电磁航天器编队飞行系统 概述
卫星编队

,G1 ,58 H54 -G1 0G8 ,G1 -5" 739
!"M 编队队形设计
本文将从星相对主星的具有特定空间几何特征 的 相 对 运 动 轨 迹 称 为 编 队 轨 道 /将 运 行 于 相 同 或 相 异编队轨道上的多颗卫星共同构成的几何构形称为 编队队形$
以主星轨道面为基准定义从星的参照轨道要
素$相对轨道倾角 )G定义为主从星轨道面夹角/相 对升交点赤 经 +G和 相 对 轨 道 角 0G分 别 定 义 为 主 星 轨道大圆弧长 ?. 和从星轨 道大圆 弧长 .@/相对 平 赤经 IG定义为 +G和 0G二者之 和$而 相 对 近 地 点 幅角 ,G和相对真近 点 角 -G分 别 定 义 为 从 星 轨 道 大 圆 弧 长 .D5 和 D5@$参 照 轨 道 要 素 与 经 典 轨 道 要 素之间的关系为 ’ JKL
| 参照轨道要素法
|B| 坐标系
本 文 用 到 两 个 坐 标 系 E分 别 为 赤 道 惯 性 坐 标 系 5678和 主 星 轨 道 坐 标 系 9:;<G5678的 原 点 5 在 地 心+6 轴 沿 地 心 赤 道 面 和 黄 道 面 的 交 线=指 向 春分 点+8轴 指向 北 极+7在 赤 道 平 面 上 垂 直 于 6 轴G9:;<的 原点 9为主 星+:在 主 星 轨 道 面 内=从 地 心 指 向 主 星+<沿 轨 道 平 面 法 线 方 向+;在 主 星 轨 道平面内-图 $.G:;,;<,:<平面依 次称 为轨道 面 ,地 平 面 和 法 平 面 G
飞行器飞行控制与导航系统设计

飞行器飞行控制与导航系统设计第一章:引言随着航空技术的飞速发展,飞行器的飞行控制与导航系统的设计变得愈发重要。
飞行控制与导航系统是保障飞行器安全飞行的关键因素之一。
本文将从飞行控制与导航系统的概述入手,深入探讨该系统的设计原理和方法。
第二章:飞行控制系统飞行控制系统主要由飞行控制计算机、执行器、传感器以及作动器等组成。
飞行控制计算机是飞行控制系统的核心,其通过算法和模型来控制飞行器的姿态、航向和高度等。
执行器负责将计算机生成的指令转化为力和力矩,通过作动器作用于飞行器。
传感器则用于采集飞行器的各种状态参数。
飞行控制系统的设计目标是确保飞行器的稳定性、可靠性和安全性。
第三章:导航系统导航系统是指飞行器用于确定其位置、速度和航向等信息的系统。
常见的导航系统包括惯性导航系统(INS)、全球定位系统(GPS)和惯性/全球定位系统(INS/GPS)等。
惯性导航系统通过加速度计和陀螺仪等传感器来测量飞行器的加速度和角速度,进而计算出其位置和航向。
全球定位系统则通过接收地面的卫星信号,来确定飞行器的准确位置和速度。
惯性/全球定位系统是结合了两者优点的一种导航系统。
第四章:飞行控制与导航系统的设计原理飞行控制与导航系统的设计原理主要包括建模、控制算法选择和系统集成等方面。
建模是指将飞行器的动力学和环境模型抽象为数学模型。
控制算法是指根据这些模型,选择合适的控制策略来实现稳定控制和导航。
系统集成则是指将飞行控制系统与导航系统进行有机地集成,确保二者之间的相互作用。
第五章:飞行控制与导航系统的设计方法飞行控制与导航系统的设计方法包括仿真、实验和实际飞行验证等。
仿真是指利用计算机模型来进行系统设计和性能评估。
实验则是通过实际物理设备进行系统验证和优化。
最终需要进行实际飞行验证,以验证系统在真实飞行环境中的性能表现。
第六章:飞行控制与导航系统的发展趋势随着航空技术的不断进步,飞行控制与导航系统也在不断发展。
未来,飞行控制与导航系统将更加智能化和自动化。
航天器控制原理(第四章 控制系统组成)

哥伦比亚航天飞机视频资料
4.2
4.2.1 推力器
执行机构
推力器是目前航天器控制使用最广泛的执行机构之 一。它根据牛顿第二定律,利用质射排出,产生反作用 推力,这也正是这种装置被称为推力器或喷气执行机构 的原因。当推安装使得推力方向通过航天器质心,则成 为轨道控制执行机构;而当推力方向不过质心,则必然 产生相对航天器质心的力矩,成为姿态控制执行机构。 根据产生推力所需能源的形式不同,质量排出型推 力器可以分为冷气推力器、热气推力器和电推力器。
加速度计
加速度计是用于测量航天器上加速度计安装点的绝对 加速度沿加速度计输入轴分量的惯性敏感器。虽然目前加 速度计没有广泛用于航天器的姿态稳定和控制,但它是航 天器导航系统中重要的器件。 加速度计的种类很多,有陀螺加速度计、摆式加速度 计、振动加速度计、石英加速度计等。
4.1.6
磁强计
磁强计是以地球磁场为基准,测量航天器姿态的敏 感器。磁强计本身是用来测量空间环境中磁场强度的。 由于地球周围每一点的磁场强度都可以由地球磁场模型 事先确定,因此利用航天器上的磁强计测得的信息与之 对比便可以确定出航天器相对于地球磁场的姿态。 磁敏感器根据工作原理不同可以分为感应式磁强计 和量子磁强计两种。
4.1.4 陀螺 陀螺是利用一个高速旋转的质量来敏感其自旋轴在 惯性空间定向的变化。 陀螺具有两大特性,即定轴性和进动性。 定轴性就是当陀螺不受外力矩作用时,陀螺旋转轴 相对于惯性空间保持方向不变; 进动性就是当陀螺受到外力矩作用时,陀螺旋转轴 将沿最短的途径趋向于外力矩矢量,进动角速度正比于 外力矩大小。
姿态敏感器小结
在实际的航天器姿态控制系统中,各种敏感器单独使 用一般是不能满足要求的,需要多种多个姿态敏感器组 合使用,形成一个姿态测量系统。原因主要有三方面:
地球轨道航天器编队飞行动力学与控制研究综述

第41卷第2期力学与实践2019年4月地球轨道航天器编队飞行动力学与控制研究综述1)孙俊2)黄静张宪亮黄庭轩(上海航天控制技术研究所,上海201109)(上海市空间智能控制技术重点实验室,上海201109)孙俊,上海航天控制技术研究所研究员,研发中心主任,哈尔滨工程大学兼职教授/博导,2004年毕业于南京航空航天大学电气工程及其自动化专业,后获得上海航天技术研究院导航制导与控制专业硕士和哈尔滨工业大学航空宇航科学与技术专业博士学位。
著有《航天器姿轨一体化动力学与控制技术》等。
发表空间飞行器动力学与控制技术方面的SCI、EI论文24篇,发明专利10余项,主持国家自然科学基金、科技部重点研发专项、国家863计划、973计划、军委科技委等11项重大/重点课题研究。
获上海市学术技术带头人、上海市青年拔尖人才及国家863计划先进个人等荣誉称号。
担任全国遥感技术标准化技术委员会委员。
摘要航天器编队飞行被定义为跟踪或维持航天器之间的期望相对间隔、期望指向和相对位置。
本文概括介绍了近年来地球轨道飞行编队的动力学和控制方面研究的发展状况,包括传统推进系统和新型无推进剂编队系统的动力学建模方法和控制器设计技术等。
在传统推进编队系统中,航天器由使用化学燃料或等离子体的推进器提供推力,可以实现高精度地相对姿态/位置保持或重构,控制简单,灵活性高,但是需要消耗较多的能源。
相比之下,在新型无推进剂编队系统中,航天器通过新的推力方式,如大气阻力作用,非接触内力,地磁洛伦兹力,动量交换等,将大大延长编队任务的寿命,并有效地避免羽流污染,但会带来新的控制问题。
本文总结了这些领域中动力学与控制方面的研究方法及取得的成果,并提出了相关领域值得深入研究的问题和后续发展的方向。
关键词航天器,编队飞行,动力学,编队控制,地球轨道中图分类号:V448.2文献标识码:A doi:10.6052/1000-0879-18-409DYNAMICS AND CONTROL OF SPACECRAFT FORMATION FLYING INEARTH ORBIT1)SUN Jun2)HUANG Jing ZHANG Xianliang HUANG Tingxuan(Shanghai Institute of Spaceflight Control Technology,Shanghai201109,China)(Shanghai Key Laboratory of Aerospace Intelligent Control Technology,Shanghai201109,China)Abstract The spacecraft formationflying is defined as the tracking or the maintenance of a desired relative separation,orientation or position between or among several spacecraft.This paper reviews the本文于2018–10-17收到。
简述飞控系统的部件组成

简述飞控系统的部件组成飞控系统是指飞机上的一套系统,用于控制和管理飞机的飞行状态和操作。
飞控系统由多个部件组成,每个部件都有不同的功能和作用。
1. 飞行管理计算机(FMC):飞行管理计算机是飞控系统的核心部件,负责控制飞机的航向、高度、速度等飞行参数。
它通过计算和控制飞机的推力、升降舵、副翼等控制面,来维持飞机在特定的航线上飞行。
2. 飞行控制计算机(FCC):飞行控制计算机是飞控系统的另一个重要部件,负责控制飞机的姿态和稳定性。
它通过控制飞机的副翼、升降舵、方向舵等控制面,来调整飞机的姿态和保持飞机的稳定飞行。
3. 自动驾驶仪(AP):自动驾驶仪是飞控系统中的一个重要组成部分,可以根据预设的航线和飞行参数自动驾驶飞机。
它可以控制飞机的航向、高度和速度,实现飞机的自动导航和自动操控。
4. 数据链路系统(DLS):数据链路系统是飞控系统中的通信部件,通过无线电通信与地面站和其他飞机进行数据传输和交流。
它可以传输飞行计划、气象信息、导航数据等重要信息,提供飞行控制和管理的支持。
5. 传感器系统:传感器系统是飞控系统中的关键部件,用于感知和获取飞机的各种参数和状态。
常见的传感器包括惯性导航系统(INS)、GPS导航系统、空速计、高度计、姿态传感器等。
这些传感器可以实时监测飞机的位置、速度、姿态等信息,为飞行控制提供准确的数据支持。
6. 执行机构:执行机构是飞控系统中的执行部件,负责根据飞行控制计算机的指令来控制飞机的各种运动。
常见的执行机构包括发动机、舵面(副翼、升降舵、方向舵)和襟翼等。
这些执行机构可以根据飞行控制计算机的指令,调整飞机的推力、航向、姿态等参数。
7. 监控和故障诊断系统(CMS):监控和故障诊断系统是飞控系统中的重要组成部分,用于监测飞机的各个系统和部件的工作状态,并及时报告和处理故障信息。
它可以实时监测飞机的各种传感器和执行机构,检测和诊断飞机的故障,提供故障诊断和维修指导。
总结起来,飞控系统的部件包括飞行管理计算机、飞行控制计算机、自动驾驶仪、数据链路系统、传感器系统、执行机构和监控和故障诊断系统。
国外编队飞行干涉SAR卫星系统发展综述

国外编队飞行干涉SAR卫星系统发展综述尹建凤;张庆君;刘杰;张润宁;赵良波;张弛;刘久利【摘要】The Cartwheel interferometric SAR constellation proj ect is briefly introduced in the paper.Then the system performancerequirement,operational mode,system realization,on-orbit movement and the application results of Germany TanDEM-X formation flying interferometric SAR satellite are presented.The key technologies of TanDEM-X system which are baseline deter-mination,synchronization between satellites and autonomous formation flying are detailedly in-vestigated and analyzed.Solution to the three key technologies and their achieved performance are given,and the modification suggestion for its time synchronization method is proposed.Inspira-tions for the similar system manufacture from two aspects of system design and key technology is summarized.%首先简述了"干涉车轮"(Cartwheel)干涉 SAR 星座计划的基本情况,继而针对德国X频段陆地合成孔径雷达-附加数字高程测量(TanDEM-X)编队干涉 SAR 系统的性能指标要求、工作模式、系统实现、在轨运行应用情况进行了介绍.重点针对TanDEM-X的基线测量、星间同步和自主编队控制3项关键技术采取的技术途径和达到的性能指标进行了深入调研分析,并针对其中值得改进的时间同步方法提出了具体的改进措施,最后,从系统总体设计和关键技术两方面归纳了对其他类似系统研制的启示.【期刊名称】《航天器工程》【年(卷),期】2018(027)001【总页数】7页(P116-122)【关键词】干涉SAR;编队飞行;星间基线测量;星间同步【作者】尹建凤;张庆君;刘杰;张润宁;赵良波;张弛;刘久利【作者单位】北京空间飞行器总体设计部,北京 100094;北京空间飞行器总体设计部,北京 100094;北京空间飞行器总体设计部,北京 100094;北京空间飞行器总体设计部,北京 100094;北京空间飞行器总体设计部,北京 100094;北京空间飞行器总体设计部,北京 100094;北京空间飞行器总体设计部,北京 100094【正文语种】中文【中图分类】V474.2从20世纪90年代中后期,合成孔径雷达干涉测量技术逐渐成熟,应用领域不断扩展,成为SAR应用研究的热点之一。
航空航天工程师的航空器通信和导航系统设计原理
航空航天工程师的航空器通信和导航系统设计原理航空航天工程师在航空器通信和导航系统设计方面发挥着重要的作用。
本文将介绍航空器通信和导航系统设计原理,并探讨其在航空航天领域的重要性。
一、航空器通信系统设计航空器通信系统是为了在飞行中实现航空器与地面通信以及航空器之间的通信而设计的。
它包括无线电通信和数据链通信两个主要部分。
1.无线电通信无线电通信是航空器与地面的主要通信方式之一。
其原理是利用无线电波进行信号传输。
航空器通过无线电台与地面控制站进行通信,实现航空器与地面的信息传输和交流。
在设计航空器的无线电通信系统时,需要考虑频率使用、信号传输强度、信道选择等因素。
2.数据链通信数据链通信是指通过数据链路实现航空器之间相互通信的方式。
数据链通信采用数字化的方式传输信号,相比于无线电通信具有更高的带宽和更稳定的传输性能。
在设计航空器的数据链通信系统时,需要考虑数据格式、传输速率、加密技术等因素。
二、航空器导航系统设计航空器导航系统是为了确定航空器在空中准确定位、确定航向和确定位置而设计的。
它包括惯导系统、GPS定位系统和地面导航系统等。
1.惯性导航系统惯性导航系统是利用航空器内部的陀螺仪和加速度计等设备,通过对航空器的运动状态进行测量和分析,实现航空器的准确定位和航向确定。
惯导系统具有较高的精度和可靠性,但随着时间的推移会出现累积误差。
2.GPS定位系统GPS定位系统是通过接收地面卫星发射的GPS信号,利用三角测量和时差测量等原理来确定航空器的位置和速度。
GPS定位系统具有全球覆盖、高精度和高可用性的特点,成为航空器导航系统中重要的一部分。
3.地面导航系统地面导航系统主要包括航空器地面雷达和无线电导航设备等。
航空器地面雷达通过接收航空器发送的信号,确定航空器的位置和高度。
无线电导航设备包括VOR导航台、ILS系统等,通过提供导航信号来辅助航空器进行导航。
三、航空器通信和导航系统在航空航天领域的重要性航空器通信和导航系统是航空航天工程中不可或缺的一部分。
航空航天信息概论第2讲机载通信系统
短波通信
短波通信是指利用频率为3MHz - 30MHz的电磁 波进展的无线电通信。
与其他通信手段相比,短波通信有通信距离远、 机动性好、生存能力强等独特优点,被认为是有 效而经济的远程通信手段。
短波通信
短波波段主要以天波的方式传播。天波依靠电离层对电波 的反射,可建立上千千米的远距离通信链路。
随着飞机性能的不断提高,战场敌我态势瞬息万 变,战机稍纵即逝,话音通信方式已不能满足实 时掌握战场态势的要求。特别是雷达、各种传感 器高速开展,大量的情报再也无法用话音来传送, 机载数据链路应运而生。
数据链
数据链是为了发送和接收数据而把两点连接起来 的方法。数据链包括发送和接收数据终端,以及 控制数据传输过程的链路协议。
超短波通信
超短波通信的频率覆盖30MHz至几个GHz的VHF 和局部UHF频段。超短波信号主要靠直线方式传 输,称为视距通信。当飞机高度为10000米,地 面天线高度为15m时,受地球曲率影响,视距大 约为400km。这样,超短波地一空最大通信距离 一般为350km左右。超短波通信的工作频带较宽, 可以传输多路话音和高速率数据信号。
机载通信系统
机载通信的历史
无线电通信是利用无线电波来传输信息,它起源于19世 纪末。
1864年,英国人麦克斯韦从理论上预言了电磁波的存在, 并证明了它在真空中是以光速传播的。
德国人赫兹于1887年用实验方法实现了电磁波的产生和接 收。
1895年,意大利人马可尼和俄国人波波夫分别进展了无线 电通信实验,并研制成功无线电收发信机。
短波信道除自由空间传播损耗外,还有电离层吸收损耗、 地面反射损耗和系统额外损耗等附加损耗。
在短波通信信道中还存在着干扰,主要有大气噪声、工业 干扰和其他电台的干扰。
神舟载人飞船各大子系统及其工作原理
神舟号载人飞船神舟10号载人飞船- - - 1 -第1章 神舟号简介神舟十号是我国的第十艘神舟系列飞船,与前两艘神州八号和神州九号相比,它是我国一艘载人空间对接飞船,按计划它将与天宫一号目标飞行器进行对接,如果对接成功,则表明我国已经基本掌握了空间飞行器交会对接技术,将对后续的天宫二号即第二代空间实验室的建设打下坚实的基础。
【发射时间】预计在2012年【任务实施】预计会有三名宇航员同时升空,任务时间5~20天。
【飞行器名称】神舟十号【飞行器生产国家】中国【计划发射时间】2012年【发射项目】与神舟八号、神舟九号完成对接任务。
【发射成功意义】表明我国已经基本掌握了空间飞行器交会对接技术。
神舟10号载人飞船第2章神舟号的结构系统飞船由轨道舱、返回舱、推进舱和附加段组成,总长9530mm,总重8470kg。
飞船的手动控制功能和环境控制与生命保障分系统为航天员的安全提供了保障。
神州十号的结构系统,如图2-1所示。
图2-1 神舟号结构系统示意图2.1轨道舱轨道舱是飞船进入轨道后航天员工作、生活的场所。
舱内储备有食物、饮水和大小便收集器、睡袋等生活装置外,还有空间应用和科学试验用的仪器设备。
返回舱返回后,轨道舱相当于一颗对地观察卫星或太空实验室,它将继续留在轨道上工作半年左右。
- 2 -神舟10号载人飞船- - - 3 -2.2 返回舱图2-2 在着陆场 飞船的返回舱呈钟形,有舱门与轨道舱相通。
放回舱式飞船的指挥控制中心,内设供3名航天员斜躺的座椅,共航天员起飞、上升和返回阶段乘坐。
座椅前下方是仪表板、手控操纵手柄和光学瞄准镜等,显示飞船上个系统机器设备的状况。
航天员通过这些仪表进行监视,并在必要时控制飞船上系统机器设备的工作。
返回舱均是密闭的舱段,内有环境控制和生命保障系统,确保舱内充满一个大气压力的氧氮混合气体,并将温度和湿度调节到人体合适的范围,确保航天员在整个飞行任务过程中的生命安全。
另外,舱内还安装了供着陆用的主、备两具降落伞。
《航天器概论》
《航天器概论》综合作业 201201003017 陈献琪
小) 优点:密度低、模量高、强度高、可设计性强、热稳定性高、二次加工少、有独 特的物理化学性能 缺点:横向和层间性能差、韧性差、二次加工性能差、质量稳定性差、耐热耐湿 性差、成本高、耐空间环境能力差、不适宜在室温下长期储存和时间长 10. 请阐述被动姿态控制与主动姿态控制等几种典型方式的工作原理,并比较它们的优 缺点。 答: 被动和主动姿态控制的工作原理: 1) 被动姿态控制:航天器姿态被动稳定系统是利用自然环境力矩或物理力矩资源, 如自旋、重力梯度、地磁场、太阳辐射压力矩和气动力矩等以及它们的组合, 来控制航天器的姿态。 (1) 自旋稳定:利用航天器绕自转轴旋转所获得的陀螺定轴性在惯性参考空 间定向。 (2) 重力梯度稳定:重力梯度稳定利用航天器各部分质量在地球引力场中受 到不等的重力,使绕圆轨道运行的刚体航天器的最小能量轴趋向于稳定 在当地垂线方向。 (3) 磁稳定:被动磁稳定一般通过在航天器上安装产生磁矩的永久磁铁或线 圈来实现。 (4) 气动稳定:航天器在轨运行时大气中气体分子与航天器表面碰撞将产生 气动力和气动力矩。通过设计良好的航天器质量分布特性和航天器气动 外形能使卫星姿态对迎面气流方向稳定,称为气动稳定方式。 (5) 辐射压稳定:航天器表面受到空间辐射源(主要是太阳)照射时,入射 光对卫星表面产生一净压力,各处表面的净压力的综合效应产生合成辐 射压力和合成辐射压力矩。 (6) 组合被动稳定:把上述的稳定方式适当的组合起来,即构成组合被动稳 定系统,例如组合采用磁稳定和动力梯度稳定。 2) 主动姿态控制:航天器姿态主动稳定系统,从控制原理上看,就是三自由度的 姿态闭环控制系统,又称三轴稳定系统。姿态控制器由电子线路和航天器载计 算机完成控制规律和控制逻辑。 (1) 轴喷气控制系统:以喷气发动机(或推力器)为执行机构的三周稳定姿态控 制系统是一种主动式零动量姿态控制系统。 (2) 角动量交换装置:长寿命高精度的三轴姿态稳定航天器,在轨道上正常工作 时,普遍采用角动量交换装置(包括固定安装的动量轮,控制力矩陀螺及框 架动量轮)作为姿态控制系统的执行机构。 优缺点: 姿态稳定 控制系统 优点 缺点 备注
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁航天器编队飞行系统1、引言随着各国航天技术的不断发展,航天任务日趋多样化、复杂化,对航天器提出了更高的要求。
传统的大卫星研制周期长、耗资多、风险大,而小卫星具有体积小、重量轻、成本低、研制周期短、能利用多种发射方式快速灵活发射等特点,使得小卫星成为大卫星的必要补充。
但单颗小卫星由于功能单一,在应用方面受到一定的限制,通常将多颗小卫星进行编队,以实现单一大卫星的功能或对单一大卫星功能进行扩展,完成单颗卫星不能完成的任务。
卫星编队飞行是指一群相距很近、分布在特定轨道构型上、物理上不相连的成员卫星协同工作,共同完成特定任务。
通常编队卫星以某一点(主航天器)为基准,构成一个特定几何形状,各颗卫星之间通过星间通信相互联系、协同工作,共同承担空间信号的采集与处理以及承载有效载荷等任务,整个星群构成一个满足任务需要的、规模较大的虚拟传感器或探测器。
相对于传统的大卫星,卫星编队飞行具有巨大的观测口径或测量基线,在电子侦察、立体成像、精确定位、气象测量等应用领域具有无法比拟的突出优势,同时多颗卫星组成的分布式传感器系统能够有更好的灵活性和冗余度,可以降低飞行风险和成本。
自二十世纪九十年代后期开始,航天器的编队飞行技术越来越引起世界航天领域的极大兴趣和广泛关注。
包括美国航空航天局(NASA)、喷气推进实验室(JPL)、美国空军实验室(AirForce)以及欧空局(ESA)在内的多家著名的航天技术研究单位都看好编队飞行技术的广阔前景。
图1为美国NASA的轨道列车计划(A-Train),利用六颗卫星编队飞行监测地球环境变化。
图 1 NASA的轨道列车计划卫星编队飞行过程中要受到地球扁率、大气阻力和太阳光压等各种摄动因素的影响,此外为满足空间观测任务的要求,需要编队系统具有构型重构的机动能力,这就使得卫星要借助地球引力之外的力在非开普勒轨道上进行飞行,传统上一般采用火箭发动机喷气产生的推力来控制编队系统中成员卫星的相对位置,但这种推进方式存在以下几个方面的缺点:(1)火箭发动机喷射产生的羽流会污染临近卫星的光学器件,对空间光学观测任务产生比较大的影响,另外由于推进过程中产生红外线,会影响卫星在轨飞行的隐身效果。
(2)由于喷气推进是一种需要工质的推进方式,在不考虑卫星损毁情况下其工作寿命严格受到卫星所携带推进剂的影响,会影响卫星在轨飞行的寿命;(3)由于成员卫星所需要的控制力可能有所不同,这会造成各成员卫星燃料消耗的不均衡,现阶段没有在轨加注服务的情况下,将大大制约编队系统整体的寿命;(4)喷气推进一般采用脉冲式的控制方式,在控制精度和控制效率方面具有一定缺点,而且无法利用连续推力控制方面丰富的研究成果。
为对应上述问题,科学家开始探索利用新的推进方式进行卫星轨道控制。
一种思路是利用电推进、太阳帆、等离子体推进等方式控制卫星的绝对轨道运动,从而改变编队成员卫星间的相对位置;另一种思路是利用编队成员之间的相互作用力直接控制卫星之间的相对运动,利用卫星之间的静电力、电磁力等非接触力进行相对位置控制。
其中,利用编队成员卫星之间的电磁力来实现卫星编队飞行控制的方案,称之为电磁航天器编队飞行。
2、电磁航天器编队飞行原理根据近距离作用场的观点,电流之间存在相互作用力,该相互作用力是以磁场为媒介物传递的。
因此,将载流线圈置于非均匀磁场中,线圈将同时受电磁力及电磁力矩力矩的作用,线圈除绕自身轴转动外,还会整体的移动。
利用该电磁力及电磁力矩,可实现对卫星编队飞行的控制。
由于电磁编队飞行采用电能,而电能可通过太阳能获取,所以这一方案既避免了近距离羽流污染及冲击问题,又解决了推进剂限制问题,具有很高的应用价值。
具体的,与传统的喷气推进方法相比,电磁航天器编队飞行在以下几个方面表现出巨大的优势:(1)由于没有传统的喷气推进方式,消除了羽流效应对周围航天器的影响;(2)星间作用力完全由太阳能电池板提供的电能实现,几乎不消耗燃料,能够大大提高卫星编队系统的运行寿命;(3)星间相互作用的产生和控制通过控制线圈电流实现,响应速度快,能够实现高精度的机动控制,此外可以通过调节线圈电流的合理分配来实现各成员卫星电能消耗均衡;(4)机动过程中通过连续改变电流大小能够实现真正的连续变推力,可以利用丰富的连续变推力控制理论。
图 2 电磁航天器概念图图2为电磁航天器的概念图,电磁航天器中间部位为星上载荷,周围安装有三个相互正交的电磁线圈,外部为太阳能电池板。
为获得较大的电磁力,理想情况下采用超导材料制作电磁线圈,电磁作用过程中所需的能量完全由太阳能电池板提供。
当电磁线圈通电时,根据电流的磁效应,三个电磁线圈周围会产生磁场,编队中各成员卫星周围的磁场会相互作用,根据比奥·萨瓦尔定律,各成员卫星都会受到相应的电磁力及电磁力矩,如图3所示。
在电磁力的作用下,电磁航天器编队系统中成员卫星之间的相对位置会发生变化,在电磁力矩的作用下,其姿态也会产生相应变化。
利用星间电磁作用,编队系统中的卫星可以不用消耗推进剂就能够改变姿态,相互之间可以通过改变电流的极性和大小来改变相对位置,实现相互吸引或排斥。
由于星间电磁作用是编队系统内力,其不会改变编队系统质心的运动状态。
电磁航天器编队飞行过程中由于地磁场的存在和相互之间电磁力矩的作用,航天器会受到较大的干扰力矩,该干扰力矩将会明显影响航天器的姿态运动,需要借助飞轮或控制力矩陀螺等对姿态进行控制,以抵消干扰力矩,实现轨道姿态运动解耦。
图 3 电磁航天器编队飞行原理示意图3、发展现状国外对电磁编队飞行及交会对接技术的研究始于2000年,主要集中在麻省理工学院、马里兰大学、美国NASA约翰逊空间中心、华盛顿大学、德克萨斯大学等单位。
(1)理论研究在理论研究方面,Kong、Miller等人首先提出了电磁编队飞行的概念,并对其关键技术及可行性进行了分析;Sedwick、Kwon等人通过研究在TPF中使用电磁编队技术,将各项指标与传统推进进行了对比,仿真结果说明TPF采用电磁编队技术能够满足任务的要求,与传统推进方式相比具有显著的优势,从而论证了采用电磁编队替代传统推进的可行性。
Hashimoto、等人提出将超导线圈用于电磁编队;Schweighart等人研究了利用正交线圈产生电磁力的方法;Elias对使用电磁体和反作用轮的两个航天器提出了一种非线性动力学模型。
Wawrzaszek等人将Elias提出的两个航天器的非线性控制推广到三个航天器线性队列和三角队列中。
Umair Ahsun中提出一种作用于地球低轨道上n个航天器电磁编队的非线性自适应控制律。
Schweighart考虑了n个航天器编队问题,他将运动方程描述为每颗卫星磁偶极子的多项式函数并进行了求解。
考虑到采用超导线圈的电磁编队系统复杂程度较高,Kwon通过简单的一维模型,研究了使用脉冲偶极子的μEMFF(Micro-Electromagnetic Formation Flight,简称μEMFF)操作,对使用常规导体产生的电磁场进行近距离编队的μEMFF概念进行了可行性论证。
(2)地面试验地面实验方面,NASA约翰逊空间中心“MiniAERCam”(Miniature Autonomous Extravehicular Robotic Camera)项目主要研究舱外自主微型机器人相机的设计。
MiniAERCam 是指一个可在国际空间站周围自由飞行的小型机器人照相机,用于观察国际空间站或航天飞机的照相机难以观察的地方。
为了更好地实现机器人照相机与空间站的多次对接与分离,2004年计划对MiniAERCam增加一个电磁对接系统,该系统包含传感器和电磁对接机构。
并开发了一个地面试验系统,通过试验系统来测量电磁对接系统的轴向力随三维相对位置的变化,并指导电磁系统的设计。
麻省理工学院“电磁编队飞行(EMFF)”项目由麻省理工学院空间系统实验室(MIT SSL)的David Miller及Raymond Sedwick领导负责,由NASA喷气推进实验室以及洛克希德•马丁公司先进技术中心提供资助。
研究过程中,SSL建立了两种实验方案:一种是采用超导线圈产生电磁场,称为HTS EMFF,另一种采用的是普通线圈,称为μEMFF。
前者适用于在几十米量级较远距离的机动,后者适用于较为简单的米量级近距离的航天任务。
图 4 EMFF项目地面实验模型HTS EMFF采用超导线圈产生电磁场,通过调节线圈中的电流和反作用轮来控制相对运动轨道及姿态,每颗卫星的电磁机构由三个相互垂直的超导线圈构成。
地面实验系统由气浮台、两个卫星模型及相关测控设备组成。
卫星模型主要由电磁机构、通信系统、量测系统、反作用轮组成,实现了两个卫星模型在二维条件下的相对位置保持与圆形轨迹追踪。
图4为该项目的地面实验模型,有两个相互正交的超导电磁线圈组成。
地面实验中,超导线圈电流源采用了一套高能量密度的镍化氢(NiMH)电池组,可以提供45A的连续电流和120A 的瞬间峰值电流,电磁系统功率需求在50~100W范围。
线圈中间为飞轮系统,两边是两个圆形太阳能帆板。
为提供超导线圈工作需要的低温环境(<115K),综合采用了主被动的热控系统。
主要冷却装置采用了已在空间望远镜Spitzer系统成功应用的冷却器,质量2.7kg,功率150W。
在地面试验中,卫星主要由一套飞轮系统和两个正交的超导线圈组成,飞轮系统提供所需要的姿态,超导线圈产生电磁力。
试验中,一个模拟星固定,另一个可以自由运动,控制电流和飞轮使自由星在离固定星某个距离处沿期望轨迹做微小移动(移动量与两星之间间距相比为小量)。
该项目在2006年已经完成了两个阶段的可行性研究,并已经获得NASA的额外资助继续进行研究。
μEMFF是采用普通常规导体线圈的电磁编队地面实验,这种系统适用于需要将微小卫星队列的体积保持在较小范围内的操作任务。
μEMFF适用于距离小于10米的近距离机动。
未来可能应用在分布式卫星抵消J2摄动力和阻力方面。
它的控制范围和精度比HTS EMFF 要求要低。
而且通过μEMFF线圈的电流持续时间短,电流强度低,不需要复杂的热控系统。
采用每个航天器上μEMFF线圈中电流同步脉冲产生的同步瞬间磁场来对编队进行控制。
图 5 μEMFF项目卫星模型图6 μEMFF地面实验示意图为了验证μEMFF概念,SSL构建了一个概念验证的地面试验台,如图6所示。
试验台建立在一个使用低摩擦力空气轴承的可移动架上,两个μEMFF飞行器都通过无线电控制系统进行控制。
每个试验飞行器上包含有线圈、电源系统和无线电控制设备。
试验中,一个飞行器安装在空气轴承上,另一个在其附近。
空气轴承在图6中T形结构的关节处,飞行器和配重可以进行低摩擦的转动。
每个飞行器可以绕其安装点旋转,可以使两个飞行器的偶极子在不同距离上保持共线。