第三章_密度泛函理论(DFT)

合集下载

密度泛函理论(DFT)的基础.ppt

密度泛函理论(DFT)的基础.ppt
H 1 2 N 1 12 2 N N
(3.11)
第三章 密度泛函理论(DFT)的基础 -密度矩阵与多体效应
3.1 引言 3.2 外部势场中的电子体系 3.3 多体波函数 3.4 Slater行列式 3.5 一阶密度矩阵和密度 3.6 二阶密度矩阵和2-电子密度 3.7 变分原理 3.8 小结
1
3.1 引 言
1。为了计算电子体系所涉及的量,我们需要处理电子 多体问题的理论和技术。本章将首先解释处理多体 问题的某些重要概念(如多体波函数、交换和关联 效应等),然后简短地给出不同的从头算方法,重 点是审查DFT的基础,回答为何DFT可以用电子密 度作为基本变量,并阐述DFT的物理基础。
其中,N 现在是电子数。而
V(r)
j NN
Zj r Rj
(3.3)
是电子-离子相互作用势。
4
3.3 多体波函数
1。一项简化:为了处理问题简单和便于解释物理概念,本 章的绝大部分篇幅都忽略自旋波函数和自旋指标。加上它 是直接的,这将在本章最后作一简述。 2。多体波函数的反对称性 多体波函数的归一化满足
e l E ( RURER ) ( ) () n N n
(3.1)
3
3。因为把核的位置作为固定参数,可以把核位置指标拿掉, 以后就用下面的Schrödinger方程进行工作:
N 1 1 2 e l (3.2) V ( r ) ( r , . . . r ) E ( r , . . . r ) i n 1 N nn 1 N r 2i r 1 i 1 i jN r i j
8
3.4 Slater行列式
1。多体波函数可以用“Slater 行列式”展开得到,它是基于单 体(单电子)轨道集合的反对称波函数。这个概念在今后的 章节中都是有用的。 定义Hartree products:即N个one-body波函数的简单乘积。

密度泛函理论在环境科学中的应用研究

密度泛函理论在环境科学中的应用研究

密度泛函理论在环境科学中的应用研究一、密度泛函理论概述密度泛函理论(DFT)是一种量子化学方法,用于计算原子、分子和固体的基态性质和反应。

其核心思想是将系统中每个粒子的电荷密度作为变量,并通过泛函方法来求得能量。

DFT的优点在于能够处理更大的系统,减少计算成本,以及可以处理非常复杂的化学反应过程。

二、DFT在环境科学中的应用1.分子环境中的吸附和催化DFT可以用于解释吸附和催化反应的机制,特别是在涉及到催化反应的半导体表面上。

它可以计算分子的吸附能、催化反应活性和选择性等性质,因此对于开发新型催化剂和优化催化反应具有重要意义。

2.环境污染物的检测和修复DFT可以计算污染物之间的相互作用和各种化学反应,预测其环境行为和生物降解路径。

这些预测可以为污染物检测和修复提供重要信息,并有助于了解人类和环境的潜在风险。

3.大气和水体中的污染物DFT可以预测大气中的污染物和水体中的污染物对环境的影响。

通过计算反应性和分子结构等参数,DFT可以用于预测翻译氧化和氮氧化物在大气中的光化学反应,以及水中的污染物和水体中生物群落的影响。

4. 电子捕获材料DFT可以用于预测电子捕获材料(如汞、铬等)的性质。

电子捕获材料是一类用于捕获和储存电子的材料,在环境监控和分析中具有广泛的应用。

5. 环境友好型催化剂的设计DFT还可以用于设计环境友好型催化剂。

在环境保护和可持续发展方面,催化剂的设计和开发非常重要。

通过计算机模拟,可以预测新型催化剂的催化性质,并提高环境友好型催化剂的选择性和活性。

三、总结随着环境污染问题的日益严重,DFT在环境科学中的应用越来越受到关注。

DFT可以用于预测环境污染物的行为、设计环境友好型催化剂、预测电子捕获材料等等。

它具有精度高、稳定性好、计算成本低的优点,因此在今后的环境科学中将继续发挥重要作用。

DFT(密度泛函理论)

DFT(密度泛函理论)

PW c
91
H0 t, rS , H1 t, rS ,
H0
t, rS
,
b1
f
3
ln
1
t2 a 1 At2
At 4 A2t 4
H1
t,
rS
,
16
3 2
1/3 C c
f
t e 3 2 dx2 / f 2
t
192
2
1/ 6
2
f
7/6
a
exp
bc rS , / f 3
➢ Glue Model
只适用于单一金属。较好地平衡了表面和内部的结构和能量。
Vi
rij
U
rij
ji
j
3. 化学和生物体系的力场
➢ 成键作用(Bonded Interactions):Bonds,Valence Angles,Dihedral Angles (Torsional Angles), Improper Dihedral Angles ➢ 非成键作用(Nonbonded Interactions):范德华力和静电力
➢ DFT 的最大问题在于没有统一的理论方法系统地提高计算精度,即更复杂的泛函 形式不一定计算精度越高,而是与被研究体系密切相关。
➢ 运用 DFT 计算的软件包之一:VASP (Vienna Ab-initio Simulation Package)
http://cms.mpi.univie.ac.at/vasp/ 应用周期性边界条件以计算较大的体系。
关联项
Lee, Yang, and Parr (LYP)
LYP c
a
1 d 1/3
ab 9
ec1/ 3 1 d 1/3

DFT理论

DFT理论

一种计算 xc [n( r )]的近似公式为(在Hartree单位下):
xc
0.458 rs 4 3
0.0333G ( ra
3 3 s 0 3 1 n
rs 11.4
)
1 2 2
(4.20)
rs是自由电子气的电子”半径”。
1 x
G ( x ) [(1 x ) ln(1 ) x x 1 3]
E[n' ] 0,可得: 求 n'
v ( r )n' ( r )dr
1 2

n ( r ) n ( r) r r
drdr E xc [n' ] (4.27)
17
Kohn-Sham方程(续1)
由此得到:


v '( r ) n'
n '(r )dr v '(r )
5 局域密度近似(LDA)
HK定理已经建立了密度泛函 理论(DFT)的框架,但在实 际执行上遇到了严重困难。主 要是相互作用电子体系的交换 关联能Exc[n]无法精确得到。为 了使DFT理论能够付诸实施, Kohn-Sham提出了局域密度近 似(Local Density Approximation, LDA)。 我们将在第五章详细介绍 LDA,本章只直接引用以便建 立Kohn-Sham方程。
Ts [n' ] v ' ( r )n' ( r )dr Ts [n' ] i' v ' ( r )n' ( r )dr
于是能量泛函为
i 1 N
(4.25) (4.26)
E[n' ] i' v ' ( r )n' ( r )dr

关于密度泛函理论(DFT)的基本假设和理论

关于密度泛函理论(DFT)的基本假设和理论

关于密度泛函理论(DFT)的基本假设和理论前言:本文将简要介绍密度泛函理论(DFT)的导出和一些交换关联(XC)势,以期能给初学者一些基本的帮助。

我是一个学渣,所以行文之中很可能有些错误,还望不吝指正。

什么是密度泛函理论?简短的回答:密度指电子数密度;泛函是说能量是电子密度的函数,而电子密度又是空间坐标的函数;函数的函数,是为泛函(Functional)。

密度泛函理论是一种通过电子密度研究多电子体系电子结构的方法。

具体到操作中,密度泛函理论通过各种各样的近似,把难以解决的包含电子-电子相互作用的问题简化成无相互作用的问题,再将所有误差单独放进一项中(XC Potential),之后再对这个误差进行分析。

长回答:一、量子力学的理想和现实量子力学中波函数的概念很诱人:“简洁”如的波函数中,包含了一个系统在某一个态下所有的信息。

这个为我们对任意体系的模拟提供了原理上的可能。

然而在理想和现实之间是计算能力的鸿沟。

以多电子原子体系为例,首先利用波恩-奥本海默近似,忽略原子核的运动。

那么薛定谔方程可以写成如下的形式:其中H是Hamiltonian;中间第一项T是动能算符,第二项V是外电场(原子核电场)的势能算符,第三项U是电子-电子相互作用算符。

对于一个N电子体系,每个电子有三个空间坐标,那么这个薛定谔方程则包含3N个变量。

对于特殊体系,譬如类氢粒子(H, He+, Li2+等等),我们可以通过把笛卡尔(Cartesian)坐标转换为球坐标来得到其薛定谔方程的解析解。

类氢粒子的薛定谔方程可以写作:把上式中的Laplacian用球坐标来表示:得到薛定谔方程的球坐标表示:再通过一些数学操作(打公式太烦了),我们可以把上式分解成三个只包含一个球坐标变量的子方程;并且能从其中分别解出主量子数、角量子数和磁量子数。

看着很promising,对吧?然而我们能这样分解,是得益于类氢粒子没有相互作用项。

事实上,对于任意多电子体系,由于的存在,我们无法用同样的trick处理它的薛定谔方程。

dft密度泛函理论

dft密度泛函理论

dft密度泛函理论
密度泛函理论(DFT)是用来描述物理和化学性质的理论模型,
它可以帮助我们探究物质的原子结构、能量和力之间的相互关系。

DTF
是一种量子力学理论,将量子力学模型与精确的飞秒动力学方法相结合,用于研究大规模系统,比如材料科学、分子生物学等领域的系统。

它可以用来计算一种材料的外在性质,比如结构、共价键长度、反应
能和光谱数据等,也可以计算电子结构,包括电子密度分布和本征能级。

DTF的基本思想是将原子的性质归结为电原子密度分布,可以用
有限多电子波功函数来表示,从而计算不同原子类型之间的相互作用,最终获得这种结构的本征能量。

DTF可以与其他理论相结合,形成更加精细和准确的模型来研究复杂的系统。

密度泛函理论的另一个优点是
它可以添加一些自然场的效应来更好地描述系统的物理和化学特性,
例如磁场的影响等。

综上所述,密度泛函理论是一个强大的工具,可以用来研究非常
复杂的物理和化学系统,而且可以考虑一些自然场的效应在内。

正是
由于它的准确性和高效性,密度泛函理论被广泛应用于材料发现和设
计领域,从而促进了一些重大进展,如新材料发现、新高分子性质研
究以及新能源发展等,其发展前景也非常乐观。

密度泛函理论及其应用研究

密度泛函理论及其应用研究

密度泛函理论及其应用研究第一章密度泛函理论概述密度泛函理论(DFT)是一种计算材料物理性质的理论方法,广泛应用于材料科学、物理化学等领域。

它是泛函理论的一种发展,可以计算材料的电子云密度,从而得到物理性质,如结构、能带、光谱等信息。

DFT是一种基于电荷密度泛函(charge density functional)的方法,可以自洽求解材料的电子结构。

DFT 的主要思想是通过研究材料电子密度的变化来推断其它物理量的变化。

第二章材料电子密度的计算材料电子密度是DFT计算的主要对象,它是指材料中电子所占据的空间的密度分布。

DFT方法中常用的计算电子密度的方法有密度矩阵方法和Kohn-Sham方法。

密度矩阵方法基于量子化学方法,可以计算包含相互作用的电子体系的密度,但计算量较大。

Kohn-Sham方法则是基于统计物理方法,通过引入交换-相关泛函来计算电子的相互作用,计算效率较高。

第三章电荷密度泛函的选择与优化电荷密度泛函是DFT中的核心问题之一,它用于描述电子的相互作用。

常用的电荷密度泛函有局域密度近似(LDA)和广义梯度近似(GGA)。

LDA是最简单的电荷密度泛函,仅考虑电子密度在每个点上本身和近邻点上的值,可以准确描述简单的材料系统。

GGA则考虑电子密度在每个点上的梯度,在复杂的材料体系中能够得到更加准确的结果。

第四章 DFT在材料科学中的应用DFT方法在材料科学中有广泛的应用,可以计算材料的结构、能带、光谱等物理性质。

在研究新型功能材料时,DFT方法可以预测其物理、化学性质,指导实验的设计和制备。

例如,DFT方法可以用来设计和优化光伏材料,研究其光吸收、电子注入、电荷输运等过程,为制备高效的太阳能电池提供理论指导。

第五章 DFT在能源领域中的应用DFT方法在能源领域也有广泛的应用,例如研究氢气的储存方法、电池材料的设计等。

在研究催化剂时,DFT方法可以预测材料的催化活性和选择性,指导其设计和制备,从而提高化学反应的效率和选择性。

密度泛函理论(DFT)

密度泛函理论(DFT)

一、 计算方法密度泛函理论(DFT )、含时密度泛函理论(TDDFT )二、 计算方法原理1. 计算方法出处及原理本计算方法设计来源于量子化学理论中的Born –Oppenheimer 近似,给近似下认为原子核不动, 这样电子就相当于在一个由核产生的外部的静态势场 V 中运动。

那么一个固定的电子态可以用波函数 Ψ(1r , · · · ,N r ), 并且满足多 N 电子体系薛定谔方程:()()22ˆˆˆˆ,2N N N i i j i i i i j H T V U V r U r r E m <⎡⎤⎡⎤ψ=++ψ=-∇++ψ=ψ⎢⎥⎣⎦⎣⎦∑∑∑ (2-3) 其中,● Ĥ, 哈密顿算符;● E , 体系总能量;● ˆT, 动能项; ● ˆV, 由带正电的原子核引起的外场势能项; ● Û, 电子电子相互作用能。

通常把 ˆT和 Û 叫做通用算符, 因为对于任何一个 N 电子体系, 表达式都相同.而势能函数 ˆV与体系密切相关。

由于电子相互作用项 Û 的存在, 复杂的多体系的薛定谔方程公式 2-3并不能拆分为简单的单电子体系的薛定谔方程。

根据 DFT 的核心理念, 对于一个归一化的波函数 Ψ, 电子的密度 n(r ) 可以定义为:333*231212()(,,)(,,)N N N n r N d r d r d r r r r r r r =⋅⋅⋅ψ⋅⋅⋅ψ⋅⋅⋅⎰⎰⎰ (2-4)更重要的是, DFT 的核心理念告诉我们, 对于一个给定的基态, 如果基态的电子密度0()n r 是知道的话, 那么基态的波函数012(,,)N r r r ψ⋅⋅⋅就唯一确定。

也就是说, 基态的波函数0ψ是基态电子密度0n 的泛函[11], 表达为:[]00n ψ=ψ (2-5)既然有以上的假定, 那么对于基态的任何一个观测量ˆO, 它的数学期望就应该是0n 的泛函:[][][]000ˆO n n O n =ψψ (2-6) 特别的, 基态的能量也是0n 的泛函:[][][]0000ˆˆˆE E n n T V U n ==ψ++ψ (2-7) 这里外部势能的贡献[][]00ˆn V n ψψ可以通过基态的电子密度0n 来精确表达:300[]()()V n V r n r d r =⎰ (2-8)或者外部势能ˆVψψ可以用电子密度 n 来表达: 30[]()()V n V r n r d r =⎰ (2-9)泛函 T [n ] 和 U [n ] 被称作通用泛函, 而势能泛函 V [n ] 被称做非通用泛函, 因为它与当前研究的系统息息相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
One-body波函数的归一化按(3.4)的定义进行:
(3.11)
j (r) dr 1
2
(3.12)
为了定义一个完整的反对称波函数,我们用反对称算符作用 在Hartree product上,于是多体波函数可以用行列式的形式 被写出,并可用代数的技巧来处理它。这个行列式波函数就 称为Slater 行列式:
5。原子波函数复杂性的估算
考虑实空间有10x10x10=1000个离散点。 对于He原子,只有2个电子,按上述公式,离散 的波函数将由1000x999/2=500x999~5x105的一组 成员来定义。这使得Schrödinger方程的离散方式 是一个有5x105个矢量的本征矢问题。 对于C,有6个电子,问题的维数是: 1000x999x998x997x996x995/(6x5x4x3x2)~1015。 如果考虑的离散点更多,将更为复杂。
2。所有的方法都将与波函数有关联,或者与由波函数 导出的量相关。例如密度矩阵或密度,这些将在前2 -6节详述。另一个重要的概念是变分原理,将在第 7节介绍。
2
3.2 外部势场中的电子体系
1。如果研究的对象是固体中的电子,这里外部势场不是指 外加的电磁场,而是核和其它电子构成的势场。这时体系 的Hamiltonian和Schrödinger方程如下:
N amp M! M ( M 1)...( M N 1)( M N )! M N = N !( M N )! N !( M N )! N!
(3.10)
用这个公式计算时,通常M比N大许多,所以它变成MN/(N!)。 对于实际的体系,需要考虑自旋自由度,上述讨论尚需做适 当修改。但不必担心这个,我们只需对此问题的size有一定观 念即可。 7
6
假定离散空间中有M个点,一个one-body波函数应当描述 在这些点的每一个点上找到粒子的几率振幅。所以onebody波函数就需要M个成员来描述。 一个two-body波函数,即使不是反对称的,也必须给出 在同一点找到粒子1,同时在某些其它点找到粒子2的几率 振幅。要描述它,所需的成员数为M2。 对于一般的N-body波函数,暂不考虑反对称,将必须有 MN个成员。简单的组合公式便可以给出描述反对称N-body 波函数的振幅的成员数是
第三章 密度泛函理论(DFT)的基础 -密度矩阵与多体效应
3.1 引言 3.2 外部势场中的电子体系 3.3 多体波函数 3.4 Slater行列式 3.5 一阶密度矩阵和密度 3.6 二阶密度矩阵和2-电子密度 3.7 变分原理 3.8 小结
1
3.1 引 言
1。为了计算电子体系所涉及的量,我们需要处理电子 多体问题的理论和技术。本章将首先解释处理多体 问题的某些重要概念(如多体波函数、交换和关联 效应等),然后简短地给出不同的从头算方法,重 点是审查DFT的基础,回答为何DFT可以用电子密 度作为基本变量,并阐述DFT的物理基础。
(r1,...rN ) dr1...drN 1
P (1) P
例如,假定 P 12 是交换第1和第2粒子,则有
2
(3.4)
要记住这个波函数在置换任何2个粒子坐标时应该是反对称的。 如果考虑N-粒子置换群的任何一个操作P,将有
(3.5)
(r2 , r1,...rN ) P12 (r1, r2 ,...rN ) (r1, r2 ,...rN )
H 0 (r,R) U N (R) Te (r) U e (r) U eN (r,R) H 0 (r,R)n (r,R) En (R)n (r,R)
(2.5) (2.6)
在此,R是一个固定参数。 2。在从头算方法中,电子加经典的核组成的体系的能量En(R) 被称为“总能”。这是一种习惯的称呼,其实声子能量的修正 也应当包括在“真正的”总能之中。总能可以被分解为纯粹经 典的静电能,即核-核相互作用部分和其余的电子部分:
8
3.4 Slater行列式
1。多体波函数可以用“Slater 行列式”展开得到,它是基于单 体(单电子)轨道集合的反对称波函数。这个概念在今后的 章节中都是有用的。 定义Hartree products:即N个one-body波函数的简单乘积。
H (r1,r2 ,...rN ) 1(r1) 2 (r2 )... N (rN )
el En ( R) U N ( R) En ( R)
(3.1)
3
3。因为把核的位置作为固定参数,可以把核位置指标拿掉, 以后就用下面的Schrödinger方程进行工作:
N 1 1 2 ri V (ri ) 2 1i j N ri rj i 1 el n (r1 ,...rN ) n (r1 ,...rN ) En
(3.6)
5
3。反对称算符 现在定义反对称算符
AN ( N !)ຫໍສະໝຸດ 1 (1) P PP(3.7)
这个算符将选择函数的反对称部分,使得对于每一个函数ψ, ANψ是反对称的。 如果Φ是反对称的,则 (3.8) AN Φ= Φ 所以,AN是一个投影算符,有 (3.9) ANAN=AN 4。描述N-body波函数(离散方式) 的困难 从Schrödinger方程(3.2)的解详细描述N-body波函数是一项 相当困难的任务。即使是一个one-body波函数,从给定的几率 振幅要找3D空间中每一点的单粒子,已经是一个复杂的事。何 妨要描述的是N-body波函数!为了使读者对此困难有一个感觉, 让我们假定现在是在一个离散的3D空间中工作。
(3.2)
其中,N 现在是电子数。而
V (r )
j NN
Zj r Rj
(3.3)
是电子-离子相互作用势。
4
3.3 多体波函数
1。一项简化:为了处理问题简单和便于解释物理概念,本 章的绝大部分篇幅都忽略自旋波函数和自旋指标。加上它 是直接的,这将在本章最后作一简述。 2。多体波函数的反对称性 多体波函数的归一化满足
相关文档
最新文档