关于数形结合的高考题
数形结合巧解高考题

数形结合巧解高考题引言在高考数学中,有一类常见的题目是要求我们将数学问题与几何图形相结合,通过观察图形特征或者利用几何性质来解决问题。
这种数形结合的方法可以帮助我们更好地理解和应用数学知识,提高解题的效率和准确性。
本文将通过一些典型的高考题目,介绍数形结合的思路和方法,并给出详细的解答过程。
例题1题目描述已知函数f(x)=13x3+ax2+bx+c,其中a,b,c为常数。
若对于任意实数x,都有f(x+1)−f(x)=3x2+5x+2,求a,b,c的值。
解答过程首先观察到题目中给出了函数f(x)的表达式以及关于f(x)的等式。
我们可以利用这些信息来推导出a,b,c的值。
由于等式f(x+1)−f(x)=3x2+5x+2成立对于任意实数x都成立,所以我们可以尝试取特殊值来简化计算。
让我们取x=0,代入等式中得到:f(1)−f(0)=2再取x=1,代入等式中得到:f(2)−f(1)=10通过观察这两个等式,我们发现f(x)的每一项系数都可以通过这些等式来求解。
将f(x)展开得到:f(x)=13x3+ax2+bx+c=13x3+(a−13)x2+(b−a+13)x+(c−b+a3)由于等式成立对于任意实数x 都成立,所以我们可以将x 换成特殊的值来简化计算。
取x =0,代入上述展开式中,得到:c −b +a 3=0 (1) 再取x =1,代入上述展开式中,得到:43+a −23+b −a +13=10 (2) 将(1)带入(2),整理可得:b =−56 (3) 将(1)和(3)带入(2),整理可得:a =76 (4) 将(4)带入(1),整理可得:c =518 (5) 综上所述,a =76,b =−56,c =518。
例题2题目描述已知函数f (x )=ax 2+bx +c 的图像上存在两个不同的点(x 1,y 1)和(x 2,y 2),满足以下条件: 1. x 1+x 2=4 2. y 1+y 2=6 3. x 1y 1+x 2y 2=9求a,b,c 的值。
2018届高考数学(理)解题方法指导:数形结合,直观快捷(含答案)

数形结合 直观快捷一,数形结合思想在解决方程的根或函数零点问题中的应用 构建函数模型并结合其图象研究方程根或函数零点的范围.【例1】 若关于x 的方程|x |x +4=kx 2有四个不同的实数解,则k 的取值范围为________.【答案】⎝⎛⎭⎫14,+∞【解析】当x =0时,显然是方程的一个实数解; 当x ≠0时,方程|x |x +4=kx 2可化为1k =(x +4)|x |(x ≠-4),设f (x )=(x +4)|x |(x ≠-4且x ≠0),y =1k ,原题可以转化为两函数有三个非零交点.则f (x )=(x +4)|x |=()()224040x x x x x x ⎧+>⎪⎨--<⎪⎩的大致图象如图所示, 由图,易得0<1k <4,解得k >14.所以k 的取值范围为⎝⎛⎭⎫14,+∞. 【类题通法】用图象法讨论方程(特别是含参数的指数,对数,根式,三角等复杂方程)的解(或函数零点)的个数是一种重要的方法,其基本思想是先把方程两边的代数式看作是两个熟悉的函数表达式(不熟悉时,需要作适当的变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解(或函数零点)的个数.【对点训练】1.函数f (x )=3-x +x 2-4的零点个数是________.【答案】2【解析】令f (x )=0,则x 2-4=-⎝⎛⎭⎫13x ,分别作出函数g (x )=x 2-4,h (x )=-⎝⎛⎭⎫13x 的图象,由图可知,显然h (x )与g (x )的图象有2个交点,故函数f (x )的零点个数为2.2.(2017·成都一诊)已知函数f (x )是定义在R 上的偶函数,且f (-x -1)=f (x -1),当x ∈[-1,0]时,f (x )=-x 3,则关于x 的方程f (x )=|cos πx |在⎣⎡⎦⎤-52,12上的所有实数解之和为________. 【答案】-7【解析】因为函数f (x )为偶函数,所以f (-x -1)=f (x +1)=f (x -1),所以函数f (x )的周期为2.又当x ∈[-1,0]时,f (x )=-x 3,由此在同一平面直角坐标系内作出函数y =f (x )与y =|cos πx |的图象如图所示.由图象知关于x 的方程f (x )=|cos πx |在⎣⎡⎦⎤-52,12上的实数解有7个. 不妨设x 1<x 2<x 3<x 4<x 5<x 6<x 7,则由图得x 1+x 2=-4,x 3+x 5=-2,x 4=-1,x 6+x 7=0,所以方程f (x )=|cos πx |在⎣⎡⎦⎤-52,12上的所有实数解的和为-4-2-1+0=-7. 二,数形结合思想在求解不等式或参数范围中的应用构建函数模型并结合其图象研究量与量之间的大小关系,求参数的取值范围或解不等式. 【例2】 (2015·全国卷Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)【答案】A【解析】设y =g (x )=f (x )x(x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0. ∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1, 当x <0时,由f (x )>0,得g (x )<0,由图知x <-1, ∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1). 【类题通法】(1)本例利用了数形结合思想,由条件判断函数的单调性,再结合f (-1)=0可作出函数的图象,利用图象即可求出x 的取值范围.(2)求参数范围或解不等式问题经常用到函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上,下位置关系转化为数量关系来解决问题,往往可以避免繁琐的运算,获得简捷的解答.【对点训练】1.设A ={(x ,y )|x 2+(y -1)2=1},B ={(x ,y )|x +y +m ≥0},则使A ⊆B 成立的实数m 的取值范围是________.【答案】[)2-1,+∞【解析】集合A 是一个圆x 2+(y -1)2=1上的点的集合,集合B 是一个不等式x +y +m ≥0表示的平面区域内的点的集合,要使A ⊆B ,则应使圆被平面区域所包含(如图),如直线x +y +m =0应与圆相切或相离(在圆的下方),而当直线与圆相切时有|m +1|2=1,又m >0,所以m =2-1,故m 的取值范围是[2-1,+∞).2.若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.【答案】⎝⎛⎦⎤-∞,12【解析】作出y =|x -2a |和y =12x +a -1的简图,依题意知应有2a ≤2-2a ,故a ≤12.三,数形结合思想在解析几何中的应用构建解析几何模型并应用模型的几何意义求最值或范围.【例3】 (2017·成都二诊)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右顶点分别为A 1,A 2,左,右焦点分别为F 1,F 2,以F 1F 2为直径的圆与双曲线左支的一个交点为P .若以A 1A 2为直径的圆与直线PF 2相切,则双曲线C 的离心率为( )A . 2B . 3C .2D . 5【答案】D【解析】如图所示,设以A 1A 2为直径的圆与直线PF 2的切点为Q ,连接OQ ,则OQ ⊥PF 2.又PF 1⊥PF 2,O 为F 1F 2的中点,所以|PF 1|=2|OQ |=2A .又|PF 2|-|PF 1|=2a ,所以|PF 2|=4A .在Rt △F 1PF 2中,|PF 1|2+|PF 2|2=|F 1F 2|2⇒4a 2+16a 2=20a 2=4c 2⇒e =ca = 5.【类题通法】(1)在解析几何的解题过程中,通常要数形结合,这样使数更形象,更直白,充分利用图象的特征,挖掘题中所给的代数关系式和几何关系式,避免一些复杂的计算,给解题提供方便.(2)应用几何意义数形结合法解决问题需要熟悉常见的几何结构的代数形式,主要有:①比值——可考虑直线的斜率;②二元一次式——可考虑直线的截距;③根式分式——可考虑点到直线的距离;④根式——可考虑两点间的距离.【对点训练】1.已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得 ∠APB =90°,则 m 的最大值为( )A .7B .6C .5D .4 【答案】B【解析】根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m ,因为∠APB =90°,连接OP ,易知|OP |=12|AB |=m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为|OC |= 32+42=5,所以|OP |max =|OC |+r =6,即m 的最大值为6.2.已知P 是直线l :3x +4y +8=0上的动点,PA ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,C 是圆心,则四边形PACB 面积的最小值为________.【答案】2 2【解析】由题意知圆的圆心C (1,1),半径为1,从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形PAC 的面积S △PAC =12·|PA |·|AC |=12|PA |越来越大,从而S 四边形PACB 也越来越大;当点P 从左上,右下两个方向向中间运动,S四边形PACB变小,显然,当点P 到达一个最特殊的位置,即CP 垂直于直线l 时,S 四边形PACB 应有唯一的最小值,此时|PC |=|3×1+4×1+8|32+42=3,从而|PA |=|PC |2-|AC |2=22,所以(S 四边形PACB)min =2×12×|PA |×|AC |=2 2.3.已知抛物线的方程为x 2=8y ,F 是其焦点,点A (-2,4),在此抛物线上求一点P ,使△APF 的周长最小,此时点P 的坐标为________.【答案】⎝⎛⎭⎫-2,12 【解析】因为(-2)2<8×4,所以点A (-2,4)在抛物线x 2=8y 的内部,如图,设抛物线的准线为l ,过点P 作PQ ⊥l 于点Q ,过点A 作AB ⊥l 于点B ,连接AQ , 由抛物线的定义可知△APF 的周长为|PF |+|PA |+|AF |=|PQ |+|PA |+|AF |≥|AQ |+|AF |≥|AB |+|AF |,当且仅当P ,B ,A 三点共线时,△APF 的周长取得最小值,即|AB |+|AF |. 因为A (-2,4),所以不妨设△APF 的周长最小时,点P 的坐标为(-2,y 0), 代入x 2=8y ,得y 0=12,故使△APF 的周长最小的点P 的坐标为⎝⎛⎭⎫-2,12.。
高考数学运用数形结合的思想方法解题专项练习(含答案解析)

高考数学运用数形结合的思想方法解题专项练习(含答案解析)一、单选题1.(2023春·江苏盐城·高三盐城中学校考)若直线():40l x m y +−=与曲线x =有两个交点,则实数m 的取值范围是( )A .0m <<B .0m ≤<C .0m <≤D .0m ≤【答案】B【解析】x =()0,0,半径为2的圆在y 轴以及右侧的部分,如图所示:直线():40l x m y +−=必过定点()0,4, 当直线l 与圆相切时,直线和圆恰有一个交点,2=,结合直线与半圆的相切可得m =当直l 的斜率不存在时,即0m =时,直线和曲线恰有两个交点, 所以要使直线和曲线有两个交点,则0m ≤故选:B.2.(2023春·湖北随州·高三随州市曾都区第一中学校考阶段练习)已知x ,y 是实数,且22410x y x +−+=,则21y x ++的最大值是( )A B .116C .336D 【答案】D【解析】方程可化为()223x y −+=,表示以()2,021y x ++的几何意义是圆上一点与点A ()1,2−−连线的斜率,设21k y x =++,即()21y k x +=+,当此直线与圆相切时,斜率最大或最小,当切线位于切线AB 时斜率最大.=k =,所以21y x ++故选:D .3.(2023春·陕西渭南·高一统考)已知函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()24f x x x =−.若函数()()()R g x f x m m =+∈,则函数()g x 的零点个数不可能是( )A .1B .2C .3D .4【答案】A【解析】函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()224(2)4f x x x x =−=−−,作出()f x 的图像如图:,故当0m =时,()()g x f x =有3个零点;当0m <或4m =时,()()g x f x m =+的图像与x 轴有两个交点,则函数有2个零点; 当04m <<时,()()g x f x m =+的图像与x 轴有4个交点,则函数有4个零点;由于()()g x f x m =+也为偶函数,结合()f x 图像可知,()()g x f x m =+不可能有1个零点, 故选:A4.(2023春·陕西西安·高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨−<⎩, 若函数()()()g x f x f x =−−,则函数()g x 的零点个数为( ) A .1 B .3 C .4 D .5【答案】D【解析】当0x >时,0x −<,()3f x x −=当0x <时,0x −>,()e xf x −−=()()()3e ,00,0e 3,0x x x x g x f x f x x x x −⎧−>⎪∴=−−==⎨⎪+<⎩,()()()()g x f x f x g x −=−−=−,且定义域为R ,关于原点对称,故()g x 为奇函数,所以我们求出0x >时零点个数即可,(0,)3e x g x x x =−>,()3e 0x g x '=−>,令()3e 0x g x '=−>,解得0ln3x <<,故()g x 在()0,ln 3上单调递增,在(ln3,)+∞单调递减,且(ln3)3ln330g =−>,而()226e 0g =−<,故()g x 在(ln 3,2)有1零点,1311e 03g ⎛⎫=−< ⎪⎝⎭,故()g x 在1(,ln 3)3上有1零点,图像大致如图所示:故()g x 在()0,∞+上有2个零点,又因为其为奇函数,则其在(),0∞−上也有2个零点,且()00g =,故()g x 共5个零点, 故选:D.5.(2023春·黑龙江哈尔滨·高一哈尔滨三中校考阶段练习)若函数()f x 的定义域为(),1f x −R 为偶函数,当1x ≥−时,()31xf x −=−,则函数()()12g x f x =−的零点个数为( )A .0B .1C .2D .4【答案】D【解析】令310x −−≥解得0x ≤,令310x −−<解得0x >, 所以当1x ≥−时,()11,1033111,03xxxx f x x −⎧⎛⎫−−≤≤⎪ ⎪⎪⎝⎭=−=⎨⎛⎫⎪−+> ⎪⎪⎝⎭⎩, ()1f x −为偶函数,所以()1f x −的图像关于y 轴对称,所以()f x 的图像关于直线=1x −轴对称, 故作出()f x 的图像如下,令()()102g x f x =−=,即()12f x =, 由图像可知,()f x 的图像与12y =的图像共有四个交点, 所以函数()()12g x f x =−的零点个数为4个.故选:D.6.(2023·山东潍坊·统考模拟预测)已知函数()f x 是定义域为R 的偶函数,且(1)f x −是奇函数,当01x 剟时,有()f x =()(2021)y f x k x =−−的零点个数为5,则实数k 取值范围是( ) A .15<2<1kB .16<3<1kC k k =D .k <k 【答案】C【解析】∵偶函数()f x ,()()f x f x ∴−=,(1)f x −是奇函数,得(1)(1)f x f x −=−−−,即 ()(2)f x f x =−−−,(2)()f x f x −−−=−,得4T =,()(2021)0f x k x −−=,即()y f x =与(2021)y k x =−的图像交点的个数,因为4T =,即为()y f x =与(1)y k x =−的图像交点的个数,因为()f x =k 应该在1k 与2k 之间或为3k ,213k k k ==k k =故选:C.7.(2023·全国·高三专题练习)已知函数()()ln2,01ln 2ln 2,12xx f x x x ⎧<<⎪=⎨−+≤<⎪⎩,若存在02a b c <<<<使得()()()f a f b f c ==,则111ab bc ca++的取值范围是( ) A .20,93⎛⎫⎪⎝⎭B .20,3⎛⎫+∞ ⎪⎝⎭C .∞⎫+⎪⎪⎣⎭ D .⎫⎪⎪⎣⎭【答案】A【解析】∵()()ln 2ln2ln 22x x ⎡⎤−+=−⎣⎦,∴ln 2y x =与()ln 2ln2y x =−+的图像关于直线1x =对称,作出()f x 的大致图像如图所示,易知2b c +=,由ln2ln2a b =,即ln 2ln 2a b −=,ln 40ab =,得14ab =, ∵112b <<,∴11124a<<,得1142a <<,∴()()421621112181244a a a a b c a c ab bc ca abc a a+++++++====−−. 设81t a =−, 则()1,3t ∈,111117184t ab bc ca t ⎛⎫++=++ ⎪⎝⎭. 17t t+≥=t 故当()1,3t ∈时,令()1718h t t t +=+,()h t 单减,()()80136,33h h ==, 故1172018,943t t ⎛⎫⎛⎫++∈ ⎪ ⎪⎝⎭⎝⎭. 故选:A 二、多选题8.(2023·全国·高三专题练习)已知1F ,2F 是双曲线()2222:10,0x yE a b a b−=>>的左、右焦点,过1F 作倾斜角为30的直线分别交y 轴与双曲线右支于点,M P ,1PM MF =,下列判断正确的是( )A .2160PF F ∠=,B .2112MF PF =C .ED .E的渐近线方程为y =【答案】BCD【解析】如下图所示,因为1PM MF =,即M 为1PF 中点,O 为12F F 中点,所以2//OM PF ,因为12OM F F ⊥,所以212PF F F ⊥,所以212PF F π∠=,2112MF PF =,A 错误,B 正确; 由212PF F F ⊥知:22b PF a=,又122F F c =,1230PF F ∠=,2c =)222c a ac −=220e −,解得:e =C 正确;所以==c e a 223c a =,所以22222b c a a =−=,所以ba= 所以E 的渐近线方程为y =,D 正确.故选:BCD .9.(2023·全国·高三专题练习)已知直线l 过抛物线2:8C y x =的焦点F l 与抛物线交于,P Q 两点(P 在第一象限),以,PF QF 为直径的圆分别与y 轴相切于,A B 两点,则下列结论正确的是( ) A .32||3PQ =B .AB =C .若M 为抛物线C 上的动点,(2,1)N ,则min (||||)4MF MN +=D .若0(,M x 为抛物线C 上的点,则9MF = 【答案】ABC【解析】设直线PQ 的方程为:y x ﹣2),与28y x =联立整理可得:3x 2﹣20x +12=0,解得:x 23=或6,则P (6,,Q (23,;所以|PQ |=623++4323=,选项A 正确;因为F (2,0),所以PF ,QF 的中点分别为:(4,,(43,,所以A (0,,B (0,,所以|AB =, 选项B 正确;如图M 在抛物线上,ME 垂直于准线交于E ,可得|MF |=|ME |, 所以|MF |+|MN |=|ME |+|MN |≥NE =2+2=4,当N ,M ,E 三点共线时, |MF |+|MN |最小,且最小值为4,选项C 正确;对于选项D ,若0(M x 为抛物线C 上的点,则05x =,又4p =, 所以072pMF x =+=,选项D 错误. 故选:ABC.10.(2023春·河南·高三校联考)在三棱锥A BCD −中,平面ABD ⊥平面BCD ,BD CD ⊥,2BD CD ==,ABD △为等边三角形,E 是棱AC 的中点,F 是棱AD 上一点,若异面直线DE与BF AF 的值可能为( ) A .23B .1C .43D .53【答案】AC【解析】由ABD △为等边三角形,取BD 的中点O ,连接AO ,则AO BD ⊥ 又平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD = 所以AO ⊥平面BCD ,由BD CD ⊥过O 作与CD 平行的直线为y 轴,分别以,OB OA 为,x z 轴建立如图所示的空间直角坐标系,因为2BD CD ==,则()1,0,0B ,()()(1,0,0,1,2,0,D C A −−,所以12E ⎛− ⎝⎭.设()F a ,则12DE ⎛= ⎝⎭,()BF a =−,则28=13a =−或23a =−, 故1233AF AD ==或2433AF AD ==.故选:AC11.(2023秋·福建三明·高一福建省宁化第一中学校考阶段练习)已知G 为ABC 的重心,60BAC ∠=︒,2AB AC ⋅=,则||AG uuu r的可能取值为( )A .23B .1CD .32【答案】CD【解析】如图,G 是ABC 的重心,记,,AB c AC b AB a ===, 则2211()()3323AG AD AB AC AB AC ==⨯+=+, 222222111()(2)(4)999AG AB AC AB AB AC AC b c =+=+⋅+=++,又1cos6022AB AC bc bc ⋅=︒==,即4bc =,所以2228b c bc +≥=,当且仅当2b c ==时等号成立,所以214(84)93AG ≥⨯+=.即233AG ≥CD 满足. 故选:CD .12.(2023春·湖北黄冈·高三校考开学考试)已知ABC 的重心为G ,过G 点的直线与边AB ,AC 的交点分别为M ,N ,若AM MB λ=,且AMN 与ABC 的面积之比为920,则λ的可能取值为( )A .43B .32C .53D .3【答案】BD【解析】如图,()AM MB AB AM λλ==−,1AM AB λλ∴=+,即1AB AM λλ+=,设AC t AN =,则11()333tAG AB AC AM AN λλ+=+=+, M G N 、、三点共线,1=133t λλ+∴+,12t λ∴=−, 所以12AC AN λ⎛⎫=− ⎪⎝⎭,AMN ∴与ABC 的面积之比为920,191sin sin 2202AM AN A AB AC A ∴=⨯⨯, 即112029λλλ+⎛⎫⎛⎫−=⎪⎪⎝⎭⎝⎭,化简得22990λλ−+=,解得32λ=或3. 故选:BD13.(2023春·湖南长沙·高三长沙一中校联考)在三维空间中,定义向量的外积:a b ⨯叫做向量a 与b 的外积,它是一个向量,满足下列两个条件:①()a a b ⊥⨯,()b a b ⊥⨯,且a ,b 和a b ⨯构成右手系(即三个向量的方向依次与右手的拇指、食指、中指的指向一致,如图所示);②a b ⨯的模sin ,a b a b a b ⨯=,(,a b 表示向量a ,b 的夹角). 在正方体1111ABCD A B C D −中,有以下四个结论,正确的有( )A .11AB AC AD DB ⨯=⨯ B .111AC A D ⨯与1BD 共线C .AB AD AD AB ⨯=⨯ D .6BC AC ⨯与正方体表面积的数值相等【答案】ABD【解析】对于A ,设正方体的棱长为1,在正方体中1,60AB AC =︒,则111sin ,2AB AC AB AC AB AC ⨯===, 因为11//BD B D ,且1160AD B ∠=︒,所以1,120AD DB =︒,所以111sin ,2AD DB AD DB AD DB ⨯=== 所以11AB AC AD DB ⨯=⨯,所以A 正确;对于B ,1111AC B D ⊥,111AC BB ⊥,1111B B B D B ⋂=,111,B B B D ⊂平面11BB D D ,11AC ⊥平面11BB D D ,因为1BD ⊂平面11BB D D ,所以111BD AC ⊥,同理可证11BD A D ⊥, 再由右手系知,111AC A D ⨯与1BD 同向,所以B 正确;对于C ,由a ,b 和a b ⨯构成右手系知,a b ⨯与b a ⨯方向相反, 又由a b ⨯模的定义知,sin ,sin ,a b a b a b b a a b b a ⨯===⨯, 所以a b ba ⨯=−⨯,则AB AD AD AB ⨯=−⨯,所以C 错误; 对于D ,正方体棱长为a ,266sin 456BC AC BC AC a a ⨯=⋅︒=⨯, 正方体表面积为26a ,所以D 对. 故选:ABD .三、填空题14.(2023·全国·高三专题练习)已知函数243,0()41,01x x x f x x x ⎧++≤⎪=⎨−>⎪+⎩.若关于x 的方程()()()2[]2110f x m f x m +−−+=有6个不同的实数根,则m 的取值范围___________.【答案】7,5⎛− ⎝⎭【解析】因为243,0()41,01x x x f x x x ⎧++≤⎪=⎨−>⎪+⎩,所以当0x ≤时,()243f x x x =++开口向上,对称轴为2x =−,()()min 21f x f =−=−,两零点为1,3x x =−=−;当0x >时,()411f x x =−+,则()f x 在()0,∞+上单调递减,零点为3x =,且()1f x >−; 由此作出()f x 的图像如图,.令()t f x =,则当13t −<<时,()t f x =有三个实数根,因为()()()2[]2110f x m f x m +−−+=有6个不同的实数根,所以()22110t m t m +−−+=必须有两个不等实根12,t t ,且()21,1,3t t ∈−,令()()2211g t t m t m =+−−+,则()()103021132Δ0g g m ⎧−>⎪>⎪⎪⎨−−<−<⎪⎪>⎪⎩,即()()()()212110932110621221410m m m m m m m ⎧−−−+>⎪+−−+>⎪⎨−<−<⎪⎪−−−+>⎩,解得75m −<<7,5m ⎛∈− ⎝⎭.故答案为:7,5⎛− ⎝⎭. 15.(2023春·全国·高一期末)已知函数241,1()log 3,1xx f x x x ⎧−⎪=⎨+>⎪⎩…集合21()2()02M x f x t f x t ⎧⎫⎛⎫=−++=⎨⎬ ⎪⎝⎭⎩⎭∣,若集合M 中有3个元素,则实数t 的取值范围为________.【答案】{|0t t =或1}2t ≥【解析】令()f x m =,记21()(2)2g m m t m t =−++的零点为12,m m ,因为集合M 中有3个元素,所以()f x 的图像与直线12,y m y m ==共有三个交点,则,12001m m =⎧⎨<<⎩或12101m m =⎧⎨<<⎩或12001m m >⎧⎨<<⎩当10m =时,得0=t ,212m =,满足题意; 当11m =时,得12t =,212m =,满足题意;当12001m m >⎧⎨<<⎩时,(0)01(1)1202g t g t t =>⎧⎪⎨=−−+<⎪⎩,解得12t >. 综上,t 的取值范围为{|0t t =或1}2t ≥.故答案为:{|0t t =或1}2t ≥16.(2023秋·黑龙江绥化·高一校考期末)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知30,12=︒=A b ,若ABC 有两解,写出a 的一个可能的值为__________.【答案】7(满足(612)a ∈,均可,答案不唯一) 【解析】由于满足条件的ABC 有两个,则sin b A a b <<,即612a <<.故答案为:7(满足(612)a ∈,均可,答案不唯一).17.(2023·海南·统考模拟预测)已知函数()314f x x m π⎛⎫=++− ⎪⎝⎭在3,04π⎡⎤−⎢⎥⎣⎦上有3个零点1x ,2x ,3x ,其中123x x x <<,则1232x x x ++=______. 【答案】53π−【解析】令()0f x =314x m π⎛⎫++= ⎪⎝⎭,故()314f x x m π⎛⎫++− ⎪⎝⎭的零点为函数()314g x x π⎛⎫++ ⎪⎝⎭与函数y =m 交点的横坐标,作出函数g (x )在3,04π⎡⎤−⎢⎥⎣⎦上的大致图像:令3()42x k k πππ+=+∈Z ,解得()123k x k ππ=+∈Z , 令1k =−,得4x π=−,则由图知2322=4x x ππ⎛⎫+=⨯−− ⎪⎝⎭,令2k =−,得712x π=−,则由图知12772=126x x ππ⎛⎫+=⨯−− ⎪⎝⎭, 故123752263x x x πππ++=−−=−. 故答案为:53π−﹒18.(2023春·辽宁沈阳·高三沈阳市第一二〇中学校考阶段练习)已知双曲线22:14x y C m −=与直线2y x =无交点,则m 的取值范围是_____. 【答案】(]0,16【解析】依题意,由22:14x y C m −=可得0m >,双曲线C 的渐近线方程为y =,因为双曲线C 与直线2y x =无交点,所以直线2y x =应在两条渐近线上下两部分之间,2≤,解得016m <≤,即(]0,16m ∈. 故答案为:(]0,16..。
高考数学数形结合问题

第五十二讲数形联合A组一、选择题1. 已知函数 f(x)= x2+ e x-1(x<0) 与 g(x)= x2+ ln( x+ a)的图象上存在对于y 轴对称的点,则 a 2的取值范围是 ()A.-∞,1-∞,e) C.-1, eD.- e,1e B.(e e答案: B分析:由题意可得,当x>0 时, y= f(- x)与 y= g(x)的图象有交点,即g(x)= f(- x)有正解,即 x2+ln( x+ a) = (-x)2+ e-x-12有正解,即 e-x- ln(x+ a)-12= 0 有正解,令 F(x)= e-x- ln(x1-x-1-x1+a)-,则 F′(x)=- e<0,故函数 F(x)= e- ln(x+ a)-在 (0,+∞)上是单一递减2x+ a2的,要使方程g(x)= f(- x)有正解,则存在正数 x 使得 F(x) ≥0,即 e-x-ln( x+ a)-1≥0,所以2e x1 e x1x 在(0,+∞)上单一递减,所以e 011a≤e2x ,又y= e2a< e20= e2,选B.2. 函数 f(x)= 1 x 2 (| x |1),假如方程 f(x)=a 有且只有一个实根,那么 a 知足 ( )| x |(| x |1)A. a<0B.0≤ a<1C.a=1D.a>1答案: C分析:由图知 a=1 时,图象只有一个交点,应选 C.3.已知圆 C:( x-3)2+( y-4)2=1和两点 A(-m,0),B( m,0)( m>0),若圆 C上存在点 P,使得∠ APB=90°,则 m的最大值为()A.7B.6C.5D.4答案: B分析 . 依据题意,画出表示图,以下图,则圆心 C 的坐标为 (3,4) ,半径 r = 1,且 | AB | =2m .1因为∠ APB = 90°,连结 OP ,易知 | OP |= 2| AB | =m .要求 m 的最大值,即求圆 C 上的点 P 到原点 O 的最大距离 .22因为 | OC | = 3 + 4 = 5,所以 | OP |max = | OC | + r = 6,1224. 设平面点集 A = {( x ,y )|( y - x ) · ( y -x ) ≥ 0} , B = {( x , y )|( x - 1) +( y - 1) ≤1} ,则 A∩B 所表示的平面图形的面积为 ( ) 334πA. 4πB.5πC.7πD.21答案: D 分析:因为对于会合A , ( y - x ) y - x ≥ 0,y - x ≥0,y - x ≤0,所以1或1其表示的平面地区如图 .y -x ≥ 0y - x ≤ 0,对于会合 B , ( x - 1) 2+ ( y -1) 2≤ 1 表示以 (1,1) 为圆心, 1 为半径的圆及其内部地区,其面积为π .12由题意意知 A ∩ B 所表示的平面图形为图中暗影部分,曲线y = x 与直线 y =x 将圆 ( x -1) +( - 1) 2=1 分红1, 2, 3,4四部分 . 因为圆 ( x - 1)2+( y- 1) 2=1 与 y = 1 的图象都对于直ySSSSx线 y = x 对称,进而 S =S , S = S ,而 S + S + S + S =π,所以 S=S +S = π暗影 2.1234123424二、填空题5. 已知函数 y = f ( x )( x ∈ R) ,对函数 y = g ( x )( x ∈ I ) ,定义 g ( x ) 对于 f ( x ) 的“对称函数” 为函数 y= h( x)( x∈ I ),y= h( x)知足:对随意x∈ I ,两个点( x,h( x)),( x,g( x))对于点( x,f ( x))对称.若 h( x)是 g( x)=4-x2对于f ( x) = 3x+b的“对称函数” ,且h( x)> g( x) 恒成立,则实数 b的取值范围是 ________.答案: (210,+∞ )分析由已知得h x+ 4-x2) = 6+ 2- 4-x 2(x)> ()=3+,所以 (.2x b h x x b h g x恒成立,即 6x +2- 4-2> 4-x2,3 +> 4-x2恒成立 .b x x b在同一坐标系内,画出直线y=3x+ b 及半圆 y=2如图所4-x(b示) ,可得>2,即b>2 10,故答案为 (2 10,+∞ ). 10x2y26.椭圆a2+b2= 1( a>b>0) 的左、右极点分别是A,B,左、右焦点分别是 F1,F2,若| AF1|,| F1F2 | , | F1B| 成等比数列,则此椭圆的离心率为________.【分析】1121122∵ | AF| =a-c,|FF|= 2c, | F B| =a+c,且三者成等比数列,则| FF|11222c5=| AF| · | F B| ,即 4c=( a-c) · ( a+c) ,得a= 5c,∴ e=a=5.【答案】5 5三、解答题7. 已知函数f (x) = 2lnx-x2+( ∈R).ax a(1) 当=2时,求f (x) 的图象在x= 1处的切线方程;a(2) 若函数g( x)= f (x)-ax+ m在1, e上有两个零点,务实数m的取值范围.e22解: (1)当 a=2时, f( x) = 2ln x-x+ 2x,f′ ( x) =x- 2x+2,切点坐标为 (1 , 1),切线的斜率k= f ′(1)=2,则切线方程为y-1=2( x-1),即 y=2x-1.(2)g( x)=2ln x- x2+ m,2- 2(x+ 1)(x- 1)则 g′( x)=x-2x=x.1∵ x∈e,e,∴当 g′( x)=0时, x=1.1当 <x<1 时,g′( x)>0 ;e当 1<x<e 时,g′ ( x)<0.故 g ( x ) 在 x = 1 处获得极大值 g (1) = m - 1.112121 1又 g e = m - 2- e 2, g (e) = m + 2- e , g (e) - g e = 4- e + e 2<0,则 g (e)< g e ,1∴ g ( x ) 在 , e 上的最小值是 g (e) . e1g ( x ) 在, e 上有两个零点的条件是eg ( 1)= m - 1>0,11 g e = m - 2-e 2≤ 0,1解得 1<m ≤ 2+e 2 ,1∴实数 m 的取值范围是1,2+ e 2 .8. 已知函数 f(x)的图象是由函数g(x)=cos x 的图象经以下变换获得:先将g(x)图象上全部点π的纵坐标伸长到本来的2 倍 (横坐标不变 ),再将所获得的图象向右平移2个单位长度 .(1) 求函数 f(x)的分析式,并求其图象的对称轴方程;(2) 已知对于 x 的方程 f( x) +g( x)=m 在 [0,2 π)内有两个不一样的解α, β.2m 2 ①务实数m 的取值范围;②证明: cos(α- β)=- 1.5解 法一 (1) 将 g(x)= cos x 的图象上全部点的纵坐标伸长到本来的2 倍(横坐标不变 )获得 y=2cos x 的图象,再将 y =2cos x 的图象向右平移π y = 2cos x -π 个单位长度后获得的图象,22故 f(x)= 2sin x.进而函数 f(x)= 2sin x 图象的对称轴方程为πx = k π+(k ∈ Z ).2(2) ① f(x)+g(x)= 2sin x + cos x = 52sin x + 1cos x = 5sin(x + φ)55此中 sin φ= 1, cos φ=255.依题意, sin(x + φ)= m在 [0,2π)内有两个不一样的解α, β,当且仅当m< 1,故 m 的取值55范围是 (- 5, 5).②证明 因为 α, β是方程5sin( x + φ)=m 在 [0,2π)内的两个不一样的解。
运用数形结合法巧解高考三角函数问题

(x 詈 丌 k } cl 十 ∈ ) { k 詈,z
( {I 1+ <x kT D) 2 T J Xk <21
解 .x = f ) (
解 : m=ixn cs , ‘n= . 令 s .: ox 则m + 一1 n
由 直线 2 I y 0 m— — = 与圆m + 一 1 公 共 点 , : I n= 有 则
2 一 … 7 、 .
D
4 3
I 1
24
图1
Hale Waihona Puke 已知函数fx : /3s x CS , ∈R, () () 、 i — OX x n 若fx
≥ 1则 x , 的取 值 范 围为 ( ) .
( {ll+ ≤ x k l , A)xkv ≤  ̄+ vkEZ l
( ) l r [ x k + k∈ ) B {2 r r x k + r≤ ≤2 订 订, z
2
2 ' 图像 可 知 )由
] n≥ 的 解 是 t
2
6
.
t f一7 ) f0 得一 三 × — — : l 解 得 a2Xf . h ( 一 :( ) 1 " 二 — — +1 一 一 a — :" /
, ,
3
2
2
2
所 以在 R 的s t 的解 是 上 i ̄ n>
.
J 的 最 大 值 和 最 小值 . -
解 :( ) a ox ix c sx s —= ̄ sn x c s x fx = c s s — o‘+ i x a i2 — o 2 n n
2
在 同 一 坐 标 系 内作 出 函 数 y s x与y 的 图 像 ( ( =i - : n 女 1
高考数学复习----《数形结合》典型例题讲解

高考数学复习----《数形结合》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知函数()2x f x x =+,2()log g x x x =+,()2sin h x x x =+的零点分别为a ,b ,c 则a ,b ,c 的大小顺序为( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>【答案】D【解析】由()2sin 0h x x x =+=得0x =,0c ∴=,由()0f x =得2x x =−,由()0g x =得2log x x =−.在同一平面直角坐标系中画出2x y =、2log y x =、y x =−的图像, 由图像知a<0,0b >,a c b ∴<<.故选:D例2、(2023·江苏·高三专题练习)已知正实数a ,b ,c 满足2e e e e c a a c −−+=+,28log 3log 6b =+,2log 2c c +=,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B【解析】22e e e e e e e e c a a c c c a a −−−−⇒+=+−=−,故令()e e x x f x −=−,则()e e c c f c −=−,()e e a a f a −=−.易知1e ex x y −=−=−和e x y =均为()0,+∞上的增函数,故()f x 在()0,+∞为增函数. ∵2e e a a −−<,故由题可知,2e e e e e e c c a a a a −−−−=−>−,即()()f c f a >,则0c a >>.易知222log 3log log 2b =+>,2log 2c c =−,作出函数2log y x =与函数2y x =−的图像,如图所示,则两图像交点横坐标在()1,2内,即12c <<,c b ∴<,a cb ∴<<.故选:B .例3、(2023·全国·高三专题练习)已知e ππe e ,π,a b c ===,则这三个数的大小关系为( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<【答案】A【解析】令()()ln ,0x f x x x =>,则()()21ln ,0x f x x x −'=>, 由()0f x ¢>,解得0e x <<,由()0f x '<,解得e x >,所以()()ln ,0x f x x x=>在()0,e 上单调递增,在()e,+∞上单调递减; 因为πe >,所以()()πe f f <,即ln πln e πe<, 所以eln ππln e <,所以e πln πln e <,又ln y x =递增,所以e ππe <,即b a <;ee ππ=⎡⎤⎢⎥⎣⎦, 在同一坐标系中作出xy =与y x =的图像,如图:由图像可知在()2,4中恒有x x >, 又2π4<<,所以ππ>, 又e y x =在()0,∞+上单调递增,且ππ>所以e πe πe π=⎡⎤>⎢⎥⎣⎦,即b c >;综上可知:c b a <<,故选:A例3、(2022春·四川内江·高三校考阶段练习)最近公布的2021年网络新词,我们非常熟悉的有“yyds ”、“内卷”、“躺平”等.定义方程()()f x f x '=的实数根x 叫做函数()f x 的“躺平点”.若函数()lng x x =,()31h x x =−的“躺平点”分别为α,β,则α,β的大小关系为( )A .αβ≥B .αβ>C .αβ≤D .αβ<【答案】D【解析】∵()ln g x x =,则()1g x x'=, 由题意可得:1ln a α=, 令()1ln G x x x=−,则α为()G x 的零点, 可知()G x 在定义域()0,∞+内单调递增,且()()1110,e 10eG G =-<=->, ∴()1,e α∈;又∵()31h x x =−,则()23h x x '=, 由题意可得:3213ββ−=,令()3231H x x x =−−,则β为()H x 的零点,()()23632H x x x x x '=−=−,令()0H x '>,则0x <或2x >,∴()H x 在(),0∞−,()2,+∞内单调递增,在()0,2内单调递减,当(),2x ∈−∞时,()()010H x H ≤=−<,则()H x 在(),2−∞内无零点, 当[)2,x ∞∈+时,()()310,4150H H =−<=>,则()3,4β∈, 综上所述:()3,4β∈;故αβ<.故选:D.。
巧用数形结合法解答高考题

中学 教 学 参 考
解 题方 法与技 巧
从 高 考试 题 看 向量 数 量 积 的求解 方法
D + _ 古 ≥ 1
图 2阴影 部 分 ) . 由图 可 知尼 ∞≤ 尼 r M ≤走 , 容易求
/ 0
. +2=O X- -1
\
解: 由圆参 数方程 易 知 , 点 M 是 以原 点 ( O , 0 ) 为 圆 心, 1 为半径 的圆上 的点 , 从而 问题转化 为判断直线 +
f ( x 。 ) ) 、 0( o , 0 ) 连 线 的斜 率 , 即c —k c c . 作 图易知 忌 < 忌 ∞< , 即口 <6 <c , 故选 三、 把数量关 系转化为两点 间距离问题 涉 及 求 有 关 干 的值 时, 可 把
涉及 求 有 关
的值 时 , 可 把
看 做 是 两 点
A. 口 。 +b ≤1
: : : 口
连线 的斜率 , 由约束 条件
“
z— +2 ≤0 , z ≥1 , +
) .
B. a +b 2 ≥1
一
7 ≤0 ” 作 出 可行 域 ( 如
/ t
. r ●
●
\
\ \
+v 一7=]
C . + 古 ≤ 1
A( z , ) 、 B( a , 6 ) 连线 间的斜率 , 从 而把代数 问题转换 为 几何图形问题.
、 /) 、 B( a , 6 ) 间的
距离 , 从 而 把 代 数 问 题 转 换 为 几何 图 形 问题 .
4 3
E . 瑚 i l : z x c k l k @1 6 3 ・ c o m
r s i n a ( 表示圆心为 ( 口 , 6 ) , 半径 为 r 的 圆) ; 标准方程 或普 通方程 的变 形 : Y —b 一 ̄ / 一( z —n ) ( 表 示 圆心 为 ( n ,
例谈数形结合在高考题中的应用

(一 ) (一 ) o 你 O的 丢 ÷ +吉 丢 _, 求F 方 请
程:
—
何直 观 , 使数 量关 系 的精 确 刻 划 与 空 间形 式 的直
观形 象 巧妙 、 和谐 地结 合 在一 起 , 让抽 象思 维 与形 象思 维有 机地 相 互配 合 , 通过 “ ” “ ”的巧 妙 数 与 形 互 化 , 问题 化难 为 易 、 繁为 简地 获得 解决 . 使 化 例1 ( 海 ・ 上 理)方 程 z +√ 一 1 O的 2 一
i ,
线F方 . “ 一 ) (一 ) o的 程 填( z 吉 丢 故 ÷ +
注 以形 助 数 , 画
) ,
1 2 … ,) , , 是 均在 直 线 — 的 同侧 , 则实 数 a的取
值 范 围是
程 的关 系.
.
考点 此题 重 点考 查 函数 的 图象 、 函数 与方
解 方 程 z +
一
草 图 如 图 2所 示 . 交 若 换 图 中 的点 B 与 C, 则
.
) 1 ,
只 需要 交换 点 E与 F 即
可.因 为 交 换 前 图 中直
_ ●
尸
‘ … . 一
4一 O的各 个 实根 z ,
2 … , 忌≤ 4 , z( )也 可
2O O 9年 第 8期
中 学 数 学 月 刊
・ 4 ・ 5
例谈数形结合在高 考题中的应用
彭 善琪 ( 江苏省 东 台市第 一 中学 2 4 o ) 2 2 0
数 形 结合 就 是 根 据 数 学 问 题 的条 件 和 结 论 之 间 的内在联 系 , 既分 析其 代数 意 义 , 又揭 示其 几
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 题目:一个正方形的边长为2cm,一条与其边平行的线段将该正方形分成两个小正方形和两个等边三角形。
求线段的长度。
答案:线段的长度为2√2 cm。
2. 题目:一个圆的半径为3cm,在圆的内部画一个正方形,且正方形的四个顶点分别位于圆的四个切点上。
求正方形的面积。
答案:正方形的面积为18 cm²。
3. 题目:一个长方体的长、宽、高分别为3cm、4cm和5cm,将它剖开后得到的截面是一个等腰梯形,底边长度为6cm,顶边长度为2cm。
求截面的高度。
答案:截面的高度为3cm。
4. 题目:一个球的体积为36πcm³,将其剖开后得到的截面是一个等边三角形。
求球的半径。
答案:球的半径为3 cm。
5. 题目:一个正方体的表面积为96 cm²,将其剖开后得到的截面是一个正方形。
求正方体的边长。
答案:正方体的边长为4 cm。
6. 题目:一个圆柱的底面积为16πcm²,高度为10 cm。
将它剖开后得到的截面是一个等腰梯形,底边长度为8cm,顶边长度为2cm。
求圆柱的半径。
答案:圆柱的半径为2 cm。
7. 题目:一个圆锥的底面积为9πcm²,高度为12 cm。
将它剖开后得到的截面是一个等边三角形。
求圆锥的半径。
答案:圆锥的半径为3 cm。
8. 题目:一个正方体的表面积为150 cm²,将其剖开后得到的截面是一个等边三角形。
求正方体的边长。
答案:正方体的边长为5 cm。
9. 题目:一个圆柱的底面积为25πcm²,高度为8 cm。
将它剖开后得到的截面是一个正方形。
求圆柱的半径。
答案:圆柱的半径为2 cm。
10. 题目:一个圆锥的底面积为16πcm²,高度为6 cm。
将它剖开后得到的截面是一个正方形。
求圆锥的半径。
答案:圆锥的半径为2 cm。