LED散热基板之厚膜与薄膜制程差异分析

合集下载

最佳化大功率LED之厚膜技术

最佳化大功率LED之厚膜技术

最佳化大功率LED之厚膜技术根据美国能源部能源效率和可再生能源办公室提供的资讯,散热是成功设计大功率LED系统的最重要因素之一。

发光二极管只能将20%到30%的电能转化为可见光,其余转化为热量,必须从大功率LED芯片导入电路板和散热片。

多余的热量会减少LED的光输出,缩短其寿命。

因此,散热效率的提升对于最佳化大功率LED的性能潜力非常重要。

用散热基板替代目前,用于高功率/高亮度用途的LED基板或模组被銲接到一个金属基印刷电路板(MCPCB)、增强散热型印刷电路板或陶瓷基板上,然后将基板黏接到散热片上。

虽然这种配置在LED行业广泛应用,但它不是最佳的散热方法,而且制造成本可能很高。

MCPCB和增强散热型印刷电路板具有良好的散热性能,但设计灵活度有限,而且如果需要提高散热效能,成本可能很高,原因是需要额外花费散热孔加工费用和昂贵的导热绝缘材料费用。

陶瓷基板可以采用导热性不强但价格便宜的陶瓷(如氧化铝陶瓷),也可以采用导热性强但价格十分昂贵的陶瓷(如氮化铝陶瓷)。

总而言之,陶瓷基板的成本高于MCPCB和增强散热型印刷电路板基板。

为替代上述基板,大功率LED厂商正在测试直接在铝基板上制作电路的方法,因为这种方法能提供优良的导热性。

由于其优势,LED产业有兴趣采用铝,但在铝基板上制作LED电路需要绝缘层。

现在,厚膜技术的进展使大功率LED产业能够获得使用铝基板的好处。

厚膜散热浆料供应商贺利氏材料技术公司研制的铝基板用材料系统(IAMS)是一种低温烧结(低于600℃)的厚膜绝缘系统,可以印刷和烧结在铝基板上。

IAMS材料系统包含介电浆料、银导电浆料、玻璃保护层和电阻浆料。

这些材料都适合于3000、4000、5000和6000系列铝基板。

IAMS的优点贺利氏公司厚膜材料部全球LED专案经理近藤充先生说:“IAMS是为铝基板设计的绝缘系统。

铝无法承受超过摄氏660度以上的温度,标准的厚膜产品基于陶瓷,必须在高温下烧结,温度高达摄氏800度至900度。

薄膜与厚膜技术介绍与对比

薄膜与厚膜技术介绍与对比

薄膜与厚膜技术介绍与对比薄膜与厚膜技术相对于三维块体材料,所谓膜,因其厚度及尺寸比较小,一般来说可以看做是物质的二维形态。

利用轧制、捶打、碾压等制作方法的为厚膜,厚膜(自立膜)不需要基体、可独立成立;由膜的构成物堆积而成的为薄膜,薄膜(包覆膜)只能依附在基体之上。

膜的主要功能分为三种:电气连接、元件搭载、表面改性。

1.电气连接。

电路板及膜与基板互为一体,元器件搭载在基板上达到与导体端子相互连接。

2.元件搭载。

不论采用引线键合还是倒装片方式,芯片装载在封装基板上需要焊接盘。

而元器件搭载在基板上,不论采用DIP还是SMT方式都依赖导体端子,其中焊接盘和导体端子都是膜电路重要的部分。

3.表面改性。

通过膜的使用可以使材料在某些性能上得到改性,如增加材料的耐磨性、抗腐蚀性、耐高温性等等。

薄膜技术介绍一、薄膜材料1.导体薄膜主要用于形成电路图形,为半导体芯片、元件、电阻、电容等电路搭载部件提供金属化及相互引线。

值得注意的是,成膜后造成膜异常的原因包括:严重的热适配导致应力过剩,膜层的剥离导致电路断线;物质物理性质的原因,如热扩散、电迁移、反应扩散等。

2.介质薄膜因其优良的电学性、机械电性及光学电性在电子元器件、光学器件、机械器件等领域具有较大应用。

其成膜方法有MO、CVD、射频磁控溅射、粒子束溅射等。

3.电阻薄膜常用的制作方法有真空蒸镀、溅射镀膜、电镀、热分解等。

4.功能薄膜在传感器、太阳能电池、光集成电路、显示器、电子元器件等领域具有广泛的应用。

二、成膜方法1.干膜。

真空蒸镀原理为镀料在真空中加热、蒸发,蒸汽析出的原子及原子团在基板上形成薄膜;溅射镀膜原理为将放电气体导入真空,通过离子体中产生的正离子的加速轰击,使原子沉积在基板上;CVD指气态原料在化学反应下形成固体薄膜在基板上形成沉积的过程。

2.湿膜。

依据电场反应,金属可在金属盐溶液中析出成膜。

其中,电镀的还原能量由外部电源提供;化学镀利用添加还原剂的方法,促成分解成膜。

LED陶瓷基板

LED陶瓷基板

LED陶瓷基板的技术分析与现状——本资料由·东莞市中实创半导体照明有限公司/ 工程部·整理与撰写——摘要:陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、LED封装、多芯片模块等领域。

本文简要介绍了目前LED封装陶瓷基板的技术现状与以后的发展。

关键字:LED陶瓷基板 LED产业(一)前言:陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、LED封装、多芯片模块等领域。

LED散热基板的选择亦随着LED之线路设计、尺寸、发光效率…等条件的不同有设计上的差异,以目前市面上最常见的可区分为:①系统电路板,其主要是作为LED最后将热能传导到大气中、散热鳍片或外壳的散热系统,而列为系统电路板的种类包括:铝基板(MCPCB)、印刷电路板(PCB)以及软式印刷电路板(FPC);②LED芯片基板,是属于LED芯片与系统电路板两者之间热能导出的媒介,并藉由共晶或覆晶与LED芯片结合。

为确保LED的散热稳定与LED芯片的发光效率,近期许多以陶瓷材料作为高功率LED散热基板之应用,其种类主要包含有:低温共烧多层陶瓷(LTCC)、高温共烧多层陶瓷(HTCC)、直接接合铜基板 (DBC)、直接镀铜基板(DPC)四种,以下本文将针对陶瓷LED芯片基板的种类做深入的探讨。

(二)陶瓷基板的定义和性能:1.定义:陶瓷基板是以电子陶瓷为基的,对膜电路元件及外贴切元件形成一个支撑底座的片状材料。

按照陶瓷基片应用领域的不同,又分为HIC(混合集成电路)陶瓷基片、聚焦电位器陶瓷基片、激光加热定影陶瓷基片、片式电阻基片、网络电阻基片等;按加工方式的不同,陶瓷基片分为模压片、激光划线片两大类。

2.陶瓷基板的性能:(1)机械性质Ø有足够高的机械强度,除搭载元件外,也能作为支持构件使用;Ø加工性好,尺寸精度高;容易实现多层化;Ø表面光滑,无翘曲、弯曲、微裂纹等。

(2)电学性质Ø绝缘电阻及绝缘破坏电压高;Ø介电常数低;Ø介电损耗小;Ø在温度高、湿度大的条件下性能稳定,确保可靠性。

《厚膜与薄膜技术》PPT课件

《厚膜与薄膜技术》PPT课件
参数意义:浆料内颗粒尺寸分布和弥散的度量
测量工具:细度计
测量结果:能得到颗粒
的最大、最小和平均粒径
2021/5/28
超大规模集成电路硅衬底抛光
14
2021/5/28
固体粉末百分比含量
参数意义:有效物质与粘贴成分的质量与浆料总质量 的比值,一般为85%~92%〔质量百分比〕。
测量方法:取少量浆料样品称重,然后放在大约 400℃的炉子里直到所有的有机物烧尽,重新称量样 品。
2021/5/28
提供元器件与膜布线之间以及与更高一级组装的电互连。
提供端接区以连接厚膜电阻。
提供多层电路超导大规体模层集成之电间路硅的衬电底连抛光接。
19
2021/5/28
厚膜导体材料有三种根本类型:
可空气烧结:由不容易形成氧化物的贵金属制成的,主要 的金属是金和银,它们可以是纯态的,也可与钯或与铂存 在于合金化的形式。
印刷后,必须有足够的时间使浆料粘度增加到接近 静止粘度〔流平〕,如果在流平前把浆料置于烘干 工艺的条件下,那么浆料由于温度的升高而变得稀 薄,印出的图形将会丧失线条的清晰度。
浆料粘度的调节:
参加适当的溶剂可以很容易的降低粘度,当浆料罐 已开启屡次或把浆料从丝网返回罐中时,常常需要 这么做。
增加浆料的粘度是很困难的,需要参加更多的不挥
2021/5/28 更为困难。
超大规模集成电路硅衬底抛光
8
2021/5/28
〔2〕金属氧化物材料:一种纯金属例如Cu、Cd与浆料 的混合物
粘贴机理:纯金属在基板外表与氧原子反响形成氧化物, 金属与其氧化物粘接并通过烧结而结合在一起。属于 氧化物键合或分子键合。
特点:与玻璃料相比,这一类浆料改善了粘接性。但烧 结温度较高,一般在950~1000℃下烧结,加速了厚 膜烧结炉的损耗,炉体维护频率高。

LED知识大全LED散热附详细图表

LED知识大全LED散热附详细图表

LED知识大全:LED散热[附详细图表]2011-03-07 15:55:08 文章来源:OF week半导体照明网作者:茅于海导读:LED的散热现在越来越为人们所重视,这是因为LED的光衰或其寿命是直接和其结温有关,散热不好结温就高,寿命就短,依照阿雷纽斯法则温度每降低10℃寿命会延长2倍。

关键字LED散热LED光衰结温LED的散热现在越来越为人们所重视,这是因为LED的光衰或其寿命是直接和其结温有关,散热不好结温就高,寿命就短,依照阿雷纽斯法则温度每降低10℃寿命会延长2倍。

从Cree 公司发布的光衰和结温的关系图(图1)中可以看出,结温假如能够控制在65°C,那么其光衰至70%的寿命可以高达10万小时!这是人们梦寐以求的寿命,可是真的可以实现吗?是的,只要能够认真地处理它的散热问题就有可能做到!遗憾的是,现在实际的LED灯的散热和这个要求相去甚远!以致LED灯具的寿命变成了一个影响其性能的主要问题,所以必须要认真对待!图1:光衰和结温的关系(点击图片放大)而且,结温不但影响长时间寿命,也还直接影响短时间的发光效率,例如Cree公司的XLamp7090XR-E的发光量和结温的关系如图2所示。

图2:结温和发光量的关系(点击图片放大)假如以结温为25度时的发光为100%,那么结温上升至60度时,其发光量就只有90%;结温为100度时就下降到80%;140度就只有70%。

可见改善散热,控制结温是十分重要的事。

除此以外LED的发热还会使得其光谱移动;色温升高;正向电流增大(恒压供电时);反向电流也增大;热应力增高;荧光粉环氧树脂老化加速等等种种问题,所以说,LED的散热是LED灯具的设计中最为重要的一个问题。

第一部分LED芯片的散热一、结温是怎么产生的LED发热的原因是因为所加入的电能并没有全部转化为光能,而是一部分转化成为热能。

LED的光效目前只有100lm/W,其电光转换效率大约只有20~30%左右。

铝基板制程能力

铝基板制程能力

散熱基板材質之比較
基板材料
印刷電路板(FR4)
特性
低效能低價位(CTE= 13-17ppm, K=0.36W/m.K) 大尺寸, up to .004” (100um) Cu thickness
中高價位, 高熱膨脹(17-23ppm) 介電層熱傳導率差(1-3W/K), 操作溫度最高只達140C, 製程溫度只達250-300C 大尺寸(18 x 24”),銅箔厚度可達1-20mil 中高價位, 低熱膨脹(4.9-8ppm), 中高熱傳導率(24-170W/MK) 小尺寸(<4.5” sq) 適用極高操作溫度, 容易處理高功率元件 中高價位, 低熱膨脹(5.3-7.5ppm 高熱效能(24-170W/MK) 最大尺寸5”x7” 適用於極高操作溫度及製程溫度(up to 800C ) 易於處理高功率極高電流元件
金屬芯印刷電路板(MCPCB)
陶瓷基板(Al2O3/AlN/SiC)
陶瓷直接接合銅箔
此圖表資料來源:工研院材化所
LED傳熱途徑

依據不同的封裝技術,其散熱方法亦有所不同,而LED 各種散熱途徑方法約略可以下圖一示意之:
圖 一 LED 散 熱 途 徑 示 意 圖
散熱途徑說明: 1.從空氣中散熱 2. 熱能直接由System circuit board導出 3. 經由金線將熱能導出 4. 若為共晶及Flip chip製程,熱能將經由通孔至系統電路板而導出
Arlon、Elite(EMC)、Nanya Ventec、DENKA
最小值 Min Copper line width Min Space between copper line Min Space between copper land and copper line Min Space between copper land and punched hole. Annular Ring Capability Space between copper land and copper land (With S/M dam) Min space from copper land to any edge of the board. Min Space between copper land and punched hole. Min space of slot edge to board outline Min. Warp & Twist tolerance for A1-base Min. Warp & Twist tolerance for heavy copper

薄厚膜技术

薄厚膜技术

➢薄膜技术
薄膜技术是一种减法技术,在整个基板上覆几层金属
膜,一些不需要的部分被光刻掉。用光刻工艺形成的 图形比厚膜工艺能够形成的线条更窄、边缘更清晰。 这个特性促进了薄膜技术在高密度和高频领域的应用 薄膜技术利用热蒸镀、电子束蒸镀、溅镀、化学气相 沉积等薄膜镀着技术配合微影成像与蚀刻等技术在基 板上制成导线电路与各种电阻、电容等元件。
➢厚膜技术
厚膜技术是采用丝网印刷和烧结等工艺,将传统无
源元件(电阻、电容)及导线电路形成于散热良好 的陶瓷绝缘基板表面。 厚膜技术的基本内容是印刷和烧结。 网印是使用刮刀将导体浆料、电阻浆料和介质浆料 等刷过镂刻有电路图形的网板或金属板,以在陶瓷 基板表面形成所需的电路、电阻、电容图形,再经 过烧结或聚合完成膜与基板的粘接。 烧结技术也包括陶瓷基板的制作。
✓ 电容材料 氧化钽(Ta2O5)、氮化硅(Si3N4)
✓ 绝缘层材料 氧化硅、聚亚醯胺
光刻
在光刻工艺中,基板上涂一层光敏材料,紫外线透过在玻璃 上形成的图案对光敏材料进行曝光。不需要的材料,即没有 被光刻胶保护的部分,可以通过“湿法”(化学)刻蚀来去 除,也可以通过“干法”(溅散)刻蚀去除。
化学刻蚀仍然是薄膜刻蚀的最常用的方法,但许多制造商 用采用溅射刻蚀。在这项技术中,基板覆盖上光刻胶,与化 学刻蚀完全一样的方法露出图形。接着将基板放置于等离子 体内,加上电位。实际上,在溅散刻蚀过程中基板起靶的作 用,气体离子轰击薄膜的暴露部分除去不需要的材料。光刻 胶膜比溅散的薄膜厚很多,故它是不受影响的。
先用丝绸、尼龙或不锈钢丝编织成的网绷紧在框架上 ,再将刻有导体或电阻图形的有机膜或金属箔(称掩模 )贴到丝网上。
印刷时,将基板放在丝网下面,而将浆料放在丝网上 面,然后用橡胶或塑料制成的刮板以一定的速度和压力 在丝网上移动,使它通过掩模上的开孔图形而漏印到基 板上,于是在基板上便得到该浆料印出的所需图形。

LED灯散热途径分析与陶瓷基板研究

LED灯散热途径分析与陶瓷基板研究

摘要led具有节能、省电、高效、反应时间快等特点已得到广泛应用,但是led发光时所产生的热能若无法导出,将会导致led工作温度过高,从而影响led灯的寿命、光效以及稳定性。

本文从led温度产生的原因出发,分析led灯的散热途径以及陶瓷散热基板技术。

【关键词】led灯散热陶瓷基板led半导体照明芯片工作时发的光线是不含紫外线和红外线的,因此它的光线不能带走热量,所以工作时温度就会不断上升。

为了降低led工作温度,延长led灯的寿命就必须要把它发光时产生的热能及时导出。

led 从芯片到整个散热器的每一个环节都必须充分考虑散热。

任何一个环节不当的设计都会引起严重的散热问题。

1 温度对led灯的影响led的光衰表明了它的寿命,随着使用的时间,亮度会就越来越暗,直到最后熄灭。

通常定义衰减30%的时间作为其寿命。

led温度与寿命的关系图如图1所示,从图中我们可以看到,led灯的寿命随着工作温度的升高而缩短。

图2是结面温度与发光量之间的关系图,如果结温为25度时发光为率100%的话,那么当结温上升到50度时,发光率下降到95%;100度时下降到80%;150 度就只有68%。

2 led温度产生原因分析led发热是因为加入的电能只有约20%-30%转换成了光能,而一大部分都转化成了热能。

led结温的产生是由于两个因素所引起的。

(1)pn区载流子的复合率并不是100%,也就是电子和空穴复合的时候不全都产生光子,泄漏电流及电压的乘积就是这部分产生的热能。

但现在内部光子效率已经接近于90%,因此这部分热能并不是led结温产生的主要因素。

(2)导致led结温的是主要因素是内部复合产生的光子不能全部射出到芯片外部而转化的热能,目前这种外部量子效率只有30%左右,其大部分都转化为热量了。

led散热可以通过以下途径实现:(1)从空气中散热;(2)热能直接由电路板导出;(3)经由金线将热能导出;(4)若为共晶及flip chip 制程,热能将经由通孔至系统电路板而导出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LED散热基板之厚膜与薄膜制程差异分析
1、简介
LED模组现今大量使用在电子相关产品上,随着应用范围扩大以及照明系统的不断提升,约从1990年开始高功率化的要求急速上升,尤其是以白光高功率型式的需求最大,现在的照明系统上所使用之LED功率已经不只1W、3W、5W甚至到达10W以上,所以散热基板的散热效能俨然成为最重要的议题。

影响LED散热的主要因素包含了LED晶粒、晶粒载板、晶片封装及模组的材质与设计,而LED 及其封装的材料所累积的热能多半都是以传导方式散出,所以LED 晶粒基板及LED晶片封装的设计及材质就成为了主要的关键。

2、散热基板对于LED模组的影响
LED从1970年以后开始出现红光的LED,之后很快的演进到了蓝光及绿光,初期的运用多半是在一些标示上,如家电用品上的指示,到了2000年开始,白光高功率LED的出现,让LED的运用开始进入另一阶段,像是户外大型看版、小型显示器的背光源等(如图一),但随着高功率的快速演进,预计从2010年之后,车用照明、室内及特殊照明的需求量日增,但是这些高功率的照明设备,其散热效能的要求也越益严苛,因陶瓷基板具有较高的散热能力与较高的耐热、气密性,因此,陶瓷基板为目前高功率LED最常使用的基板材料之一。

然而,目前市面上较常见的陶瓷基板多为LTCC或厚膜技术制成的陶瓷散热基板,此类型产品受网版印刷技术的准备瓶颈,使得其对位精准度上无法配合更高阶的焊接,共晶(Eutectic)或覆晶(Flip chip) 封装
方式,而利用薄膜制程技术所开发的陶瓷散热基板则提供了高对位精准度的产品,以因应封装技术的发展。

2.1、散热基板的选择
就LED晶粒承载基板的发展上,以承载晶粒而言,传统PCB的基板材质具有高度商业化的特色,在LED发展初期有着相当的影响力。

然而,随着LED功率的提升,LED基板的散热能力,便成为其重要的材料特性之一,为此,陶瓷基板逐渐成为高效能LED的主要散热基板材料(如表一所示),并逐渐被市场接受进而广泛使用。

近年来,除了陶瓷基板本身的材料特性问题须考虑之外,对基板上金属线路之线宽、线径、金属表面平整度与附着力之要求日增,使得以传统厚膜制程备制的陶瓷基板逐渐不敷使用,因而发展出了薄膜型陶瓷散热基板,本文将针对陶瓷散热基板在厚膜与薄膜制程及其产品特性上的差异做出分析。

中国灯具招商网
专业整理
表一、各类材料散热系数
3、陶瓷散热基板
从传统的PCB(FR4)板,到现在的陶瓷基板,LED不断往更高功率的需求发展,现阶段陶瓷基板之金属线路多以厚膜技术成型,然而厚膜印刷的对位精准度使得其无法跟上LED封装技术之进步,其主要因素为在更高功率LED元件的散热设计中,使用了共晶以及覆晶两种封装技术,这些技术的导入不但可以使用高发光效率的LED晶粒,
更可以大幅降低其热阻值并且让接合度更加完善,让整体运作的功率都相对的提升。

但是这两种接合方式的应用都需要拥有精确金属线路设计的基础,因此以曝光微影为对位方式的薄膜型陶瓷散热基板就变成为精准线路设计主流。

3-1、厚膜印刷陶瓷基版
厚膜制程大多使用网版印刷方式形成线路与图形,因此,其线路图形的完整度与线路对位的精确度往往随着印刷次数增加与网版张力变化而出现明显的累进差异,此结果将影响后续封装制程上对位的精准度;再者,随着元件尺寸不断缩小,网版印刷的图形尺寸与解析度亦有其限制,随着尺寸缩小,网版印刷所呈现之各单元图形尺寸差异(均匀性)与金属厚度差异亦将越发明显。

为了线路尺寸能够不断缩小与精准度的严格要求下,LED散热基板的生产技术势必要继续提升。

因而薄膜制程的导入就成为了改善方法之一,然而国内拥有成熟的陶瓷基板薄膜金属化制程技术的厂家却屈指可数。

为此,以薄膜元件起家的瑷司柏电子(ICP),即针对自家开发之薄膜基板与传统厚膜基板进行其制程与产品特性差异分析(如下表二所示)。

3-2、薄膜制程应用于陶瓷基板
薄膜技术的导入正可解决上述线路尺寸缩小的制程瓶颈,结合高真空镀膜技术与黄光微影技术,能将线路图形尺寸大幅缩小,并且可同时符合精准的线路对位要求,其各单元的图形尺寸的低差异性(高均匀性)更是传统网版印刷所不易达到的结果。

在高热导的要求下,目前瑷司柏(ICP)的薄膜制程技术已能克服现阶段厚膜制程在对位精准度
的瓶颈,图(二)即为薄膜制程之简易流程图,在空白陶瓷基板上(氧化铝/氮化铝)经过前处理之后,镀上种子层(sputtering),经过光阻披覆、曝光显影,再将所需之线路增厚(电镀/化学镀),最后经过去膜、蚀刻步骤使线路成形,此制程所备制之产品具有较高的线路精确度与较佳的金属镀层表面平整度。

图(三)即为瑷司柏薄膜基板产品与传统厚膜产品的金属线路光学显微图像。

可明显看出厚膜印刷之线路,其表面具有明显的坑洞且线条的平整度不佳,反观以薄膜制程制备之金属线路,不但色泽清晰且线条笔直平整。

由以上厚/薄膜这些金属线路上的几何精准度差异,再加上厚膜线路易因网版张网问题造成阵列图形的累进公差加剧,使得厚膜印刷产品在后续晶片置件上,较容易造成置件偏移或是寻边异常等困扰。

换句话说厚膜印刷产品的对位及线路的精准度不够精确,使其限制了晶片封装制程的制程裕度(window)。

然而,薄膜制程产品则能大幅改善其现象。

但从产品成本结构来看,如表二所示薄膜产品的制程设备(黄光微影)与生产环境(无尘或洁净室)相较于厚膜产品其成本较高,然而薄膜制程的金属线路多以厚铜材料为主,相较于厚膜印刷之厚银而言,材料成本却相对较低,因此,可预期的当利用薄膜制程将陶瓷基板金属化的产品,日渐达到经济规模时,其成本将逐渐趋近于厚膜产品。

图二、薄膜制程流程
图3 厚膜与薄膜线路差异
3-2-1、氧化铝陶瓷基板
上述部分是针对制程不同部份所做的阐述,另一项与散热息息相关的
则是基板材质,LED散热基板所使用之材质现阶段以陶瓷为主,而氧化铝陶瓷基板应是较易取得且成本较低之材料,是目前运用在元件上的主要材料,然而厚膜技术或薄膜技术在氧化铝陶瓷基板上制备金属线路,其金属线路与基版的接着度或是特性上并无显著的差异,而两种制程显现出最主要的差异则是在线路尺寸缩小的要求下,薄膜制程能提供厚膜技术无法达到的较小线路尺寸与较高的图形精准度。

3-2-2、氮化铝陶瓷基板
而在更高功率LED应用的前提下,具高导热系数的氮化铝(170-230W/mK)将是散热基板的首选材质,但厚膜印刷之金属层(如高温银胶)多需经过高温(高于800oC)烧结制程,此高温烧结制程于大气环境下执行易导致金属线路与氮化铝基板间产生氧化层,进而影响线路与基板之间的附着性;然而,薄膜制程则在300 ℃以下制程之条件下备制,无氧化物生成与附着性不佳之疑虑,更可兼具线路尺寸与高精准度之优势。

薄膜制程为高功率氮化铝陶瓷LED散热基板创造更多应用空间。

4、结论
以上我们已将LED散热基板在两种不同制程上做出差异分析,以薄膜制程备制陶瓷散热基板具有较高的设备与技术,需整合材料开发门槛,如曝光、真空沉积、显影、蒸镀(Evaporation)、溅镀(Sputtering)电镀与无电镀等技术,以目前的市场规模,薄膜产品的相对成本较高,
但是一旦市场规模达到一定程度时,必定会反映在成本结构上,相对的在价格上与厚膜制程的差异将会有大幅度的缩短。

在高效能、高产品品质要求与高生产架动的高功率LED陶瓷基板的发展趋势之下,高散热效果、高精准度之薄膜制程陶瓷基板的选择,将成为趋势,以克服目前厚膜制程产品所无法突破的瓶颈。

因此,可预期的薄膜陶瓷基板将逐渐应用在高功率LED上,并随着高功率LED的快速发展而达经济规模,此时不论高功率LED晶粒、薄膜型陶瓷散热基板、封装制程成本等都将大幅降低,进而更加速高功率LED产品的量化。

信息由灯饰批发市场专业整理。

更多详情。

相关文档
最新文档