的解是1213x a y a =+⎧⎨=-⎩(2)根据题意,得120130a a +<⎧⎨->⎩解不等式组,得,12a <- 所以a 的取值范围是:12a <-. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.(1)1x <.(2)B.【解析】分析:(1)根据点B 在点A 的右侧列出不等式即可求出;(2)利用(1)的结果可判断-x+2的位置.详解:(1)根据题意,得231x -+>.解得1x <.(2)B.点睛:本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.26.(1)2-;(2)624a ;(3)252x x .【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值; (2)原式利用幂的乘方与积的乘方运算法则,单项式除单项式法则,合并同类项计算即可求出值;(3)原式利用单项式乘以多项式,以及多项式乘以多项式法则计算,去括号合并即可得到结果;【详解】(1)101223 2132=-;(2)3258232a a a a a 66624a a a 624a ;(3)223113x x x x x x 323233332x x x x x x323233332x x x x x x 252x x .【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.27.(1)33+a b ,33a b -;(2)6;(3)14;(4)198【分析】(1)根据整式的混合运算法则展开计算即可;(2)利用完全平方公式变形,再代入求值;(3)利用立方差公式和完全平方公式变形,再代入求值;(4)利用立方差公式和完全平方公式变形,再代入求值;【详解】解:(1)()()22+-+a b a ab b=322223a a b ab a b ab b -++-+=33+a b()()22a b a ab b -++=322223a a b ab a b ab b ++---=33a b -,故答案为:33+a b ,33a b -;(2)22a b +=()22a b ab -+=2221+⨯=6;(3)33a b -=()()22a b a ab b -++=()()23a b a b ab ⎡⎤--+⎣⎦ =()22231⨯+⨯=14;(4)66a b +=()()224224a b aa b b +-+ =()()22222223a b ab a b a b ⎡⎤⎡⎤-++-⎢⎥⎣⎦⎣⎦=()()2222163+⨯-=198【点睛】本题考查了因式分解-运用公式法,正确的理解已知条件中的公式是解题的关键.28.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。
沧州市人教版(七年级)初一下册数学期末测试题及答案

A. B. C. D.
4.下列计算中,正确的是()
A. B. C. D.
5.下列运算正确的是( )
A. B.a6÷a2=a3
C.5y3•3y2=15y5D.a+a2=a3
沧州市人教版(七年级)初一下册数学期末测试题及答案
一、选择题
1.下列各式从左到右的变形中,是因式分解的是().
A.x(a-b)=ax-bxB.x2-1+y2=(x-1)(x+1)+y2
C.y2-1=(y+1)(y-1)D.ax+bx+c=x(a+b)+c
2.下列计算中正确的是( )
A. B. C. D.
4.C
解析:C
【解析】
试题解析:A.不是同类项,不能合并,故错误.
B. 故错误.
C. 正确.
D. 故错误.
故选C.
点睛:同底数幂相乘,底数不变,指数相加.
同底数幂相除,底数不变,指数相减.
5.C
解析:C
【分析】
根据积的乘方、同底数幂的除法、单项式乘以单项式、合并同类项法则进行计算即可.
【详解】
解:A、(a2b)3=a6b3,故A错误;
12.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.
13.若x+3y-4=0,则2x•8y=_________.
14.已知 , ,则 ______________.
15. =______.
16.每个生物携带自身基因的载体是生物细胞的DNA,DNA分子的直径只有0.0000002cm,将0.0000002用科学记数法表示为_________.
沧州市七年级下学期数学期末考试试卷

沧州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2016·福州) 如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A . 同位角B . 内错角C . 同旁内角D . 对顶角2. (2分)小雷为表示出自己七年级几次数学测试成绩的变化情况,他应该采用的统计图是()A . 折线统计图B . 条形统计图C . 扇形统计图D . 以上均可以3. (2分)已知:如图,下列条件中不能判断直线l1∥l2的是()A . ∠1=∠3B . ∠2=∠3C . ∠4=∠5D . ∠2+∠4=180°4. (2分)已知点P在第三象限,且到x轴的距离为3,到y轴的距离为5,则点P的坐标为()A . (3,5)B . (-5,3)C . (3,-5)D . (-5,-3)5. (2分)下面调查中,适合做全面调查的是()A . 某品牌的大米在市场上的占有率B . 今天班上有几名同学打扫教室C . 某款汽车每百公里的耗油量D . 春节晚会的收视率6. (2分) (2015七下·衢州期中) 如图,下列条件中,不能判断直线l1∥l2的是()A . ∠1=∠3B . ∠2=∠3C . ∠4=∠5D . ∠2+∠4=180°7. (2分)若 3x>-3y,则下列不等式中一定成立的是()A . x+y>0B . x-y>0C . x+y<0D . x-y<08. (2分)小明家上个月支出共计800元,各项支出如图所示,其中用于教育上的支出是()A . 232元B . 200元C . 160元D . 80元9. (2分) (2019七下·余杭期末) 下列各组数中,是二元一次方程3x-2y=12的解的是()A .B .C .D .10. (2分)点M(m+1,m+3)在y轴上,则M点的坐标为()A . (0,﹣4)B . (4,0)C . (﹣2,0)D . (0,2)11. (2分)(2017·南山模拟) 下列说法正确的是()①面积之比为1:2的两个相似三角形的周长之比是1:4;②三视图相同的几何体是正方体;③﹣27没有立方根;④对角线互相垂直的四边形是菱形;⑤某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为 =82分, =82分,S2甲=245,S2乙=190,那么成绩较为整齐的是乙班.A . 1个B . 2个C . 3个D . 4个12. (2分) (2017七下·迁安期末) 一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分) (2017七下·威远期中) 在方程2x - 5y =1中,用含x的代数式表示y为________14. (1分) (2019七下·龙岩期末) 计算: ________.15. (1分)九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是________16. (1分)(2017·滨江模拟) 不等式组的最大整数解为________.17. (1分)(2018·鼓楼模拟) 如图,一次函数y=- x+8的图像与x轴、y轴分别交于A、B两点.P 是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是________.18. (1分)计算:0×(﹣2)﹣7=________ .三、解答题 (共8题;共62分)19. (10分)(2020·上城模拟)(1)先化简÷(1+ ),再从0,﹣1,1这三个数中选一个你喜欢的数代入求值.(2)解不等式组20. (5分)(2011·扬州) 解不等式组,并写出它的所有整数解.21. (11分) (2016七下·青山期中) 如图1,已知AB∥CD,∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.22. (9分) (2017九下·江阴期中) 中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25请根据所给信息,解答下列问题:(1) m=________,n=________;(2)请补全频数分布直方图;________(3)这次比赛成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?23. (5分)(2019·广州模拟) 解不等式组:,并把解集在数轴上表示出来.24. (5分)如图所示,在平面内有四个点,它们的坐标分别是A(﹣1,0),B(2+, 0),C(2,1),D (0,1).(1)依次连结A、B、C、D,围成的四边形是一个什么图形?(2)求这个四边形的面积;(3)将这个四边形向左平移个单位长度,四个顶点的坐标分别为多少?25. (10分)(2016·江西模拟) 4月的某天小欣在“A超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?(2)“五•一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.①请问“五•一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?②“五•一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?26. (7分)在平面直角坐标系中,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题:(1)填表:P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1),(1,0)22秒3秒(2)当点P从点O出发10秒,可得到的整数点的个数是________个。
河北省沧州市七年级下学期末数学试卷

河北省沧州市七年级下学期末数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若点P(3a+5,﹣6a﹣2)在第四象限,且到两坐标轴的距离相等,则a的值为()A . 1B . 2C . ﹣1D . ﹣22. (2分)在描述一组数据的集中趋势时,应用最广泛的是()A . 众数B . 中位数C . 平均数D . 全体数据3. (2分)(2016·龙华模拟) 已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A .B .C .D .4. (2分) (2018八下·楚雄期末) 若,则下列不等式不成立的是().A .B .C .D .5. (2分)(2020·黔南) 已知a=﹣1,a介于两个连续自然数之间,则下列结论正确的是()A . 1<a<2B . 2<a<3C . 3<a<4D . 4<a<56. (2分) (2018七下·紫金月考) 如图,直线l1∥l2 ,直线l3与l1 , l2分别交于A,B两点,若∠1=65°,则∠2=()A . 65°B . 75°C . 115°D . 125°7. (2分) (2017七下·蒙阴期末) 在平面直角坐标系中,将点(2,3)向上平移1个单位,再向左平移2个单位,所得到的点的坐标是()A . (﹣2,3)B . (﹣1,2)C . (0,4)D . (4,4)8. (2分) (2019九上·哈尔滨月考) 若将抛物线先向右平移2个单位,再向下平移3个单位,可得到新的抛物线是()A .B .C .D .9. (2分) (2016七下·槐荫期中) 如图,AB∥CD,下列结论中错误的是()A . ∠2+∠3=180°B . ∠2+∠5=180°C . ∠3+∠4=180°D . ∠1=∠210. (2分)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为()A . 5B . 4C . 3D . 2二、填空题 (共6题;共6分)11. (1分)计算:=________ .12. (1分) (2019八下·青铜峡月考) 已知不等式(a-1)x>a-1的解集是x<1,a的取值范围是________.13. (1分)请写出二元一次方程5x﹣3y=2的一个整数解,这个解可以是:________14. (1分) (2020七下·唐山期中) 如图,AB∥CD,∠B=160°,∠D=120°,则∠E=________15. (1分)如图,将△ABC沿直线AB向右平移到达△BDE的位置,若∠CAB=55°,∠ABC=100°,则∠CBE 的度数为________.16. (1分) (2019八上·黄石港期中) 如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC 的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第17次碰到长方形边上的点的坐标为________.三、计算题 (共3题;共20分)17. (5分)(2018·海丰模拟) 计算:2sin60°+|3﹣ |﹣()﹣1+(π﹣2018)018. (5分) (2020八上·陈仓期末) 解方程组19. (10分)(2017·准格尔旗模拟) 计算题(1)计算:()﹣1﹣(π+3)0﹣cos30°+ +| |(2)先化简,再求值:( +1)÷ ,其中x是满足不等式组的最小整数.四、解答题 (共6题;共41分)20. (10分)按要求画图:(1)如图1,已知P为直线AB外一点.①过点P作PD⊥AB,垂足为D;②过点P作PE∥AB(2)如图2,平移△ABC,使点A移动到点A′处,画出平移后的△A′B′C′.21. (5分)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?22. (5分)“校园手机”现象越来越受到社会的关注.“五一”期间,小记者随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?23. (11分) (2017七下·苏州期中) 已知如图,四边形ABCD中∠BAD=α,∠BCD=β, BE、DF分别平分四边形的外角∠MBC和∠NDC(1)如图1,若α+β= ,则∠MBC+∠NDC=________度;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请求出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.24. (5分) (2020七下·北京期末) 列不等式解应用题:倡导健康生活,推进全民健身.某社区要购进A , B两种型号的健身器材共50套,A , B两种型号健身器材的购买价格分别为每套310元,460元,且每种型号健身器材必须整套购买.若购买支出不超过18000元,求A种型号健身器材至少要购买多少套.25. (5分)如图,P为△ABC内的一点.求证:∠BPC> ∠A参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、计算题 (共3题;共20分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:四、解答题 (共6题;共41分)答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、考点:解析:答案:25-1、考点:解析:。
七年级下册沧州数学期末试卷测试卷(含答案解析)

七年级下册沧州数学期末试卷测试卷(含答案解析)一、选择题1.下列四幅图中,1∠和2∠是同位角的是( )A .①②B .③④C .①②④D .②③④ 2.下列图形中,哪个可以通过图1平移得到( )A .B .C .D . 3.平面直角坐标系中有一点()2021,2022P -,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中错误的有( )A .②③B .②④C .③④D .②③④ 5.如图,//AB CD ,DCE ∠的角平分线CG 的反向延长线和ABE ∠是角平分线BF 交于点F ,48E F ∠-∠=︒,则F ∠等于( )A .42°B .44°C .72°D .76° 6.下列说法不正确的是( ) A .327=3-- B 81=9C .0.04的平方根是0.2±D .9的立方根是3 7.如图,ABCD 为一长方形纸片,AB ∥CD ,将ABCD 沿E 折叠,A 、D 两点分别与A ′、D ′对应,若∠CFE =2∠CFD ′,则∠AEF 的度数是( )A.60°B.80°C.75°D.72°8.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0)B.(0,2)C.(﹣1,﹣2)D.(0,1)二、填空题9.36的平方根是______,81的算术平方根是______.10.点(3,0)关于y轴对称的点的坐标是_______11.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠BFD=45°;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的结论是______(填序号).12.如图,已知AB∥CD,如果∠1=100°,∠2=120°,那么∠3=_____度.13.将一张长方形纸条ABCD沿EF折叠后,EC′交AD于点G,若∠FGE=62°,则∠GFE的度数是___.14.阅读下列解题过程:计算:232425++++++122222解:设232425S=++++++①122222则232526S=+++++②222222由②-①得,26S=-21运用所学到的方法计算:2330++++⋯⋯+=______________.1555515.如图,直线BC经过原点O,点A在x轴上,AD BC⊥于D.若A(4,0),B(m,3),C(n,-5),则AD BC=______.16.如图,在平面直角坐标系中,边长为1的等边△OA1A2的一条边OA2在x的正半轴上,O为坐标原点;将△OA1A2沿x轴正方向依次向右移动2个单位,依次得到△A3A4A5,△A6A7A8…,则顶点A2021的坐标为 __________________.三、解答题17.计算下列各式的值:(1)|–2|–3–8 + (–1)2021;(2)()2133+3––6⎛⎫ ⎪⎝⎭. 18.求下列各式中x 的值:(1)30.008x =;(2)3338x -=; (3)3(1)64x -=.19.如图//EF AD ,12∠=∠,110AGD ∠=︒,求BAC ∠度数.完成说理过程并注明理由. 解:∵//EF AD ,∴2∠=________( )又∵12∠=∠,∴13∠=∠,∴//AB __________( )∴______180AGD ∠+=︒( )∵110AGD ∠=︒,∴BAC ∠=______度.20.如图,在平面直角坐标系中,已知三角形ABC 三点的坐标分别为()1,4A -,()3,2B -,()1,1C .(1)求三角形ABC 的面积;(2)在x 轴上存在一点N ,使三角形BON 的面积等于三角形ABC 面积,求点N 的坐标. 21.已知:a 173的整数部分,b 173的小数部分.求:(1)a ,b 值(2)()()224a b -++的平方根. 二十二、解答题22.如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?二十三、解答题23.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;24.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视,若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足()2450a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且60BAN ∠=︒(1)求a、b的值;(2)若灯B射线先转动45秒,灯A射线才开始转动,当灯B射线第一次到达BQ时运动停止,问A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作⊥交PQ于点D,则在转动过程中,BACCD AC∠的数量关系是否发生变化?若不∠与BCD变,请求出其数量关系;若改变,请求出其取值范围.25.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由26.模型与应用.(模型)(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.(应用)(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)【参考答案】一、选择题1.C解析:C【分析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角进行分析即可.【详解】解:根据同位角的定义可知:图①②④中,∠1和∠2是同位角;图③中,∠1和∠2不故选C.【点睛】本题主要考查同位角的定义,熟记同位角的定义是解决此题的关键.2.A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.考点:平移的性质.解析:A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.考点:平移的性质.3.D【分析】根据平面直角坐标系内各象限内点的坐标符号特征判定即可.【详解】解:根据平面直角坐标系内各象限内点的坐标符号特征可知:()P-在第四象限2021,2022故选D.【点睛】本题考查了各象限内点的坐标的符号特征,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).记住各象限内点的坐标的符号是解决的关键.4.D【分析】根据对顶角的定义对①③进行判断;根据过直线外一点有且只有一条直线与已知直线平行对②进行判断;根据平行线的性质对④进行判断.【详解】对顶角相等,所以①正确,不符合题意;过直线外一点有且只有一条直线与已知直线平行,所以②不正确,符合题意;相等的角不一定为对顶角,所以③不正确,符合题意;两直线平行,同位角相等,所以④不正确,符合题意,故选:D.【点睛】本题考查了命题与定理,主要是判断命题的真假,属于基础题,熟练掌握这些定理是解题的关键.5.B过F作FH∥AB,依据平行线的性质,可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,根据四边形内角和以及∠E-∠F=48°,即可得到∠E的度数.【详解】解:如图,过F作FH∥AB,∵AB∥CD,∴FH∥AB∥CD,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,∴∠ECF=180°-β,∠BFC=∠BFH-∠CFH=α-β,∴四边形BFCE中,∠E+∠BFC=360°-α-(180°-β)=180°-(α-β)=180°-∠BFC,即∠E+2∠BFC=180°,①又∵∠E-∠BFC=48°,∴∠E =∠BFC+48°,②∴由①②可得,∠BFC+48°+2∠BFC=180°,解得∠BFC=44°,故选:B.【点睛】本题主要考查了平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.6.D【分析】利用平方根、算术平方根及立方根的定义分别判断后即可确定正确的选项.【详解】解:A、327=3-,正确,不符合题意;B81=9,正确,不符合题意;C、0.04的平方根是±0.2,正确,不符合题意;D、939,故错误,符合题意;故选:D.【点睛】本题考查了平方根、算术平方根及立方根的定义,属于基础性定义,比较简单.7.D【分析】先根据平行线的性质,由AB∥CD,得到∠CFE=∠AEF,再根据翻折的性质可得∠DFE=∠EFD′,由平角的性质可求得∠CFD′的度数,即可得出答案.【详解】解:∵AB∥CD,∴∠CFE=∠AEF,又∵∠DFE=∠EFD′,∠CFE=2∠CFD′,∴∠DFE=∠EFD′=3∠CFD′,∴∠DFE+∠CFE=3∠CFD′+2∠CFD′=180°,∴∠CFD′=36°,∴∠AEF=∠CFE=2∠CFD′=72°.故选:D.【点睛】本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键.8.D【分析】根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标.【详解解析:D【分析】根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标.【详解】解:∵A点坐标为(1,1),B点坐标为(﹣1,1),C点坐标为(﹣1,﹣2),∴AB=1﹣(﹣1)=2,BC=2﹣(﹣1)=3,∴从A→B→C→D→A一圈的长度为2(AB+BC)=10.2021÷10=202…1,∴细线另一端在绕四边形第202圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故选:D.【点睛】本题考查了坐标规律探索,找到规律是解题的关键.二、填空题9.±6 9.【解析】∵(±6)2=36,∴36的平方根是±6;∵92=81,∴81的算术平方根是9.解析:±6 9.【解析】∵(±6)2=36,∴36的平方根是±6;∵92=81,∴81的算术平方根是9.10.(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴解析:(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴对称的点的坐标为(-3,0).故答案为:(-3,0).【点睛】本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.①②③.【分析】由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠B解析:①②③.【分析】由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠BFD=∠BCF+∠CBF=45°,可判定②;根据同角的余角性质可得∠GCE=∠ABC,由角的和差∠GCD=∠ABC+∠ACD=∠ADC,可判定③;由∠GCE+∠ACB=90°,可得∠GCE与∠ACB互余,可得CA平分∠BCG不正确,可判定④.【详解】解:∵EG∥BC,且CG⊥EG于G,∴∠BCG+∠G=180°,∵∠G=90°,∴∠BCG=180°﹣∠G=90°,∵GE∥BC,∴∠GEC=∠BCA,∵CD平分∠BCA,∴∠GEC=∠BCA=2∠DCB,∴①正确.∵CD,BE平分∠BCA,∠ABC∴∠BFD=∠BCF+∠CBF=1(∠BCA+∠ABC)=45°,2∴②正确.∵∠GCE+∠ACB=90°,∠ABC+∠ACB=90°,∴∠GCE=∠ABC,∵∠GCD=∠GCE+∠ACD=∠ABC+∠ACD,∠ADC=∠ABC+∠BCD,∴∠ADC=∠GCD,∴③正确.∵∠GCE+∠ACB=90°,∴∠GCE与∠ACB互余,∴CA平分∠BCG不正确,∴④错误.故答案为:①②③.【点睛】本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键.12.40【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数.【详解】解:如图:过作平行于,,,,,即,.故答案为:40.【解析:40【分析】过F 作FG 平行于AB ,由AB 与CD 平行,得到FG 与CD 平行,利用两直线平行同位角相等,同旁内角互补,得到1100EFG ∠=∠=︒,2180GFC ∠+∠=︒,即可确定出3∠的度数.【详解】解:如图:过F 作FG 平行于AB ,//AB CD ,//FG CD ∴,1100EFG ∴∠=∠=︒,2180GFC ∠+∠=︒,即60GFC ∠=︒,31006040EFG GFC ∴∠=∠-∠=︒-︒=︒.故答案为:40.【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.13.59°【分析】由长方形的性质及折叠的性质可得∠1=∠2,AD ∥BC ,根据平行线的性质可求解∠GEC 的度数,进而可求解∠2的度数,再利用平行线的性质可求解.【详解】解:如图,∵长方形ABCD 沿解析:59°【分析】由长方形的性质及折叠的性质可得∠1=∠2,AD ∥BC ,根据平行线的性质可求解∠GEC 的度数,进而可求解∠2的度数,再利用平行线的性质可求解.【详解】解:如图,∵长方形ABCD 沿EF 折叠,∴∠1=∠2,AD∥BC,∴∠FGE+∠GEC=180°,∵∠FGE=62°,∴∠GEC=180°-62°=118°,∴∠1=∠2=12∠GEC=59°,∵AD∥BC,∴∠GFE=∠2,∴∠GFE=59°.故答案为59°.【点睛】本题主要考查翻折问题,平行线的性质,求解∠GEC的度数是解题的关键.14..【分析】设S=,等号两边都乘以5可解决.【详解】解:设S=①则5S=②②-①得4S=,所以S=.故答案是:.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的解析:3151 4-.【分析】设S=233015555++++⋯⋯+,等号两边都乘以5可解决.【详解】解:设S=233015555++++⋯⋯+①则5S=23303155555+++⋯⋯++②②-①得4S=311-5,所以S=3151 4-.故答案是:3151 4-.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决.15.【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A解析:32【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S△AOB=12AO•BE=12×4×3=6,S△AOC=12AO•OF=12×4×5=10,∴S△AOB+S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴12BC•AD=16,∴BC•AD=32,故答案为:32.【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.16.(1346.5,).【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标.【详解】解:是等边三角形,边长为1,,,,…观察图形可知,3个点一个循解析:(1346.5. 【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A 2021的坐标.【详解】解:12OA A 是等边三角形,边长为11A y ∴==112A ⎛ ⎝⎭,2(1,0)A ,3(2,0)A ,45(2A ,5(3,0)A 6(4,0)A … 观察图形可知,3个点一个循环,每个循环向右移动2个单位2021÷3=673…1,673×2=1346,故顶点A 2021的坐标是(1346.5故答案为:(1346.5 【点睛】本题考查了平面直角坐标系点的规律,等边三角形的性质,勾股定理,找到规律是解题的关键. 三、解答题17.(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=,=3.(2)原式,=解析:(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=()()221--+-,=3.(2)原式= =3+1-6,=–2.【点睛】本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键. 18.(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出解析:(1)0.2;(2)32;(3)5 【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x -1的值,进而得出x 的值.【详解】解:(1)x 3=0.008,则x =0.2;(2)x 3-3=38则x3=3+38故x3=27 8解得:x=32;(3)(x-1)3=64则x-1=4,解得:x=5.【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.19.∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等解析:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB∥DG,然后根据两直线平行,同旁内角互补解答即可.【详解】解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行).∴∠AGD+∠BAC=180°(两直线平行,同旁内角互补).∵∠AGD=110°,∴∠BAC=70度.故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70.【点睛】本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB∥DG是解题的关键.20.(1)的面积为5;(2)或【分析】(1)根据割补法可直接进行求解;(2)由(1)可得,进而△的面积以点B的纵坐标为高,ON为底,然后可得ON=5,最后问题可求解.【详解】解:(1)由图象可解析:(1)ABC 的面积为5;(2)()5,0N -或()5,0N【分析】(1)根据割补法可直接进行求解;(2)由(1)可得5BON S =,进而△BON 的面积以点B 的纵坐标为高,ON 为底,然后可得ON =5,最后问题可求解.【详解】解:(1)由图象可得: 111342223145222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=; (2)设点(),0N a ,由题意得:5BON ABC S S ==,∴△BON 的面积以点B 的纵坐标为高,ON 为底,即1252BON Sa =⨯⨯=, ∴5a =±,∴()5,0N -或()5,0N .【点睛】 本题主要考查图形与坐标,熟练掌握点的坐标表示的几何意义及割补法是解题的关键. 21.(1),.(2).【分析】(1)首先得出接近的整数,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】,∴整数部分,小数部分.(2)原式,则的平方根为.【点睛】此题解析:(1)1a =,4b =.(2)±【分析】(1接近的整数,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】 1754<<∴ 132<<,∴整数部分1a =,小数部分314b -=.(2)()()224a b -++原式())22144=-++ 11718=+=,则()()224a b -++的平方根为±【点睛】此题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键. 二十二、解答题22.(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:32x y x y =⎧⎨+=⎩, 解得: 1.50.5x y =⎧⎨=⎩, ∴长是1.5m,宽是0.5m.(2)∵正方形的面积为7平方米,∴米,∵∴他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.二十三、解答题23.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒.【分析】(1)过点G 作//GE MN ,根据平行线的性质即可求解;(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解.【详解】(1)证明:如图,过点G 作//GE MN ,∴MAG AGE ∠=∠,∵//MN PQ ,∴//GE PQ .∴PBG BGE ∠=∠.∵BG AD ⊥,∴90AGB ∠=︒,∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒.(2)补全图形如图2、图3,猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒.证明:过点H 作//HF MN .∴1AHF ∠=∠.∵//MN PQ ,∴//HF PQ∴2BHF ∠=∠,∴12AHB AHF BHF ∠=∠+∠=∠+∠.∵AH 平分MAG ∠,∴21MAG ∠=∠.如图3,当点C 在AG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠+∠=∠,∵//MN PQ ,∴MAG GDB ∠=∠,2212290AHB MAG PBG CBGGDB PBG CBG CBG∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠即290AHB CBG ∠-∠=︒.如图2,当点C 在DG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠-∠=∠.∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠.即290AHB CBG ∠+∠=︒.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.24.(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数表示,即可判断.【详解】解析:(1)4a =,1b =;(2)15秒或63秒;(3)不发生变化,34BAC BCD ∠=∠【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数t 表示BAC ∠,BCD ∠即可判断.【详解】解:(1)∵()2450a b a b -++-=,∴4050a b a b -=⎧⎨+-=⎩, 4a ∴=,1b =;(2)设A 灯转动t 秒,两灯的光束互相平行,①当045t <<时,4(45)1t t =+⨯,解得15t =;②当4590t <<时,()418018045t t -=-+,解得63t =;③当90135t <<时,436045t t -=+,解得135t =,(不合题意)综上所述,当t =15秒或63秒时,两灯的光束互相平行;(3)设A 灯转动时间为t 秒,1804CAN t ∠=︒-,60(1804)4120BAC t t ∴∠=︒-︒-=-︒,又//PQ MN ,18041803BCA CBD CAN t t t ∴∠=∠+∠=+︒-=︒-,而90ACD ∠=︒,9090(1803)390BCD BCA t t ∴∠=︒-∠=︒-︒-=-︒,:4:3BAC BCD ∴∠∠=,即34BAC BCD ∠=∠.【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.25.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE ∥AC ,∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒ 4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠; 理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠1902B =︒+∠; (2)如图2所示:1902AFD B ∠=︒-∠;理由如下: 由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠, ∵∠AHF=∠B+∠BDH ,∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH =︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠ ()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠ 1902B =︒-∠. 【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.26.(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)°【详解】【模型】(1)证明:过点E 作EF ∥CD ,∵AB ∥CD ,∴EF ∥AB ,∴∠1+∠MEF解析:(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)°【详解】【模型】(1)证明:过点E 作EF ∥CD ,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.。
七年级下册沧州数学期末试卷测试卷(含答案解析)

七年级下册沧州数学期末试卷测试卷(含答案解析)一、选择题1.下列图形中,有关角的说法正确的是( )A .∠1与∠2是同位角B .∠3与∠4是内错角C .∠3与∠5是对顶角D .∠4与∠5相等2.下列现象属于平移的是() A .投篮时的篮球运动 B .随风飘动的树叶在空中的运动 C .刹车时汽车在地面上的滑动 D .冷水加热过程中小气泡变成大气泡 3.在平面直角坐标系中,点(3,1) P -所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列四个命题是真命题的是( ) A .两条直线被第三条直线所截,同位角相等 B .互补的两个角一定是邻补角C .在同一平面内,垂直于同一条直线的两条直线互相平行D .相等的角是对顶角5.如图,AB ∥CD ,∠EBF =∠FBA ,∠EDG =∠GDC ,∠E =45°,则∠H 为( )A .22°B .22.5°C .30°D .45°6.有个数值转换器,原理如图所示,当输入x 为27时,输出的y 值是( )A .3B 33C 3D .327.如图,//AB CD ,EF 分别交AB ,CD 于点G ,H ,若139∠=︒,则2∠的度数为( )A .51︒B .39︒C .129︒D .78︒8.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (2,0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( )A .(2 ,1)B .(-1,-1)C .(﹣2,0)D .(2,0)二、填空题9.9的算术平方根是 .10.已知点P (3,﹣1)关于x 轴的对称点Q 的坐标是(a +b ,1﹣b ),则a =___,b =___.11.如图.已知点C 为两条相互平行的直线,AB ED 之间一动点,ABC ∠和CDE ∠的角平分线相交于F ,若3304BCD BFD ∠=∠+︒,则BCD ∠的度数为________.12.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =40°,则∠DAC 的度数为____.13.如图,沿折痕EF 折叠长方形ABCD ,使C ,D 分别落在同一平面内的C ',D 处,若155∠=︒,则2∠的大小是_______︒.14.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.15.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .16.如图,在平面直角坐标系中,点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,按照这样的规律下去,点2021A 的坐标为__________.三、解答题17.计算下列各题: (1)327-+2(3)--31- (2)3331632700.1251464---++-. 18.求下列各式中的x 的值: (1)2810x -=; (2)()3164x -=.19.如图,已知EF ∥AD ,1 2.∠=∠试说明180.DGA BAC ∠+∠=︒请将下面的说明过程填写完整.解:EF ∥AD ,(已知) 2∴∠=______.(______).又12∠=∠,(已知)13∴∠=∠,(______).AB ∴∥______,(______) 180.(DGA BAC ∴∠+∠=︒______)20.如图,每个小正方形的边长为1,利用网格点画图和无刻度的直尺画图(保留画图痕迹):(I )在方格纸内将三角形ABC 经过一次平移后得到三角形A B C ''',图中标出了点B 的对应点B ',画出三角形A B C ''';(2)过点A 画线段AD 使//AD BC 且AD BC =; (3)图中AD 与C B ''的关系是______;(4)点E 在线段AD 上,4CE =,点H 是直线CE 上一动点线段BH 的最小值为______. 21.(1)如果x 是313y 是31313x y -根.(2)当m 为何值时,关于x 的方程547m x x +=+的解与方程341125x x -+-=的解互为相反数.二十二、解答题22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件. (1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数2 1.414≈3 1.732≈)二十三、解答题23.阅读下面材料: 小亮同学遇到这样一个问题:已知:如图甲,AB //CD ,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED . 求证:∠BED =∠B +∠D .(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整. 证明:过点E 作EF //AB , 则有∠BEF = . ∵AB //CD ,∴ // , ∴∠FED = .∴∠BED =∠BEF +∠FED =∠B +∠D .(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a //b ,点A ,B 在直线a 上,点C ,D 在直线b 上,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,且BE ,DE 所在的直线交于点E .①如图1,当点B 在点A 的左侧时,若∠ABC =60°,∠ADC =70°,求∠BED 的度数; ②如图2,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BED 的度数(用含有α,β的式子表示).24.已知:如图1,//AB CD ,点E ,F 分别为AB ,CD 上一点.(1)在AB ,CD 之间有一点M (点M 不在线段EF 上),连接ME ,MF ,探究AEM ∠,EMF ∠,∠MFC 之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明.(2)如图2,在AB ,CD 之两点M ,N ,连接ME ,MN ,NF ,请选择一个图形写出AEM ∠,EMN ∠,MNF ∠,NFC ∠存在的数量关系(不需证明).25.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 26.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明; (2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、选择题 1.C 解析:C 【分析】根据同位角、内错角、对顶角的定义判断即可求解. 【详解】A 、∠1与∠2不是同位角,原说法错误,故此选项不符合题意;B 、∠1与∠4不是内错角,原说法错误,故此选项不符合题意;C 、∠3与∠5是对顶角,原说法正确,故此选项符合题意;D 、∠4与∠5不相等,原说法错误,故此选项不符合题意; 故选:C . 【点睛】本题考查同位角、内错角、对顶角的定义,解题的关键是熟练掌握三线八角的定义及其区分.2.C 【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化. 【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ;B解析:C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;C. 刹车时汽车在地面上的滑动,此选项是平移现象;D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象.故选:C.【点睛】本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键.3.B【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∵点P的横坐标是负数,纵坐标是正数,∴点P(-3,1)在第二象限,故选:B.【点睛】本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-).4.C【分析】根据平行线的性质、邻补角和对顶角的概念以及平行线的判定定理判断即可.【详解】解:A、两条平行的直线被第三条直线所截,同位角相等,原命题错误,是假命题,不符合题意;B、互补的两个角不一定是邻补角,原命题错误,是假命题,不符合题意;C、在同一平面内,垂直于同一条直线的两条直线互相平行,原命题正确,是真命题,符合题意;D、相等的角不一定是对顶角,原命题错误,是假命题,不符合题意;故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,判断命题的真假关键是要熟悉课本中的性质定理.5.B【分析】过E 作//EQ AB ,过H 作//HI AB ,利用平行线的性质解答即可. 【详解】解:过E 作//EQ AB ,过H 作//HI AB ,//AB CD ,//////EQ AB CD HI ∴,180QEB ABE ∴∠+∠=︒,180QED EDC ∠+∠=︒, 180IHD CDH ∠+∠=︒,180IHB ABH ∠+∠=︒,EBF FBA ∠=∠,EDG GDC ∠=∠,45BED ∠=︒,2245FBA GDC BED ∴∠-∠=∠=︒,1180(180)22.52BHD CDH ABH GDC FBA FBA GDC BED ∴∠=∠-∠=︒-∠-︒-∠=∠-∠=∠=︒.故选:B .【点睛】此题考查平行线的性质,关键是作出辅助线,利用平行线的性质解答. 6.B 【分析】利用立方根的定义,将x 的值代入如图所示的流程,取27的立方根为3,为有理数,再次33y 值. 【详解】根据题意,x=27,取立方根得3,3为有理数,再次取333.符合题意,即输出的y 33 故答案选:B. 【点睛】此题考查立方根、无理数、有理数,解题关键在于掌握对有理数与无理数的判定. 7.B 【分析】根据平行线的性质和对顶角相等即可得∠2的度数. 【详解】 解:∵//AB CD , ∴∠2=∠FHD , ∵∠FHD =∠1=39°,∴∠2=39°. 故选:B . 【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.8.B 【分析】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);解析:B 【分析】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同, ∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第三次相遇点为(2,0);由此得出规律,即可求解. 【详解】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同, ∴物体甲与物体乙的路程比为1:2,由题意知:第一次相遇物体甲与物体乙运动的路程和为12112⨯= ,物体甲运动的路程为11243⨯=,物体乙运动的路程为21283⨯= ,此时在BC 边相遇,即第一次相遇点为(-1,1);第二次相遇物体甲与物体乙运动的路程和为12224⨯= ,物体甲运动的路程为12483⨯=,物体乙运动的路程为224163⨯=,在DE 边相遇,即第二次相遇点为(-1,-1);第三次相遇物体甲与物体乙运动的路程和为12336⨯= ,物体甲运动的路程为136123⨯=,物体乙运动的路程为236243⨯=,在A 点相遇,即第三次相遇点为(2,0); 此时甲乙回到原出发点,则每相遇三次,两点回到出发点, ∵202136732 ,故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即点(-1,-1)故选:B 【点睛】本题主要考查了点的变化规律,以及行程问题中的相遇问题,通过计算发现规律就可以解决问题,解题的关键是找出规律每相遇三次,甲乙两物体同时回到原点.二、填空题 9.【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵,∴9算术平方根为3.故答案为3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.解析:【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239 ,∴9算术平方根为3.故答案为3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.10.0【分析】根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案.【详解】解:∵点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),∴a+b=3,1-b=1,解析:0【分析】根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案.【详解】解:∵点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),∴a+b=3,1-b=1,解得:a=3,b=0,故答案为:3,0.【点睛】此题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键.11.120°【分析】由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解.【详解】解:和的角平分线相交于,,,又,,,设,,,在四边形中,,,,解析:120°【分析】由角平分线的定义可得EDA ADC ∠=∠,CBE ABE ∠=∠,又由//AB ED ,得EDF DAB ∠=∠,DFE ABF ∠=∠;设EDF DAB x ∠=∠=,DFE ABF y ∠=∠=,则DFB x y ∠=+;再根据四边形内角和定理得到3602()BCD x y ∠=︒-+,最后根据3304BCD BFD ∠=∠+︒即可求解. 【详解】解:ABC ∠和CDE ∠的角平分线相交于F ,EDA ADC ∴∠=∠,CBE ABE ∠=∠,又//AB ED ,EDF DAB ∴∠=∠,DEF ABF ∠=∠,设EDF DAB x ∠=∠=,DEF ABF y ∠=∠=,BFD EDA ADE x y ∴∠=∠+∠=+,在四边形BCDF 中,FBC x ∠=,ADC y ∠=,BFD x y ∠=+,3602()BCD x y ∴∠=︒-+,0433BCD BFD ∠=∠+︒, 120BFD x y ∴∠=+=︒,3602()120BCD x y ∴∠=︒-+=︒,故答案为:120︒.【点睛】本题考查了平行线的判定和性质,正确的识别图形是解题的关键.12.40°【分析】根据平行线的性质可得∠EAD=∠B ,根据角平分线的定义可得∠DAC=∠EAD ,即可得答案.【详解】∵AD ∥BC ,∠B =40°,∴∠EAD=∠B=40°,∵AD 是∠EAC 的平【分析】根据平行线的性质可得∠EAD =∠B ,根据角平分线的定义可得∠DAC =∠EAD ,即可得答案.【详解】∵AD ∥BC ,∠B =40°,∴∠EAD =∠B =40°,∵AD 是∠EAC 的平分线,∴∠DAC =∠EAD =40°,故答案为:40°【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.13.70【分析】由题意易图可得,由折叠的性质可得,然后问题可求解.【详解】解:由长方形可得:,∵,∴,由折叠可得,∴;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟解析:70【分析】由题意易图可得155EFC ∠=∠=︒,由折叠的性质可得55EFC EFC '∠=∠=︒,然后问题可求解.【详解】解:由长方形ABCD 可得://AD BC ,∵155∠=︒,∴155EFC ∠=∠=︒,由折叠可得55EFC EFC '∠=∠=︒,∴218070EFC EFC '∠=︒-∠-∠=︒;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的14.20﹣.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的解析:20﹣208000=401401. 【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+= 归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 15.(6,2)或(4,2)【分析】根据平行于x 轴直线上的点的纵坐标相等求出点C 的纵坐标,再分点C 在点A 的左边与右边两种情况讨论求出点C 的横坐标,从而得解.【详解】∵点A (1,2),AC ∥x 轴,解析:(6,2)或(-4,2)【分析】根据平行于x 轴直线上的点的纵坐标相等求出点C 的纵坐标,再分点C 在点A 的左边与右边两种情况讨论求出点C 的横坐标,从而得解.【详解】∵点A (1,2),AC ∥x 轴,∴点C 的纵坐标为2,∵AC=5,∴点C 在点A 的左边时横坐标为1-5=-4,此时,点C 的坐标为(-4,2),点C 在点A 的右边时横坐标为1+5=6,此时,点C 的坐标为(6,2)综上所述,则点C 的坐标是(6,2)或(-4,2).故答案为(6,2)或(-4,2).【点睛】本题考查了点的坐标,熟记平行于x 轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.16.【分析】观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;【详解】,,,,,故答案为:【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.解析:(4040,2020)【分析】观察点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,点的横坐标为22n -,纵坐标为1n -,据此即可求得2021A 的坐标;【详解】()10,0A ,()22,1A ,()34,2A ,()46,3A ,,(22,1)n A n n --,∴2021(4040,2020)A故答案为:(4040,2020)【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.三、解答题17.(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可; 试题解析:(1)原式=;(2)原式=-3-0-+0.5+=解析:(1)1 (2)114-【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=3311-++=;(2)原式=-3-0-12+0.5+14 =114- 18.(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1),或.(2),.【点睛】此题考查了解析:(1)9x =或9x =-;(2)5x =【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1)2810x -=2x =81,9x =或9x =-.(2)()3164x -= 14x -=,5x =.【点睛】此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键.19.;两直线平行,同位角相等 ;等量代换;;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可.【详解】解:EF ∥AD ,(已知)(两直线平行,同位角相等)解析:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可.【详解】 解:EF ∥AD ,(已知)23∴∠=∠(两直线平行,同位角相等)又12∠=∠,(已知)13∠∠∴=,(等量代换)AB DG ∴∥,(内错角相等,两直线平行)180DGA BAC ∴∠+∠=︒(两直线平行,同旁内角互补)故答案为:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补【点睛】本题考查平行线的判定与性质,熟记判定定理和性质定理是解题的关键.20.(1)见解析;(2)见解析;(3),AD ∥;(4)【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A 画线段AD ∥BC ,AD=BC ,即可;(3)由平移的性质可得,∥BC ,,从而可以解析:(1)见解析;(2)见解析;(3)AD B C ''=,AD ∥B C '';(4)154【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A 画线段AD ∥BC ,AD =BC ,即可;(3)由平移的性质可得B C BC ''=,B C ''∥BC ,,从而可以得到AD B C ''=,AD ∥B C ''; (4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,由此利用三角形面积公式求解即可.【详解】解:(1)如图所示,即为所求:(2)如图所示,即为所求:(3)平移的性质可得B C BC ''= ,B C ''∥BC ,由AD =BC ,AD ∥BC ,从而可以得到AD B C ''=,AD ∥B C '';故答案为:AD B C ''=,AD ∥B C '';(4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,如图所示:∵AD ∥BC , ∴1115==3134=222BCE ABC S S ⨯⨯+⨯⨯△△ , ∴115=22CE BH , ∴154BH =, ∴点H 是直线CE 上一动点线段BH 的最小值为154. 故答案为:154.【点睛】本题主要考查了平移作图,点到直线的距离垂线段最短,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)±3;(2)m=-4【分析】(1)估算,得到的范围,从而确定x 、y 的值,再代入计算即可.(2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m 的值即可.【详解析:(1)±3;(2)m=-4【分析】(113313x 、y 的值,再代入计算即可.(2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m 的值即可.【详解】解:(1)∵91316 ∴3134<, ∴63137<+,∴x=6,y=3136133=, ∴13x y -, ∴13x y -±3;(2)341125x x -+-=, 解得:x=-9,∴547m x x +=+的解为x=9,代入,得54979m +⨯=+,解得:m=-4.【点睛】本题考查了一元一次方程的解,无理数的估算、平方根的意义,以及解一元一次方程,解题的关键是得到方程547m x x +=+的解.二十二、解答题22.(1)6分米;(2)满足.【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.【详解】解:(解析:(1)6分米;(2)满足.【分析】(1(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出a ,求出长方形的长和宽和6比较即可.【详解】解:(16分米;(2)设长方形的长为4a 分米,则宽为3a 分米.则4324a a ⋅=,解得:a =∴长为4 5.6566a ≈<,宽为3 4.242 6.a ≈<∴满足要求.【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.二十三、解答题23.(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,解析:(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣1122a β+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,∠ADC =70°,参考小亮思考问题的方法即可求∠BED 的度数;②如图2,过点E 作EF ∥AB ,当点B 在点A 的右侧时,∠ABC =α,∠ADC =β,参考小亮思考问题的方法即可求出∠BED 的度数.【详解】解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=30°,∠EDC=12∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=12α,∠EDC=12∠ADC=12β,∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 24.(1)见解析;(2)见解析【分析】(1)过点M 作MP ∥AB .根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.【详解】解:(1)∠EMF=∠AEM+∠MFC .∠AEM+∠E解析:(1)见解析;(2)见解析【分析】(1)过点M 作MP ∥AB .根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.【详解】解:(1)∠EMF=∠AEM+∠MFC .∠AEM+∠EMF+∠MFC=360°.证明:过点M 作MP ∥AB .∵AB ∥CD ,∴MP ∥CD .∴∠4=∠3.∵MP ∥AB ,∴∠1=∠2.∵∠EMF=∠2+∠3,∴∠EMF=∠1+∠4.∴∠EMF=∠AEM+∠MFC ;证明:过点M 作MQ ∥AB .∵AB ∥CD ,∴MQ ∥CD .∴∠CFM+∠1=180°;∵MQ ∥AB ,∴∠AEM+∠2=180°.∴∠CFM+∠1+∠AEM+∠2=360°.∵∠EMF=∠1+∠2,∴∠AEM+∠EMF+∠MFC=360°;(2)如图2第一个图:∠EMN+∠MNF-∠AEM-∠NFC=180°;过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM=∠1,∠CFN=∠4,MP∥NQ,∴∠2+∠3=180°,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4,∴∠EMN+∠MNF-∠AEM-∠NFC=∠1+∠2+∠3+∠4-∠1-∠4=∠2+∠3=180°;如图2第二个图:∠EMN-∠MNF+∠AEM+∠NFC=180°.过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ,∴∠2=∠3,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4,∴∠EMN-∠MNF+∠AEM+∠NFC=∠1+∠2-∠3-∠4+180°-∠1+∠4=180°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.25.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-1802n︒-=1002n︒+,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.26.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H解析:(1)EAF EDG AED∠+∠=∠,证明见解析;(2)证明见解析;(3)80EKD∠=︒.【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°,再根据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,求得α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.。
河北沧州泊头市苏屯初级中学 2016-人教版七年级数学第二学期期末考试试卷(含答案)

七年级数学(下)期末数学试题(满分:150分 时间:90分钟)一、选择题(每题4分,共40分)1.如果一个角等于它余角的2倍,那么这个角是它的补角的( ) (A )2倍(B )12倍(C )5倍(D )15倍 2.如右图所示,小颖从家到达莲花中学要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校( ) A. (0,4)→(0,0)→(4,0) B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0) 3.某学习小组在讨论 “变化的鱼”时, 知道大鱼与小鱼是位似图形(如图所示). 则小鱼上的点(a ,b )对应大鱼上的点 A .(-2a ,-2b ) B .(-a ,-2b ) C .(-2b ,-2a ) D .(-2a ,-b ) 4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是( )A .300名学生是总体B .每名学生是个体C .50名学生是所抽取的一个样本D .这个样本容量是505.如图,AB ∥CD ,AD ,BC 相交于O ,∠BAD =35°,∠BOD =76°, 则∠C 的度数是( )(A) 31°° (D) 76°6.方程组 ⎩⎨⎧y x ,则被遮盖的两个数分别为( )(A)1,2(B)1,3(C)2,3(D)2,47.为了改善住房条件,小亮的父母考察了某小区的A B 、两套楼房,A 套楼房在第3层楼,B 套楼房在第5层楼,B 套楼房的面积比A 套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,根据以上信息列出了下列方程组.其中正确的是( ).A .⎩⎨⎧=-=241.19.0x y y x B . 1.10.924x yx y =⎧⎨-=⎩C .0.9 1.124x y x y =⎧⎨-=⎩ D . 1.10.924x yy x =⎧⎨-=⎩(第3题) 第5题图⎩⎨⎧=+=+32y x y x 第2题图8.小明的作业本上有以下四题:24a =;10a 52a=;③=( ) A .① B .② C .③ D .④9.如图1,在△ABC 中,三边a 、b 、c 的大小关系是( ) (A )a<b<c (B )c<a<b (C )c<b<a (D )b<a<c10.如图2,天平右盘中的每个砝码的质量都是1g ,则物体A的质量m(g)的取值范围,在数轴上可表示为( )二、填空题(每题4分,共40分)1. 如图所示,直线a ∥b ,则∠A = 度.2.在平面直角坐标系中,点A 是y 轴上一点,若它的坐标为(a-1,a+1),另一点B 的坐标为(a+3,a-5),则点B 的坐标是 3.在平面直角坐标系中,横坐标、纵 坐标都为整数的点称为整点. 观察图 中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10 个正方形(实线)四条边上的整点个 数共有_________个.4.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.5.如图,将一副直角三角板叠在一起,使直角顶点重合于点O ,则∠AOB+∠DOC= .6.若一个二元一次方程的一个解为⎩⎨⎧-==12y x ,则这个方程可以是:_______________(中要求写出一个)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年河北省沧州市七年级(下)期末数学试卷(新人教版)一、正确选择.(本大题10个小题,每小题2分,共20分)1.(2分)如图所示,下列判断正确的是()A.图(1)中∠1与∠2是一组对顶角B.图(2)中∠1与∠2是一组对顶角C.图(3)中∠1与∠2是一组邻补角D.图(4)中∠1与∠2是互为邻补角2.(2分)设a,b,c是在同一平面内的三条不同的直线,则在下面四个命题中,正确的有()①如果a与b相交,b与c相交,那么a与c相交;②如果a与b平行,b与c平行,那么a与c平行;③如果a与b垂直,b与c垂直,那么a与c垂直;④如果a与b平行,b与c相交,那么a与c相交.A.4个 B.3个 C.2个 D.1个3.(2分)在下列说法中:①△ABC在平移过程中,对应线段一定相等;②△ABC 在平移过程中,对应线段一定平行;③△ABC在平移过程中,周长保持不变;④△ABC在平移过程中,对应边中点所连线段的长等于平移的距离;⑤△ABC在平移过程中,面积不变,其中正确的有()A.①②③④B.①②③④⑤C.①②③⑤D.①③④⑤4.(2分)下列各数中是无理数的是()A.B.C.D.35.(2分)小敏的家在学校正南150m,正东方向200m处,如果以学校位置为原点,以正北、正东为正方向,则小敏家用有序数对表示为()A.(﹣200,﹣150)B.(200,150)C.(200,﹣150)D.(﹣200,150)6.(2分)下列方程组中是二元一次方程组的是()A.B.C.D.7.(2分)如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD 和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.8.(2分)如果x>y,则下列变形中正确的是()A.﹣x y B.yC.3x>5y D.x﹣3>y﹣39.(2分)不等式<1的正整数解为()A.1个 B.3个 C.4个 D.5个10.(2分)下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件二、准确填空.(本大题10个小题,每小题3分,共30分)11.(3分)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.12.(3分)如图所示,若AB∥DC,∠1=39°,∠C和∠D互余,则∠D=,∠B=.13.(3分)如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°,其中能判断a∥b的是(填序号).14.(3分)把命题“等角的余角相等”写成“如果…,那么….”的形式为.15.(3分)﹣64的立方根是.16.(3分)将点P(﹣3,y)向下平移3个单位,向左平移2个单位后得到点Q (x,﹣1),则x+y=.17.(3分)某班在大课间活动中抽查了20名学生每分钟跳绳次数,得到如下数据(单位:次):50,63,77,83,87,88,89,9l,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是.18.(3分)一个样本含有下面10个数据:52,51,49,50,47,48,50,51,48,53,则最大的值是,最小的值是,如果组距为1.5,则应分成组.19.(3分)某汽车经销商在销售某款汽车时,以高出进价20%标价.已知按标价的9折销售这款汽车9辆与将标价直降0.2万元销售4辆获利相同,那么该款汽车的进价是万元,标价是万元.20.(3分)若不等式组有解,则a的取值范围是.三、解答题.(本大题6个小题,共70分)21.(10分)解方程组:(1)(2).22.(10分)解下列不等式(组),并把解集在数轴上表示出来.(1)1﹣>(2).23.(12分)如图所示,已知∠B=∠C,AD∥BC,试说明:AD平分∠CAE.24.(12分)小明给如图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化宫、超市、宾馆、市场的坐标.(2)分别指出(1)中场所在第几象限?(3)同学小丽针对这幅图也建立了一个直角坐标系,可是她得到的同一场所的坐标和小明的不一样,是小丽做错了吗?请说明理由.25.(12分)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.26.(14分)阅读下列材料:∵,即,∴的整数部分为2,小数部分为.请你观察上述的规律后试解下面的问题:如果的小数部分为a,的小数部分为b,求的值.2015-2016学年河北省沧州市七年级(下)期末数学试卷(新人教版)参考答案与试题解析一、正确选择.(本大题10个小题,每小题2分,共20分)1.(2分)如图所示,下列判断正确的是()A.图(1)中∠1与∠2是一组对顶角B.图(2)中∠1与∠2是一组对顶角C.图(3)中∠1与∠2是一组邻补角D.图(4)中∠1与∠2是互为邻补角【解答】解:根据对顶角和邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选:D.2.(2分)设a,b,c是在同一平面内的三条不同的直线,则在下面四个命题中,正确的有()①如果a与b相交,b与c相交,那么a与c相交;②如果a与b平行,b与c平行,那么a与c平行;③如果a与b垂直,b与c垂直,那么a与c垂直;④如果a与b平行,b与c相交,那么a与c相交.A.4个 B.3个 C.2个 D.1个【解答】解:①如果a与b相交,b与c相交,那么a与c相交,错误;②如果a与b平行,b与c平行,那么a与c平行,正确;③如果a与b垂直,b与c垂直,那么a与c垂直,错误;④如果a与b平行,b与c相交,那么a与c相交,正确,故选:C.3.(2分)在下列说法中:①△ABC在平移过程中,对应线段一定相等;②△ABC 在平移过程中,对应线段一定平行;③△ABC在平移过程中,周长保持不变;④△ABC在平移过程中,对应边中点所连线段的长等于平移的距离;⑤△ABC在平移过程中,面积不变,其中正确的有()A.①②③④B.①②③④⑤C.①②③⑤D.①③④⑤【解答】解:①∵平移不改变图形的大小,∴△ABC在平移过程中,对应线段一定相等,故正确;②∵经过平移,对应线段所在的直线共线或平行,∴对应线段一定平行错误;③∵平移不改变图形的形状和大小,∴△ABC在平移过程中,周长不变,故正确;④∵经过平移,对应点所连的线段平行且相等,∴△ABC在平移过程中,对应边中点所连线段的长等于平移的距离,正确;⑤∵移不改变图形的形状和大小且对应角相等,∴△ABC在平移过程中,面积不变,故正确;∴①、③、④、⑤都符合平移的基本性质,都正确.故选:D.4.(2分)下列各数中是无理数的是()A.B.C.D.3【解答】解:=3,,3是有理数,是无理数,故选:A.5.(2分)小敏的家在学校正南150m,正东方向200m处,如果以学校位置为原点,以正北、正东为正方向,则小敏家用有序数对表示为()A.(﹣200,﹣150)B.(200,150)C.(200,﹣150)D.(﹣200,150)【解答】解:以学校位置为原点,以正北、正东为正方向,建立直角坐标系.因为小敏的家在学校正南150m,正东方向200m处,所以用有序实数对表示为(200,﹣150).故选C.6.(2分)下列方程组中是二元一次方程组的是()A.B.C.D.【解答】解:A、第一个方程值的xy是二次的,故此选项错误;B、第二个方程有,不是整式方程,故此选项错误;C、含有3个未知数,故此选项错误;D、符合二元一次方程定义,故此选项正确.故选:D.7.(2分)如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD 和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.【解答】解:设∠ABD和∠DBC的度数分别为x°、y°,由题意得,.故选:B.8.(2分)如果x>y,则下列变形中正确的是()A.﹣x y B.yC.3x>5y D.x﹣3>y﹣3【解答】解:A、两边都乘以﹣,故A错误;B、两边都乘以,故B错误;C、左边乘3,右边乘5,故C错误;D、两边都减3,故D正确;故选:D.9.(2分)不等式<1的正整数解为()A.1个 B.3个 C.4个 D.5个【解答】解:解不等式得,x<4,则不等式<1的正整数解为1,2,3,共3个.故选:B.10.(2分)下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件【解答】解:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选:D.二、准确填空.(本大题10个小题,每小题3分,共30分)11.(3分)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.12.(3分)如图所示,若AB∥DC,∠1=39°,∠C和∠D互余,则∠D=39°,∠B=129°.【解答】解:∵AB∥DC,∴∠D=∠1=39°.∵∠C和∠D互余,∴∠C+∠D=90°.∴∠C=90°﹣39°=51°.∵AB∥DC,∴∠B+∠C=180°.∴∠B=180°﹣51°=129°.故答案为:39°;129°.13.(3分)如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°,其中能判断a∥b的是①③④(填序号).【解答】解:①∵∠1=∠2,∴a∥b,故此选项正确;②∠3=∠6无法得出a∥b,故此选项错误;③∵∠4+∠7=180°,∴a∥b,故此选项正确;④∵∠5+∠3=180°,∴∠2+∠5=180°,∴a∥b,故此选项正确;故答案为:①③④.14.(3分)把命题“等角的余角相等”写成“如果…,那么….”的形式为如果两个角是相等角的余角,那么这两个角相等.【解答】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为如果两个角是相等角的余角,那么这两个角相等.15.(3分)﹣64的立方根是﹣4.【解答】解:∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故选﹣4.16.(3分)将点P(﹣3,y)向下平移3个单位,向左平移2个单位后得到点Q (x,﹣1),则x+y=﹣3.【解答】解:∵点P(﹣3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,﹣1),∴x=﹣3﹣2,y﹣3=﹣1,解得x=﹣5,y=2,所以,x+y=﹣5+2=﹣3.故答案为:﹣3.17.(3分)某班在大课间活动中抽查了20名学生每分钟跳绳次数,得到如下数据(单位:次):50,63,77,83,87,88,89,9l,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是0.20.【解答】解:跳绳次数在90~110这一组的有9l,93,100,102共4个数,频率是:4÷20=0.20.故答案为:0.20.18.(3分)一个样本含有下面10个数据:52,51,49,50,47,48,50,51,48,53,则最大的值是53,最小的值是47,如果组距为1.5,则应分成5组.【解答】解:分析数据可得:最大的值是53,最小的值是47,则它们的差为53﹣47=6;如果组距为1.5,由于=4;但由于要包含两个端点,故可分为5组.故本题答案为:53;47;5.19.(3分)某汽车经销商在销售某款汽车时,以高出进价20%标价.已知按标价的9折销售这款汽车9辆与将标价直降0.2万元销售4辆获利相同,那么该款汽车的进价是10万元,标价是12万元.【解答】解:设该款汽车的进价x万元,根据题意可得:(1+20%)x•0.9×9﹣9x=4×[(1+20%)x﹣0.2﹣x]解得:x=10,则(1+20%)×10=12(万元).故答案为:10,12.20.(3分)若不等式组有解,则a的取值范围是a>﹣1.【解答】解:∵由①得x≥﹣a,由②得x<1,故其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1.故答案为:a>﹣1.三、解答题.(本大题6个小题,共70分)21.(10分)解方程组:(1)(2).【解答】解:(1)②×2得:4x+2y=26③,③﹣①得:5y=15,y=3,把y=3代入②得:x=5,方程组的解为;(2)①+②得:3x+4z=﹣4④,③×2得:4x﹣4z=﹣10⑤,④+⑤得:7x=﹣14,解得:x=﹣2,把x=﹣2代入①得:﹣6﹣y=﹣7,y=1,把y=1代入②得:1+4z=3,z=,方程组的解为.22.(10分)解下列不等式(组),并把解集在数轴上表示出来.(1)1﹣>(2).【解答】解:(1)去分母,得10﹣2(2﹣3x)>5(1+x),去括号,得10﹣4+6x>5+5x,移项,得6x﹣5x>5﹣10+4,合并同类项,得x>﹣1.;(2),解①得x≥1,解②得x>2..则不等式组解集是:x>2.23.(12分)如图所示,已知∠B=∠C,AD∥BC,试说明:AD平分∠CAE.【解答】证明:∵AD∥BC(已知)∴∠B=∠EAD(两直线平行,同位角相等)∠DAC=∠C(两直线平行,内错角相等)又∵∠B=∠C(已知)∴∠EAD=∠DAC(等量代换)∴AD平分∠CAE(角平分线的定义).24.(12分)小明给如图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化宫、超市、宾馆、市场的坐标.(2)分别指出(1)中场所在第几象限?(3)同学小丽针对这幅图也建立了一个直角坐标系,可是她得到的同一场所的坐标和小明的不一样,是小丽做错了吗?请说明理由.【解答】解:(1)体育场的坐标为(﹣2,5),文化宫的坐标为(﹣1,3),超市的坐标为(4,﹣1),宾馆的坐标为(4,4),市场的坐标为(6,5);(2)体育场、文化宫在第二象限,市场、宾馆在第一象限,超市在第四象限;(3)不是,因为对于同一幅图,直角坐标系的原点、坐标轴方向不同,得到的点的坐标也就不一样.25.(12分)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有500人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是54度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.【解答】解:(1)140÷28%=500(人),故答案为:500;(2)A的人数:500﹣75﹣140﹣245=40(人);补全条形图如图:(3)75÷500×100%=15%,360°×15%=54°,故答案为:54;(4)245÷500×100%=49%,3600×49%=1764(人).26.(14分)阅读下列材料:∵,即,∴的整数部分为2,小数部分为.请你观察上述的规律后试解下面的问题:如果的小数部分为a,的小数部分为b,求的值.【解答】解:∵<,<,∴a=﹣2,b=﹣3,∴=﹣2+﹣3﹣=﹣5.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:a+bbx-aa 45°DBa +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DABFEDCF。