计算机图形学与动画技术
第六章_计算机动画

左图显示一个被贴了标示物(白色小球)的演员在 场地中跑步,右图是Vicon370系统所采用的特殊红 外照相机,只捕捉白色标示物。
3、二维动画软件
Animator Studio Flash Ulead Gif Animator
Animation Stand二维卡通软件
Animation Stand是一个流行的非常二维卡通 软件,全球最大卡通动画公司如沃尔特、华纳 兄弟、迪斯尼和Nckelodeon,皆曾采用 Animation Stand作为二维卡通动画软件,用 于生产最原本的图样、独创的和完全动画化的 系列片,为娱乐业的商业应用。
2、二维动画的制作过程
(1) 制作声音对白和背景音乐 (2) 制作关键画面 (3) 绘制动画画面 (4) 复制到胶片上 (5) 上色 (6) 核实检查动画画稿 (7) 拍摄电影胶片 (8) 后期制作
三维动画的制作过程
在动画技术当中,最有魅力并应用最广的当然是三 维动画。因为我们的世界是立体的,只有三维才让 我们感到更真实。二维动画可以看成三维动画的一 个分支,它的制作难度及对电脑性能的要求都远远 低于三维动画。 三维动画之所以被称作计算机生成动画,是因为参 加动画的对象不是简单地由外部输入的,而是根据 三维数据在计算机内部生成的,运动轨迹和动作的 设计也是在三维空间中考虑的。 计算机3D动画的制作过程主要有建模、编辑质材、 贴图、灯光、动画编辑和渲染几个步骤。
动画原理
● 早期的动画 ● 视觉效果
观看动画的机器1906
教学进程
什么是动画
动画是通过连续播放一系列画面,给视觉造成连续变化 的图画。 基本原理与电影、电视一样,都是视觉原理。医学已证 明,人类具有“视觉暂留”的特性,就是说人的眼睛看到 一幅画或一个物体后,在1/24秒内不会消失。利用这一 原理,在一幅画还没有消失前播放出下一幅画,就会给 人造成一种流畅的视觉变化效果。 电影采用了每秒24幅画面的速度拍摄播放,电视采用了 每秒25幅(PAL制)或30幅(NSTC制)画面的速度拍摄 播放。如果以每秒低于24幅画面的速度拍摄播放,就会 出现停顿现象。
电脑动画发展史

为动画插上翅膀——电脑动画发展史电脑动画是计算机图形学和艺术相结合的产物,它给人们提供了一个充分展示个人想像力和艺术才能的新天地。
目前, 电脑动画已经广泛应用于影视特技、商业广告、游戏、计算机辅助教育等领域。
美国是最早发展电脑动画的地方,在上个世纪七十年代末便利用电脑模拟人物活动。
1982年,迪斯尼(Disney)推出第一套电脑动画的电影—Tron(中文片译《电脑争霸》)。
传统的动画是由画师先在画纸上手绘真人的动作,然后再复制于卡通人物之上。
直至20世纪70年代后期,电脑技术发展迅速的纽约技术学院的电脑绘图实验室导师丽蓓卡亚·伦女士将录像带上的舞蹈员影家投射在电脑显示器上,然后利用电脑绘图记录影像的动作,然后描摹轮廓。
1982年左右,美国麻省理工学院及纽约技术学院同时利用光学追踪技术记录人体动作:演员身体的各部份都被安上发光物体,在指定的拍摄范围内移动,同时有数部摄影机拍摄其动作,然后经电脑系统分析光点的运动,再产生立体的活动影像。
世界电影史上花费最大、最成功的电影之一—《泰坦尼克号》的成功很大程度上得益于它对电脑动画的大量应用。
世界著名的数字工作室Digital Domain公司用了一年半的时间,动用了300多台SGI超级工作站,并派出50多个特技师一天24小时轮流地制作《泰坦尼克号》中的电脑特技。
1983年,麻省理工的Ginsberg和Maxwell发展了一套系统(Graphica Marionette),利用计算机语言控制卡通的动作。
但受到当时计算机硬件速度的限制,一个简单的电脑动画往往需要花费很长的时间。
随着计算机硬件及动画软件的迅速发展,以及越来越多的研究机构及商业机构加入到电脑动画领域,电脑动画的制作水平也随之日新月异。
动画日益形成一个重要的产业,在美国、日本、英国和荷兰这些动画片的制作强国,动画产业在国民生产总值中占有非常重要的地位,日本的动画产业更是国民经济六大支柱产业之一。
熟悉计算机图形学中的渲染和动画技术

熟悉计算机图形学中的渲染和动画技术计算机图形学是研究如何生成和处理图像的一门学科,其中渲染和动画技术是其中两个重要的分支。
渲染技术涉及将3D模型转化为最终图像的过程,动画技术则涉及通过在时间上的演变表现出运动和变形效果。
下面将分别介绍这两个技术的概念和相关的算法。
首先是渲染技术。
渲染技术是将3D模型转化为最终图像的过程,它涉及到光照、阴影、材质等方面的计算。
渲染可以分为实时渲染和离线渲染两种方式。
实时渲染是指在计算机硬件和软件的支持下实时生成图像,主要应用于实时交互的场景,如游戏和虚拟现实技术。
而离线渲染则是指通过计算机集群等大规模计算资源,对图像进行高质量渲染,主要应用于电影、动画片等需要精细渲染的场景。
在实时渲染中,常用的渲染算法包括光栅化和光线追踪。
光栅化是指将场景中的3D模型转化为2D像素的过程。
在光栅化算法中,常见的处理方式包括顶点处理和片元处理。
顶点处理指的是对模型的顶点进行变换和光照计算,得到片元的位置和颜色信息。
片元处理则是对模型的片元进行插值和纹理映射,最终得到最终图像。
光栅化算法的优点是速度快,适用于实时场景,但对于复杂的光照和阴影效果处理不够精细。
相比之下,光线追踪算法的优势在于能够更精确地模拟光照和阴影等效果。
光线追踪算法是一种模拟光线从光源发出,经过反射、折射等过程,最终到达相机的过程。
在光线追踪算法中,常见的追踪方式包括逐像素和逐光线追踪。
逐像素追踪是指对于每个像素,都发射一束光线进行追踪,逐个像素计算光照和阴影效果。
而逐光线追踪则是从相机出发,在场景中追踪所有可能与之相交的光线,通过递归的方式不断追踪,最终得到像素的颜色信息。
光线追踪算法的缺点是计算量大,速度较慢,不适合实时渲染。
除了以上两种渲染算法,还有一些其他的渲染技术,如体渲染、点渲染等。
体渲染是指对于具有三维结构信息的对象(如医学影像等),进行体素的分析和图像生成。
点渲染则是通过在屏幕上显示一系列点的方式,表现出对象的形状和结构。
计算机图形学基础:渲染与动画效果实现

计算机图形学基础:渲染与动画效果实现计算机图形学是研究如何将图像和动画制作成电脑能够显示的形式的学科。
它包括了渲染技术以及动画效果实现技术。
渲染是指将三维模型转化为二维图像的过程,而动画效果实现是指利用计算机实现物体的运动和变形效果。
本文将详细介绍计算机图形学基础中渲染与动画效果实现的步骤与原理。
一、渲染的步骤:1. 几何建模:首先,需要通过几何建模来创建三维模型。
这可以通过手动建模或者使用计算机辅助设计软件来完成。
几何建模包括了点、线、面的创建,以及它们之间的连接行为。
根据需要,这些模型可以是简单的几何体,如球体或立方体,也可以是更复杂的形状,如人体或汽车模型。
2. 光照计算:在渲染过程中,光照是一个非常重要的因素。
光照计算的目的是确定每个像素的颜色值。
这可以通过模拟光的传播和反射来实现。
常见的光照模型有环境光、漫反射光和镜面光。
通过考虑光源的位置、颜色和材质的反射性质,可以得到每个像素的颜色值。
3. 阴影计算:阴影是模拟物体之间互相遮挡的效果。
常见的阴影算法有平面阴影和体积阴影。
平面阴影是指根据光源与物体和平面之间的位置关系来计算阴影的效果,而体积阴影是通过考虑光的传播和吸收来模拟真实世界中的阴影效果。
4. 纹理映射:纹理映射是将二维图像映射到三维模型表面的过程。
通过将纹理图像与模型表面坐标进行对应,可以实现模型表面的细节和色彩。
常见的纹理映射方法有UV映射和球面映射。
UV映射是将纹理图像与模型表面坐标直接对应,而球面映射则是将纹理图像投影到一个球体上,再应用于模型表面。
5. 渲染器实现:最后,将以上步骤结合起来,实现一个渲染器。
渲染器是一个软件或硬件模块,用于处理几何模型、光照计算、阴影计算和纹理映射等过程。
渲染器可以根据不同的渲染算法和参数,输出二维图像或视频。
二、动画效果实现的步骤:1. 基础动画:基础动画通过控制物体的位置、缩放和旋转来实现物体的运动效果。
这可以通过在不同帧之间插值物体的属性,以及逐帧播放来实现。
计算机图形学ppt(共49张PPT)

过程动画技术
过程动画的概念
通过定义物体的运动规律或过程,由计算机自动生成动画。
过程动画的实现方法
基于物理模拟、基于过程建模、基于行为建模等。
过程动画的应用场景
自然现象的模拟(如风、雨、雪)、物体的变形和破碎效果等。
基于物理的动画技术
基于物理的动画概念
利用物理引擎模拟现实世界中的物理现象,生成逼真的动画效果 。
表面模型(Surface Model)
用多边形面片逼近三维物体的表面。
实体模型(Solid Model)
定义三维物体的内部和外部,表示物体的实体。
光线追踪(Ray Tracing)
模拟光线在三维场景中的传播,生成真实感图形。
三维图形的变换与裁剪
几何变换(Geometric Trans…
包括平移、旋转、缩放等变换,用于改变三维物体的位置和形状。
如中点画圆算法,利用圆 的八对称性,通过计算决 策参数来生成圆。
多边形的生成算法
如扫描线填充算法,通过 扫描多边形并计算交点来 生成多边形。
二维图形的变换与裁剪
二维图形的变换
包括平移(Translation)、旋转(Rotation)、 缩放(Scaling)等变换,可以通过变换矩阵来实 现。
二维图形的裁剪
Screen-Space Methods
利用屏幕空间信息进行半透明 物体的渲染,如屏幕空间环境 光遮蔽(SSAO)和屏幕空间 反射(SSR)。
06
计算机动画技术
Chapter
计算机动画概述
计算机动画的定义
01
通过计算机生成连续的动态图像,实现虚拟场景和角色的动态
表现。
计算机动画的应用领域
02
影视特效、游戏设计、虚拟现实、工业设计等。
计算机动画

计算机动画所谓动画也就使一幅图像“活”起来的过程。
使用动画可以清楚的表现出一个事件的过程,或是展现一个活灵活现的画面。
动画是一门通过在连续多格的胶片上拍摄一系列单个画面,从而产生动态视觉的技术和艺术,这种视觉是通过将胶片以一定的数率放映体现出来的。
而计算机动画是指采用图形与图像的处理技术,借助于编程或动画制作软件生成一系列的景物画面,其中当前帧是前一帧的部分修改。
计算机动画是采用连续播放静止图像的方法产生物体运动的效果。
计算机动画分:二维动画和三维动画。
二维动画:平面上的画面。
纸张、照片或计算机屏幕显示,无论画面的立体感多强,终究是二维空间上模拟真实三维空间效果。
三维动画:画中的景物有正面、侧面和反面,调整三维空间的视点,能够看到不同的内容。
1.计算机动画的发展历史:随着计算机图形学的不断发展,计算机在动画制作过程中发挥的作用也越来越大,现今动画片的制作是很少能离开得计算机。
传统的动画采用连续画面技术,将一系列手工制作的单独画面拍摄在胶片上,以每秒24帧的速度播放,利用人的视觉暂留产生动作变化的效果,形成连续的动画。
计算机动画是借助计算机生成一系列动态实时演播的连续图像技术。
计算机动画的研究始于20世纪60年代初。
1963年美国A T&T Bell实验室制作了第一部计算机动画片。
在80年代之前,计算机动画主要集中于二维动画系统的研制,应用于教学演示和辅助传统的动画片制作。
三维动画的研究始于70年代初,当时开发了一些三维计算机动画系统。
直至80年代中后期,由于具有实时处理能力的超级图形工作站的出现,三维几何造型技术和真实感图形生成技术取得很大进展,促进了具有高度逼真效果的三维计算机动画技术迅速发展,并达到实用商品化地步。
到90年代初,计算机动画技术应用于电影特技取得了显著成就。
与此同时,为适应科学研究与复杂系统中的动态模拟、视觉模拟、机器人学和生物力学等领域的需求,基于物理的造型和动画的研究的开展,已成为计算机动画研究中的一个重要课题。
(2024年)计算机图形学孙家广

计算机图形学孙家广CONTENTS •计算机图形学概述•图形生成技术•图形变换与裁剪•颜色模型与光照模型•图形用户界面设计•计算机动画技术•计算机图形学前沿技术01计算机图形学概述计算机图形学定义与发展定义计算机图形学是研究计算机生成、处理和显示图形的一门科学,它涉及计算机科学、数学、物理学、心理学等多个领域。
发展历程从20世纪50年代的简单图形绘制,到60、70年代的光栅扫描显示和三维图形技术,再到80、90年代的图形处理单元(GPU)和虚拟现实技术的发展,计算机图形学经历了飞速的发展。
计算机图形学应用领域计算机辅助设计与制造(CAD/CAM)利用计算机图形学技术进行产品设计、模拟和分析,提高生产效率和产品质量。
影视娱乐计算机图形学技术在电影、游戏等娱乐领域的应用,创造逼真的虚拟世界和角色。
数据可视化将大量数据通过图形的方式呈现出来,帮助人们更好地理解和分析数据。
虚拟现实与增强现实通过计算机图形学技术构建虚拟环境或增强现实场景,为用户提供沉浸式的交互体验。
包括图形处理器(GPU )、显示设备(如显示器、投影仪等)和输入设备(如鼠标、键盘、触摸屏等)。
图形硬件包括操作系统中的图形子系统、图形库和图形应用程序等,提供图形生成、处理和显示的功能。
图形软件包括光栅化、纹理映射、光照模型、阴影生成等算法,用于实现各种图形效果。
图形算法包括二维图形、三维模型、图像等数据,作为计算机图形系统的输入和输出。
图形数据计算机图形系统组成02图形生成技术包括数值微分法(DDA)和Bresenham算法等,用于在像素网格上精确或近似地绘制点和直线。
涉及中点圆生成算法和参数化椭圆生成方法等,用于生成各种大小和位置的圆和椭圆。
包括扫描线填充算法、边界填充算法等,用于对多边形内部进行颜色填充。
点和直线的生成算法圆和椭圆的生成算法多边形的填充算法基本图形生成算法曲线曲面生成技术参数曲线曲面使用参数化表示方法,如Bezier曲线和曲面、B样条曲线和曲面等,能够描述复杂的曲线和曲面形状。
《长空之王》虚拟摄制中光影运动的创作探索

《长空之王》虚拟摄制中光影运动的创作探索《长空之王》虚拟摄制中光影运动的创作探索近年来,随着科技的不断进步,虚拟摄制技术在电影制作领域中被广泛应用。
《长空之王》作为一部采用虚拟摄制技术制作的电影,其光影运动的创作探索无疑是该片制作成功的一个关键因素。
本文将从虚拟摄制技术的背景、光影运动的概念、《长空之王》的创作探索等方面进行详细阐述。
一、虚拟摄制技术的背景虚拟摄制技术是一种通过计算机图形学和动画技术模拟真实世界环境的技术手段。
它可以用于电影、电视剧等影视作品的制作过程中,通过计算机生成的场景、人物等元素,实现原本无法通过传统拍摄手段实现的效果。
虚拟摄制技术在电影制作中的应用,可以大大降低成本,提高制作效率。
虚拟摄制技术的发展,离不开光影运动的创作探索。
光影运动是指光线在场景中的运动轨迹以及光影的变化。
在传统的电影制作过程中,通过摄影师的技巧和灯光布置,可以创造出丰富的光影效果。
而虚拟摄制技术则可以通过计算机图形学和光线追踪算法,模拟真实世界中光线的传播和反射,从而实现更加真实、细致的光影运动效果。
二、光影运动的概念光影运动是电影制作中一个重要的概念,它关系到整个影片的画面效果和氛围的营造。
光影运动可以通过灯光的调整来实现,通过改变灯光的亮暗程度和角度,以及灯光的颜色和亮度等参数,可以创造不同的光影效果,从而影响观众的感受和情绪。
在虚拟摄制中,光影运动的创作与传统电影制作不同,更加依赖计算机图形学和光线追踪算法等技术手段。
三、《长空之王》的创作探索《长空之王》是一部采用虚拟摄制技术制作的动画电影,该片的制作团队在光影运动的创作上进行了一系列的探索和创新。
首先,在场景设计方面,制作团队精心打磨了每个场景的细节,利用计算机图形学技术模拟了真实世界中的光线传播和反射规律。
通过精细调整光线的亮度、角度和颜色等参数,使得影片中的光影运动更加自然、真实。
其次,在人物角色的设计方面,《长空之王》的制作团队注重表现角色的情绪和动作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机图形学与动画技术
计算机图形学与动画技术是现代科技领域中不可忽视的重要学科。
它不仅涉及
到计算机图形学的基础理论和算法,还将其应用于游戏、影视等领域中的动画制作和特效效果中。
本文将从计算机图形学的发展历程、其在动画技术中的应用和未来的发展趋势等方面进行阐述。
首先,我们来回顾一下计算机图形学的发展历程。
早在20世纪50年代,计算
机图形学就在科研领域中开始崭露头角。
当时的研究主要集中在二维图形和可视化方面,用于解决科学和工程领域中的问题。
然而,随着硬件和软件技术的飞速发展,计算机图形学的应用范围也越来越广泛。
从二维到三维,从静态到动态,计算机图形学的研究和应用呈现出日新月异的进步。
其次,我们来看一下计算机图形学在动画技术中的应用。
动画技术是一门结合
美学和技术的艺术,它通过图形学算法和技术手段,将静态的图像变成生动活泼的动画。
计算机图形学为动画的制作提供了强大的工具和支持。
通过计算机图形学的算法,可以实现对物体的建模、着色、光照、渲染等处理,从而使得动画作品更加逼真和细腻。
此外,计算机图形学还可以应用于特效制作,例如爆炸、烟雾、水面等特效的模拟和渲染。
总之,没有计算机图形学的支持,现代动画技术将无法达到如此高的水平。
然而,计算机图形学与动画技术仍面临着一些挑战和问题。
首先,计算机图形
学的算法和技术需要不断改进和创新。
目前的图像和动画效果已经趋于细腻和真实,但仍有进一步提升的空间。
其次,计算机图形学的硬件设备也需要进一步发展,以满足高性能计算和渲染的要求。
最后,计算机图形学与动画技术的教育和人才储备也需要加强。
随着技术的发展,对专业人才的需求也越来越大,因此培养更多的专业人才势在必行。
对于计算机图形学与动画技术的未来发展,我们可以展望一些趋势和方向。
首先,随着虚拟现实和增强现实技术的不断发展,计算机图形学将在这一领域中扮演
重要的角色。
虚拟现实和增强现实不仅可以应用于游戏和娱乐产业,还可以应用于教育、医疗等多个领域。
其次,计算机图形学将越来越注重与人工智能的结合。
通过深度学习和机器学习等技术,计算机图形学可以实现更加智能化和自动化的处理。
最后,计算机图形学与动画技术的交叉融合将会产生更多创新的应用。
例如,虚拟角色的表情渲染、动画剧情的交互式演绎等。
综上所述,计算机图形学与动画技术在现代科技领域中具有重要意义。
它不仅
在游戏、影视等领域中发挥着关键作用,还在科学、工程和其他领域中有着广泛的应用潜力。
计算机图形学的发展历程、其在动画技术中的应用和未来的发展趋势都显示出其巨大的潜力和发展空间。
我相信,在不久的将来,计算机图形学与动画技术将会展现出更加令人惊叹的成就。