金属有机化学第十章
有机化学第二版第十章醛和酮

第十章 醛酮含有羰基的化合物:O H O CH3CCH3 O C CH3醛和酮:CH 3C羧酸 羧酸:CH3CO OHCOOH COOH COOHOH CH3CHCOOHO羧酸衍生物:CH3COCl (CH3CO) ( )2OCOOC 2H 5NHOβ-二羰基化合物:CH3CCH2COOC 2H5CH2COOC2H5 COOC2H5210 醛和酮教学大纲(醛和酮)醛和酮的结构与物理性质 醛和酮的结构与物理性质; 醛和酮的化学性质:1.与氢氰酸加成; 2.与亚硫酸氢钠加成; 3.与醇亲核加成; 4.与氨的衍生物反应; 5.与Grignard试剂加成; 试剂加成 6.醇醛缩合反应; 7 卤化和卤仿反应; 7. 卤化和卤仿反应 还 原 反 应 —— 催 化 加 氢 、 金 属 氢 化 物 还 原 、 Clemmenson 还 原 、 WolffKishner黄鸣龙还原、Cannizzaro反应;氧化反应)。
羰基 carbonylOR C H R O C R'醛(aldehyde)O R C O R C R' Ar H Ar O C O C R H酮(Ketone K t )Oβ αC H(R)CC脂肪族醛、酮芳香族醛、酮α,β-不饱和醛、酮4命名:O CH3CCH2CH2CHOO O CH3CCHCCH3 CH2CH=CH24-氧代戊醛3-烯丙基-2,4-戊二酮OO CHO环己酮CHO2'-氧代环己基甲醛CHO OH O CHO苯甲醛2-羟基苯甲醛 (水杨醛)呋喃甲醛 (糠醛)5z醛和酮的结构2spCσOδ C+δO键角接近 120 °1 C=O双键是由一个σ键和一个π键组成的。
2 羰基碳原子为 sp2杂化轨道与氧原子的 p 轨道和其它两个原子 形成三个 形成 个σ键 键,一个 个 p轨 轨道与氧原子的 与氧 子 p轨 轨道侧面交盖成 侧面交 成π键 键, 氧原子上另有两对孤对电子处于氧的s轨道和p轨道中。
有机化学 第10章

2C2H5ONa
+ H2
C2H5ONa +H2O
苯乙醇水=74.118.57.4(64.9℃)
2 2(CH3)3COH + 2K
2(CH3)3COK + H2
强碱性试剂 亲核性相对弱一些
魏能俊 主讲教师:曹瑞军
有机化学
16-10
3 2C2H5OH + Mg
(C2H5O)2Mg 乙醇镁
+ H2
魏能俊
主讲教师:曹瑞军
有机化学
16-6
3、醇的异构和命名
醇的异构主要来自碳链的异构和羟基位置的异构。 醇的系统命名如下: (1)选取含羟基的最长碳链为主链,按主链碳原子数命名为某醇。 (2)从最靠近羟基的一端开始编号,羟基在末端时“1”字可以省略。 (3)不饱和醇应选取同时含不饱和键与羟基在内的最长碳链为主链。 CH3 CH3-C-OH CH3C=CHCH2CHCH3 CH CHCHCH CH H3C 3 2 3
液相测定酸性强弱
H2O > CH3OH > RCH2OH > R2CHOH > R3COH > HCCH > NH3 > RH
总的活性(酸性)顺序为:甲醇>伯醇>仲醇>叔醇 在液相中,溶剂化作用会对醇的酸性强弱产生影响。
O H H R H C
O
H O
H H O H H
CH 3 C CH 3
CH 3 O
16-14
举例如下:
-CHO + H2 Pd/C -CH2OH
CH3CH2O-CO-(CH2)8CO-OCH2CH3
Na+C2H5OH
HO-(CH2)10-OH
第十章金属配位化合物

例: 硫酸一溴五氨合铬(Ⅲ)
配合物[CrBr(NH3)5]SO4,中心离子是__________,
Cr3+
配配位位体数是_N__H_3_、,___B配_r_-_离配子位的原电子荷是数_是___N__、__B__r____,
________
__________,
6
+2
中心离子的氧化数是
,内界是
,
__________
[Ag(NH3)2]+的结构 4d
5s
5p
sp杂化 5p
H3N NH3
结果: [Ag(NH3)2]+形成之前和之后, 中心原子的d电子排
布没有变化 。络合物是直线型,μ = 0
中心离子Ni2+的结构 3d [Ni(NH3)4]2+的结构 3d
4s
4p
sp3杂化
NH3 NH3 NH3
NH3
结果: [Ni(NH3)4]2+形成之前和之后, 中心原子的d电子
Cu(NH 3 ) 4 SO 4
K 3 Fe(NCS) 6
H 2 PtCl 6
Cu(NH 3 ) 4 (OH) 2
K PtCl 5 (NH 3 )
Zn(OH)(H
2 O) 3 NO 3
Co(NH 3 ) 5 (H 2 O) Cl 3
Fe(CO) 5
Co(NO 2 ) 3 (NH 3 ) 3
副篇内容
叶绿素(chlorophylls a)是镁的大环 配合物,作为配位体的卟啉环与Mg2+离 子的配位是通过4个环氮原子实现的。 叶绿素分子中涉及包括Mg原子在内的4 个六元螯环。
叶绿素是一种绿色色素, 它能吸收太阳光的
有机化学第五版第十章酚和醚部分答案

第十章酚、醚参考答案
2 写出下列结构式的系统命名
(6)5-硝基-3-氯-1,2-苯二酚(考察内容:较优官能团的确定,取代基的优先顺序)(7)对溴苯乙醚(对溴苯基乙基醚;考察内容:较优官能团的确定,醚的命名)
3 写出下列化合物的结构式
8 完成下列各反应
(6)(CH3CH2)2CHI + CH3 (考察内容:醚键的断裂,思考:醚键断裂顺序,如果HI不过量产物是什么?)
(8)CH3CHBrCH2OH (考察内容:环氧乙烷的酸性开环,注意酸性开环和碱性开环的不同)
(13)(考察内容:环氧乙烷的碱性开环,S N2开环机理)
(14)(考出内容:环氧乙烷的酸性开环,断键位置类似S N1,反应实质S N2,注意反应的反应机理)
(16)(考察内容:醚键的断裂规律,脂环烃中氢原子表示方法)
(18)(考察内容:酸性开环的断键位置及原因,亲核试剂进攻方向,产物构型)
(19)(考察内容:碱性开环的断键位置,亲核试剂进攻位点、方向,产物
构型)
13 合成题:
3 参考答案:
丙烯在过氧化氢的作用下与HBr加成得到正溴丙烷,正溴丙烷与镁形成丙基溴化镁格氏试剂,后者与丙酮发生加成反应后水解,即可得到1,1-二甲基丁醇,1,1-二甲基丁醇与金属钠反应可得到相应的醇钠;
丙烯与NBS发生自由基取代可得到3-溴丙烯,3-溴丙烯与上面制备得到的醇钠反应即可得到目标产物。
(考察内容:威廉森制醚法: 醇钠和卤代烃的选择原则;醇钠的制备;由烯烃制备一级卤代烃的方法(过氧化效应);烯烃中α氢的取代反应;格氏试剂的制备及应用)。
有机化学-第十章

10.2 醛酮的化学性质
如果利用NaHSO3与羰基化合物加成的可逆性,将 NaCN 与 α-羟基磺酸钠作用,使生成的 HCN 与分解出的羰基化合 物加成生成α-羟基腈,这样也可避免 HCN 的直接使用。 例如:
10.2 醛酮的化学性质
醛、酮与碳负离子的加成
Grignard 试剂,炔钠,Wittig试剂等,都含有碳负离子, 它们与羰基化合物的反应活性很高,有机合成上有广泛的 应用。
10.2 醛酮的化学性质
一、与氨、伯胺的反应
脂肪族醛、酮与氨、伯胺的反应可生成亚胺,也称为席夫 碱(Schiff base):
10.2 醛酮的化学性质
脂肪族醛、酮生成的亚胺中含的C=N双键在反应条件下不 是很稳定的,它易于发生进一步的聚合反应。芳香族的醛、 酮与伯胺反应生成的亚胺则比较稳定。
10.1 醛酮的结构及分类
在醛、酮分子中,羰基碳原子是以sp2 杂化状态与其它三 个原子构成键的,羰基碳原子的P轨道与氧原子上的P轨道 以相互平行的方式侧面重叠形成π键,即羰基是一个平面 构型的; 与羰基碳原子直接相连的其它三个原子处于同一平面内, 相互间的键角约为120度,而π键是垂直于这个平面的。
> > >
>
>
>
>
10.2 醛酮的化学性质
一、与水的加成
甲醛、乙醛、丙酮等小分子羰基化合物在水中的溶解性非 常好,这不仅是它们与水分子之间可以形成氢键,还在于 它们可以与水分子发生加成反应,生成了水合物; 这种水合物只有在水溶液中在一定浓度范围、一定的温度 下才是比较稳定的,游离的羰基水合物(同碳二元醇)是 极不稳定的,它将迅速脱水成为羰基化合物。
有机化学第10章 醛和酮

Witting反应是在醛酮基碳所在处形成碳碳双键的一个重要方法,产物中 没有双键位置不同的异构体。反应条件温和,产率也较好,但产物双键 的构型较难控制。 Witting也因该工作而与Brown H C共享了1979年的诺 贝尔化学奖。 另一种类型的磷叶立德试剂是霍纳(Horner L)提出的:用亚磷酸 酯为原料来代替三苯基膦与溴代乙酸酯得到的试剂磷酸酯,后者在强碱 作用下形成Horner试剂。
另一种类型的磷叶立德试剂是霍纳(Horner L)提出的:用亚磷酸 酯为原料来代替三苯基膦与溴代乙酸酯得到的试剂磷酸酯,后者在强碱 作用下形成Horner试剂。
补充: 醛、酮与炔化钠的加成
R-CC-Na+ NaNH2 (-NH3) R-CCH +
C=O
NH3(液) 或乙醚
C C ONa CR H O 2
• 醛和脂肪族甲基酮(或七元环以下的环酮)与之反应,生成
• -羟基磺酸钠
白色
过量
在酸碱下可逆反应,分离提纯
-羟基磺酸钠与等摩尔的NaCN作用,则磺酸基可被氰基取代, 生成 -羟基腈,避免用有毒的氰化氢,产率也比较高。
3、与醇的加成
*1 反应情况介绍 ① 与醛反应 CH3CH=O + CH3CH2OH
(hydrazine)
C 6H 5 H C O + H2NNH O2 N NO2
(hydrazone)
C 6H 5 H C NNH O 2N NO2 + H 2O
2,4–二硝基苯肼
O O + H2NNHCNH2
2,4–二硝基苯腙
O NNHCNH2 + H2O
氨基脲
(semicarbazine)
缩氨基脲 (半卡巴腙)
有机化学第二版第十章习题答案

第10章 醛、酮、醌10-1 命名下列化合物。
(1)3-甲基-1-苯基-1-戊酮; (2)2,4,4-三甲基戊醛; (3)1-(1-环已烯基)丁酮; (4)(E )-苯基丙基酮肟; (5)3-丁酮缩乙二醇; (6)2-环已烯酮; (7)三氯乙醛缩二甲醇; (8)2-戊酮苯腙; (9)2,6-萘醌; (10)2,4-已二酮; (11)((E )-间甲基苯甲醛肟。
10-2 写出下列反应的主要产物。
PhCHOHCOONa +浓NaOHHCHO2OH+(Cannizzaro 反应)OZn-Hg / HClHCNH 3OOH COOHO(Clemmensen 还原)H 3CC CH 3O Mg C 6H 6H 3OH 2SO 4△(CH 3)2C C(CH 3)2OH OH(H 3C)3CC CH 3O(pinacol 重排)(1)(2)(3)(4)+HCHO(Mannich 反应)+HCl(5)(6)ON HCH 2CH 2NOCH 3OCH3CH 3OH(黄鸣龙还原)CO 3Cl+CO 2HCl+(Baeyer-Villiger reaction)ONH 2+PCl 5H NO(Beckmann 重排)O(1) HSCH 2CH 2SH2O3OHO(卤仿反应)(7)(8)(9)(10)CHCl 3+(Wittig reaction)CH 3MgBr+Ph 33(13)(12)(11)O+O(1,4-加成产物)OCHCH 2CH 3O OOHHONCOO(双烯合成反应)10-3 比较下列化合物的亲核加成反应活性。
(2)(1)C OCH 3H 3C C CH 3OH 3CC HOCOCH 3H 3C(3)(4)(3)>(1)>(2)>(4)10-4 将下列化合物按烯醇式的含量多少排列成序。
CH 3COCHCOCH 3CH 3COCH 2CH 3(2)(1)PhC H 2C O(3)(4)COCH 3CH 3COCH 2COCH 3C CH 3O(1)>(4)>(3)>(2)10-5 指出下列化合物中,哪些能发生碘仿反应?哪些能与饱和NaHSO 3反应?(2)(1)O(3)(4)(5)ICH 2CHOCH 3CH 2CHOC 6H 5COCH 3CH 3CHOCH 3CH 2CH 2OHCH 3CH 2CCH 2CH 3CH 3CH 2CHCH 3OH(7)(6)(8)O能与饱和NaHSO 3反应的有(1)、(2)、(5)、(8)[脂肪族甲基酮、大多数醛和8个碳以下的脂肪酮能进行此反应]。
《金属有机化学教案》课件

《金属有机化学教案》课件第一章:金属有机化学概述1.1 金属有机化学的定义1.2 金属有机化学的发展简史1.3 金属有机化学的研究方法1.4 金属有机化学的应用领域第二章:金属有机化合物的结构与性质2.1 金属有机化合物的结构特点2.2 金属有机化合物的键合理论2.3 金属有机化合物的物理性质2.4 金属有机化合物的化学性质第三章:金属有机化合物的制备方法3.1 金属有机化合物的合成策略3.2 金属有机化合物的制备方法概述3.3 常见金属有机化合物的制备实例3.4 金属有机化合物的结构表征方法第四章:金属有机化学在材料科学中的应用4.1 金属有机化学在材料合成中的应用4.2 金属有机化学在材料加工中的应用4.3 金属有机化学在功能材料研究中的应用4.4 金属有机化学在新型材料探索中的应用第五章:金属有机化学在有机合成中的应用5.1 金属有机化学在有机合成中的催化作用5.2 金属有机化学在有机合成中的模板作用5.3 金属有机化学在有机合成中的活化作用5.4 金属有机化学在有机合成中的区域选择性控制第六章:金属有机化学在药物化学中的应用6.1 金属有机化学在药物合成中的作用6.2 金属有机化学在药物设计中的应用6.3 金属有机化学在生物活性分子研究中的应用6.4 金属有机化学在药物化学领域的挑战与展望第七章:金属有机化学在有机催化中的应用7.1 金属有机催化原理7.2 金属有机催化剂的设计与合成7.3 金属有机催化在有机合成中的应用实例7.4 金属有机催化的未来发展第八章:金属有机化学在超分子化学中的应用8.1 金属有机超分子的定义与特点8.2 金属有机超分子的设计与合成8.3 金属有机超分子在材料科学中的应用8.4 金属有机超分子研究的挑战与展望第九章:金属有机化学在环境化学中的应用9.1 金属有机化合物在环境污染治理中的应用9.2 金属有机化学在环境监测中的应用9.3 金属有机化学在环境友好材料制备中的应用9.4 金属有机化学在环境保护领域的挑战与展望第十章:金属有机化学实验操作安全10.1 金属有机化学实验操作中的安全问题10.2 金属有机化学实验中的安全操作规范10.3 实验室事故的预防与处理10.4 金属有机化学实验操作的安全教育与培训重点和难点解析一、金属有机化学的定义与研究方法难点解析:金属有机化合物的结构与性质之间的关系,研究方法的原理与实际应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
polyethylene kH/kD = 1.04
Since this experiment was inconclusive, Grubbs designed a stereochemical probe to determine if an -H/D agostic interaction affected the insertion process. The Cossee mechanism should give a nearly 1:1 mixture of diastereomers, since there is no primary isotope effect in this mechanism. The Rooney-Green mechanism would be expected to give a unequal product distribution. A 50:50 diastereomeric ratio of products was produced in the reaction. (J. Am. Chem. Soc. 1985, 107, 3377)
Ziegler was originally studying the Aufbau reaction, which uses trialkyl aluminum compounds to make oligomers from ethylene. Ziegler found that adding transition metals salts resulted in significant changes in the reactivity.
These systems would polymerize ethylene, but slowly. Propylene and other higher alkenes could not be polymerized. The major advance was the introduction of the activator methylaluminoxane (MAO) by Kaminsky (Macromol. Chem. Rapid. Comm. 1983, 4, 417)
J. Chem. Soc., Chem. Comm. 1978, 604
The major difference between the two mechanisms, should be in the kinetic isotope effect. The Green-Rooney mechanism would require a large kinetic isotope effect (ca. 3). Grubbs first carried out the polymerization of a mixture of ethylene and ethylene-d4. (J. Am. Chem. Soc. 1982, 104, 4479), No isotope effect was observed, however this result did not definitively rule out an -elimination mechanism.
The major problems with heterogeneous systems are:
• There are a variety of different catalytic sites with different activity producing polymers with different molecular weights and tactcities. The polymers produced are always blends. • Heterogeneous systems are difficult to tune, because there is not much that can be varied and they are generally poorly understood. Although fairly selective systems have been developed, the work is largely empirical.
K. Ziegler (Angew. Chem., 1952, 64, 233):
This was a heterogeneous process. Insoluble metal salts and trialkylaluminum species were mixed in a hydrocarbon solvent under ethylene pressure.
Initiation:
The active species is believed to be a coordinatively unsaturated metal alkyl formed by reaction of the metal halide salt with the alkyl aluminum species.
The major advantage is that they are heterogeneous and can be used under industrially desirable conditions either in the gas phase or as suspensions.
Mechanism of Alkene Polymerization:
Linear Low Density (LLDPE) High Density (HDPE) Polypropylene Ethylene-Propylene rubber
7,959 13,906 15,448 340
Heterogeneous Olefin Polymerization Catalysts: The Ziegler-Natta systems.
Propagation:
The exact nature of the propagation step was controversial for some time. Cossee proposed a mechanism involving simple migratory insertion of an alkene into a metal alkyl Tetrahedron Lett. 1960, 1(38), 12-16
Chain Tain transfer mechanisms have been identified by modeling studies. -H elimination
Hydrogenation
Chain transfer to aluminum
Chain transfer to monomer
-R elimination -R
Homogeneous Ziegler-Natta-type polymerization catalysts
The first homogeneous systems were based on metallocene dichlorides, and were designed to mimic the activation process believed to occur in the heterogeneous systems.
90 % crystalline
X-ray and IR studies showed that the crystalline material had the same configuration at each chiral center. The polymer was isotactic, (via infra)
G. Natta (J. Am. Chem. Soc. 1955, 77, 1708): Soon after, Natta showed that the Ziegler catalyst would polymerize propylene to give polypropylene.
40 % crystalline material
= open coordination site
Green, and Rooney proposed an alternative mechanism based on an -elimination to give a carbene. Since there were few examples of isolated alkene alkyl complexes that undergo migratory insertion, they felt that an alternative mechanism was necessary. Formation of a metalacycle followed by reductive elimination gives a new metal-alkyl.
Ziegler and Natta shared the 1963 Nobel Prize in chemistry for their contributions.
These systems are still widely used in industry, but from the beginning there was interest in developing homogenous, single-site catalysts for olefin polymerization. These were desired both as model compounds for mechanistic studies and to provide more consistent and tunable catalysts. We will discuss this in detail later.