第二章 基因工程的载体和工具酶_PPT幻灯片

合集下载

基因工程ppt课件

基因工程ppt课件
提取某种生物的全部DNA 用适当的限制酶切
一定大小的DNA片段
将DNA片段与: cDNA合成法
+ 第一步,反转录酶以RNA为模板合成一条与RNA互补 的DNA单链,形成RNA-DNA杂交分子。
+ 第二步,核酸酶H使RNA-DNA杂交分子中的RNA链降解, 使之变成单链的的基因主要是指___编__码__蛋__白__质__的__结__构__基__因_
请举出三个以上的例子
供体生物细胞
2、获人工化学合成
限制酶
取出 DNA 用限制酶剪 去与模板互补的DNA双链) 重复循环
16
实际具体过程
17
PCR技术
• 原理: DNA复制 • 前提:
一段已知目的基因的核苷酸序列 • 原料
模板DNA;DNA引物;四种脱氧 核苷酸;热稳定DNA聚合酶 (Taq酶)
• 方式:以_指__数__方式扩增,
PCR扩增仪
即_2_n__(n为扩增循环的次数)
18
1、概念:
基因工程又叫做基因拼接技术或DNA重组技术。 通俗地说,就是按照人们的意愿,把一种生物的某种 基因提取出来,加以修饰改造,然后放到另一种生物 的细胞里,定向地改造生物的遗传性状。
1
2. 基因工程最基本的工具 ──限制性内切酶
以大肠杆菌中的一种叫做EcoRІ的限制酶为例:
限制酶
结果:产生黏性未端(碱基互补配对)。
终止子:位于基因的尾端的 一段特殊的DNA片断,能 终止mRNA的转录
标记基因的作用是为了鉴别 受体细胞中是否含有目的基 因,从而将有目的基因的细
27
1、(多选)一个基因表达载体的构建应包括 ABCD
A.目的基因 B.启动子 C.终止子 D.标记基因

基因工程常用的工具酶

基因工程常用的工具酶
Py dCMP、dTMP Pu dAMP、dGMP
2024/10/14
.
6
识别序列呈典型的旋转对称型回文结构
EcoR I的切割位点
EcoR I的识别序列
5‘ … G C T G A A T T C G A G … 3’ 3‘ … C G A C T T A A G C T C … 5’
回文结构:两条核苷酸链的核酸序列呈双重旋转对称排列的 DNA双螺旋结构
2024/10/14
.
14
第三节 DNA聚合酶
2024/10/14
.
15
DNA聚合酶:能够催化DNA复制和修复DNA分子损伤 的一类酶
❖作用特点
能够把脱氧核苷酸分子连续的加到DNA分子引物链的3’-OH末端,催 化核苷酸的聚合
❖作用条件
➢ 脱氧核苷酸原料:四种脱氧核苷三磷酸dNTP(dATP、dTTP、 dCTP、dGTP)
属名
种名
株名
Haemophilus influenzae d
HindΙ、 HindⅡ、 Hind Ⅲ
不同限制修饰系统
2024/10/14
.
4
三、Ⅱ型限制酶的特性-识别序列
识别双链DNA分子中特定的4 - 8对核苷酸序列
EcoR I的切割位点
EcoR I的识别序列
5‘ … G C T G A A T T C G A G … 3’ 3‘ … C G A C T T A A G C T C … 5’
5‘ HO 3‘ HO
T4-PNP
5‘ p 3‘ HO
OH 3‘ OH 5‘
Mg2+ pppATP(g-32P-ATP)
OH 3‘
5‘ HO
BAP / CIP

基因工程ppt

基因工程ppt

粘粒载体有更大的容量
cosmid:由质粒与噬菌体 COS 末端组成,可克 隆 29-4组序列的克隆 包装后通过感染途径进入细胞 在细胞内可形成环状质粒,并作为质粒复制
缺陷: 外源 DNA 不稳定,易发生重排并丢失 插入片段长度对扩增效率影响极大
RNase H DNA polymerase
目前常用的逆转录酶 RNase H 均缺失 逆转录酶需要引物,一般用 Oligo-dT
五、末端脱氧核苷酸转移酶
Terminal deoxynucleotidyl transferase 催化脱氧核糖核苷酸依次添加到 DNA 3,羟基端 聚合反应没有特异性,无需模板 用途:
常用λ噬菌体有哪些种类?
EMBL 3:置换型载体 克隆片段长度:7-22 kb Spi 筛选,野生型在含 P2 噬菌体的宿主中受限
λgt 10:插入型载体, 克隆片段长度: 0-7.6 kb 片段 CI 筛选,野生型载体易进入溶源生长状态
λgt 11:插入型载体 克隆片段长度: 0-7.2 kb 片段 LacZ基因插入失活
一、什么是质粒载体?
质粒(Plasmid) 细菌染色体外的遗传单位 小分子环状 DNA
具有自身的复制起点 具有抗药性基因 人工构建的多克隆位点
复制子决定了质粒拷贝数
复制起点与调节序列共同组成复制子 严紧型复制子:
复制需 pol III,与细菌基因组复制同步 拷贝数:1-5 质粒/细胞 松弛型复制子: 复制需 pol I,独立复制 拷贝数:10-200 质粒/细胞 Rop 基因突变使质粒达到数千拷贝
一、限制性内切酶是切割 DNA 的工具
Restriction enzyme or restriction endonuclease 细菌产生的酶,能特异性识别 DNA 序列,水解 磷酸二酯键,切开 DNA 双链 它是细菌的一种防御机制

基因工程-第二章--基因克隆所需的工具酶

基因工程-第二章--基因克隆所需的工具酶
2010-11-8 苏州科技学院生物系 叶亚新
常用限 制性内 切酶种 类及特 性
2010-11-8
苏州科技学院生物系
叶亚新
2010-11-8
苏州科技学院生物系
叶亚新
6、限制性内切酶的星号活性
在某些反应条件下,限制酶识别顺序的 特异性可能发生变化,结果一种限制酶 酶切同一种DNA片断会产生新的酶切位点, 得到不同的酶切片断,这就是限制酶的 星号活性( activity) 星号活性(star activity) EcoR 1 GAATTC---- AATT
第二章 基因克隆所需的工具酶
限制性内切酶—主要用于DNA分子的特异切割 限制性内切酶 DNA甲基化酶 甲基化酶—用于DNA分子的甲基化 DNA甲基化酶 核酸酶—用于DNA和RNA的非特异性切割 核酸酶 核酸聚合酶—用于DNA和RNA的合成 核酸聚合酶 核酸连接酶—用于DNA和RNA的连接 核酸连接酶 核酸末端修饰酶—用于DNA和RNA的末端修饰 核酸末端修饰酶 其它酶类--用于生物细胞的破壁,转化,核酸纯化,检测等 其它酶类
2010-11-8
苏州科技学院生物系
叶亚新
四.限制酶的特点
1. 识别顺序和酶切位点 识别4 1)识别4-8个相连的核苷酸 MboI NGATCN; NGATCN;AvaII GG(A/T)CC Bam HI GGATCC; GGATCC;PpuMI PuGG(A/T)CCPy Not I GCGGCCGC; GCGGCCGC; SfiI GGCC N N N N N GGCC N’ N N N CCGG N N’N’N’N’ CCGG Fok I 5 -GGATG(N)9-3’ 5’-GGATG( )93’-CCTAC(N)13-5’ 外侧,产生5’-端突 -CCTAC( )13- 外侧,产生5 起 富含GC 2)富含GC

基因操作工具酶PPT课件

基因操作工具酶PPT课件

α- 32P-dATP
EcoR I 酶切末端
同位素标记的EcoR I 酶切末端
Back
3.3 Taq DNA聚合酶
显著特点:热稳定性。70℃反应2h残留活性90 %; 93℃ 反应 2 h残留活性60% ;94℃ 反应 2 h残 留活性40%。
应用:(1)对DNA的特定片段进行体外扩增; (2) DNA序列测定。
Back
2 DNA连接酶
2.1 定义及功能 2.2 种类及作用机理 2.3 使用时的注意事项
Home
2.1 定义及功能
DNA连接酶(DNA ligase): 可使一段DNA 3`-OH末端和5`-P 末端
形成3`,5`-磷酸二酯键,把两DNA片段 连在一起封闭双链上形成的切口的酶。
OH P
5`
• 若该微生物有不同的变种和品系,再加上该变种和品系的第一个 字母(大写)
• 若从同一微生物发现多种限制性内切酶,则依照发现和分离的先 后顺序用罗马字母表示。
例如:EcoRⅠ 从大肠杆菌R株分离的第一种限制酶命名为 EcoRⅠ, 其中E 代表属名(Escherichia),co 代表种名(coli), R 代表株系(RY13),Ⅰ 代表该菌株中首次分离到。
应用:缺口平移法制备DNA分子杂交探针
缺口
DNase I DNA聚合酶 I
DNA聚合酶 I dNTP*
缺口
缺口平移法制备DNA分子探针 Back
3.2 Klenow聚合酶
活性: 5`→3`聚合活性,3`→5` 外切酶活性,无5`→3`
外切酶活性。 用途: (1)填补或标记DNA的3`隐蔽末端; (2)催化合成cDNA第二链; (3)DNA序列测定
5-7 bp非对称序 列

基因工程-课件ppt

基因工程-课件ppt

(7)用于载体的质粒 DNA 分子上至少含一个限制酶识别位点(√ )
(8)载体的作用是携带目的基因导入受体细胞中,使之稳定存在
并表达
(√)
在日常生 活中, 随处都 可以看 到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
2.载体需具备的条件及其作用(连线)
对点落实
返回
1.(2016·全国卷Ⅲ)图(a)中的三个 DNA 片段上依次表示出了
EcoR Ⅰ、BamH Ⅰ和 Sau3AⅠ三种限制性内切酶的识别序列
与 切 割 位 点 , 图 (b) 为 某 种 表 达 载 体 的 示 意 图 ( 载 体 上 的
EcoRⅠ、Sau3AⅠ的切点是唯一的)。



——GAATTC—— ——GGATCC—— ——GATC——
返回
(2)写出产生的末端的种类:①产生的是黏性末端;②产生的 是 平末端 。 (3)EcoRⅠ限制酶和 SmaⅠ限制酶识别的碱基序列 不同,切割 位点不同 (填“相同”或“不同”),说明限制酶具有专一性 。
在日常生 活中, 随处都 可以看 到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
图(b)
图(c)
(3)DNA 连接酶是将两个 DNA 片段连接起来的酶,常见的
有__E_·_c_o_l_i__D_NA_连__接__酶_和____T_4D_N_A_连___接__酶___,其中既能连接黏 性末端又能连接平末端的是__T_4D_N_A__连__接__酶___。
解析
在日常生 活中, 随处都 可以看 到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么

第二章基因工程中常用的工具酶

第二章基因工程中常用的工具酶

第二章 基因工程中常用的工具酶限制性内切酶—主要用于DNA 分子的特异切割分子的特异切割DNA 甲基化酶—用于DNA 分子的甲基化分子的甲基化 核酸连接酶—用于DNA 和RNA 的连接的连接核酸聚合酶—用于DNA 和RNA 的合成的合成核酸酶—用于DNA 和RNA 的非特异性切割的非特异性切割核酸末端修饰酶—用于DNA 和RNA 的末端修饰的末端修饰其它酶类--用于生物细胞的破壁、转化、核酸纯化、检测等。

用于生物细胞的破壁、转化、核酸纯化、检测等。

§2-1 核酸内切限制酶定义:核酸内切限制酶是一类能够识别双链DNA 分子中的某种特定核苷酸序列,并由此切割DNA 双链结构的核酸内切酶。

双链结构的核酸内切酶。

到目前为止已经从许多种不同的微生物中分离出了2300种以上不同的核酸内切限制酶。

种以上不同的核酸内切限制酶。

核酸内切限制酶的发现及其生物功能(图)一 、限制修饰系统的种类(图)限制修饰系统的种类(图)二、 限制性内切酶的定义、命名1. 定义:广义指上述三个系统中的限制酶;广义指上述三个系统中的限制酶;狭义指II 型限制酶。

型限制酶。

2. 命名:限制酶由三部分构成,即菌种名、菌系编号、分离顺序。

限制酶由三部分构成,即菌种名、菌系编号、分离顺序。

例如:Hin d Ⅲ 前三个字母来自于菌种名称H. influenzae ,“d”表示菌系为d型血清型;“Ⅲ”表示分离到的第三个限制酶。

表示分离到的第三个限制酶。

Eco RI RI——Escherichia coli RI RI Hin d Ⅲ—Haemophilus influensae d ⅢSac I (II)—Streptomyces achromagenes I (Ⅱ)三、Ⅰ型和Ⅲ型核酸内切限制酶的缺点a.Ⅰ型核酸内切限制酶虽然能够识别DNA 分子中的特定序列,但它们的切割作用却是随机的,在距特异性位点至少1000bp 的地方可以随机地切割DNA 分子,因此这类酶在基因克隆中显然是没有用处的。

生物技术课件——基因工程常用工具酶

生物技术课件——基因工程常用工具酶

HO GCA…5’
5’…ACGAATTCGT…3’
T4DNA连接酶 Mg2+,ATP
3’…TGCTTAAGCA…5
反应系统:ATP,Tris-HCl,MgCl2,DTE(二硫赤藓糖醇),ATP, pH7.5,4~15℃
h
28
也可以连接两条平起末端的DNA分子,但反 应速度较慢。
5’…CGAOH
DNA聚合酶在DNA复制时起关键作用。
DNA聚合酶主要有三类:聚合酶Ⅰ(polⅠ)、 聚合酶Ⅱ(polⅡ) ,聚合酶Ⅲ(polⅢ)。其 中聚合酶Ⅰ参与DNA修复,聚合酶Ⅲ参与DNA 复制。聚合酶Ⅰ是基因工程中的常用酶。
h
32
DNA聚合酶Ⅰ在DNh A复制过程中的作用 33
DNA聚合酶Ⅰ和Ⅲ的比较
h
7
2.1.1.2 R-M系统
细菌中存在位点特异性限制酶和特异性甲基化酶,构 成了寄主控制的限制—修饰系统(R-M Restrictionmodification system)。
R-M系统是细菌安内御外的积极措施。细菌R-M系统的 限制酶可以降解DNA,为避免自身DNA的降解,细菌可 以修饰(甲基化酶)自身DNA,未被修饰的外来DNA则 会被降解。
2 基因工程常用工具酶
h
1
基因工程的重要特点之一是在体外实行DNA分子的切 割和重新连接。因此,工具酶是DNA体外操作必不可 少的工具。
取得编码某种药物的目的基因,大多需要工具酶-限 制性核酸内切酶
将目的基因与载体DNA连接在一起,也需要工具酶- DNA连接酶。
目前,许多厂商都在生产各种优质工具酶,简化了分
感染
E.coli k
Phageλ(k)
B 限制 λ(不k感)染』
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8 1ml预冷的70%乙醇洗涤沉淀1-2次,4℃离心8000g×10min, 弃上清,将沉淀在室温下晾干
9 沉淀溶于20μl TE(含RNase A 20μg/ml),37℃水浴 30min以降解RNA分子,-20℃保存备用。
溶液 I
50 mM葡萄糖 / 25 mM Tris-HCl / 10 mM EDTA,pH 8.0
5 加入150μl预冷的溶液Ⅲ,将管温和颠倒数次混匀,见白色 絮状沉淀,可在冰上放置3-5min。
6 加入450μl的苯酚/氯仿/异戊醇,振荡混匀,4℃离心 12000g × 10min
7 小心移出上清于一新微量离心管中,加入2.5倍体积预冷的 无水乙醇,混匀,室温放置2-5min,4℃离心12000g×15min
开环双螺旋 (OC构型)
线状双螺旋 (L构型)
(二)质粒DNA的制备
分离质粒的方法有多种,如碱裂解法、煮沸裂解法、层析 柱过滤法等。
目前一般使用碱变性法制备质粒DNA。这个方法主要包括 培养收集细菌菌体,裂解细胞,将质粒DNA与染色体DNA 分开及除去蛋白质和RNA。
碱变性法质粒提取的原理
在pH值12.0~12.5范围内时,线性的DNA会被变性而共 价闭合环状质粒DNA却不会被变性。
在pH值介于12.0 -12.5这个狭窄的范围内,线性DNA双螺旋结构 解旋变性。共价闭合环状质粒DNA的氢键会断裂,但两条互补链 彼此相互盘绕,紧密地结合在一起
溶液III
3 M 醋酸钾 / 2 M 醋酸(pH4.8)
加入后就会有大量的沉淀,是因为SDS遇到钾离子后变成了十二烷基硫酸 钾(potassium dodecylsulfate, PDS),PDS是水不溶的,因此发生了沉 淀;高浓度的盐(3 M醋酸钾) ,使得沉淀更完全;溶液III加入并混合均 匀后在冰上放置,目的是为了PDS沉淀更充分一点
Tris-HCl控制溶液的pH
葡萄糖使悬浮后的大肠杆菌不会快速沉积到管子的底部,因 此如果缺了葡萄糖几乎没有影响;
EDTA螯合是Ca2+和Mg2+等二价金属离子,高达10 mM 的EDTA就 是要把大肠杆菌细胞中的所有二价金属离子都螯合掉,抑制 DNase的活性,只要是在不太长的时间里完成质粒抽提,如果 不加EDTA也不用怕DNA会迅速被降解
溶液II
0.2 N NaOH / 1% SDS
用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用;新鲜的 0.4 N的NaOH是保证NaOH溶液没有吸收空气中的CO2而减弱了碱 性,因为破裂细胞的主要是碱,而不是SDS;
这一步要记住两点:第一,时间不能过长,因为在这样的碱性 条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然 基因组DNA也会断裂,基因组DNA的断裂会带来麻烦
2 取1.5ml培养物入微量离心管中,室温离心12000rpm,1min, 弃上清
3 将细菌沉淀重悬于100μl预冷的溶液Ⅰ中,重悬,使菌体分 散混匀
4 加200μl新鲜配制的溶液Ⅱ,颠倒数次混匀(不要剧烈振 荡),并将离心管放置于冰上2-3min,使细胞膜裂解(溶液 Ⅱ为裂解液,故离心管中菌液逐渐变清)
不过即使是同一质粒,其拷贝数在不同的寄主细胞间和不同 的生长环境也可能有很密切的不同质粒不能在同一宿主细胞中稳定共 存。载体质粒与受体的质粒应是不同的不亲和群。
(一)质粒的生物学特性
⑹ 质粒的转移
是否含有接 合转移基因
转移性质粒,含有tra基因;能通过结合 作用从一个细胞转移到另一个细胞。
非转移性质粒,不含tra基因;可以为转 移性质粒所带动转移。
在一般情况下,质粒的接合转移能力与分子大小及复制型间 有一定的相关性。现归纳如下:
接合型质粒 分子量大 严紧型复制
非接合型质粒 分子量小 松弛型复制
(一)质粒的生物学特性
(7)质粒的存在形式有超螺旋、开环双螺旋和线状双 螺旋三种
双螺旋共价闭合 环(SC构型)
通过冷却或恢复中性pH值使之复性,线性染色体形成 网状结构,而cccDNA可以准确迅速复性,通过离心去除线 性染色体,获得含有cccDNA的上清液,最后用乙醇沉淀, 获得质粒DNA。
碱裂解法提取质粒
1 挑取LB固体培养基上生长的单菌落,接种于3.0ml LB(含相 应抗生素)液体培养基中,37℃、250rpm振荡培养过夜(约 16-17hr)。
第一节 载 体
基因克隆的目的是使目的基因在特定的条件下得到 扩增和表达,而目的基因本身无法进行复制和表达、 不易进入受体细胞、不能稳定维持,所以就必须借 助于“载体”及其“寄主细胞”来实现
作为基因克隆的载体必须具备以下特性
⑴载体必须是复制子。 ⑵具有合适的筛选标记,便于重组子的筛选。 ⑶具备多克隆位点(MCS),便于外源基因插入。 ⑷自身分子量较小,拷贝数高。 ⑸在宿主细胞内稳定性高。
另外长时间的碱性条件会打断DNA,基因组DNA一旦发生断裂成50-100 kb 大小的片断,就不会被PDS共沉淀;所以碱处理的时间要短,而且不得激 烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入
一 质粒载体(plasimid vectors)
(一)质粒载体的生物学特性 (二)质粒载体的制备 (三)质粒载体的改造 (四)几个常用质粒载体
(一)质粒的生物学特性
(4)质粒的复制类型 一种质粒在宿主细胞中存在的数目称为该质粒的拷贝数。
根据拷贝数将质粒分为两种复制型: “严紧型”质粒(stigent plasmid),拷贝数为1-3; “松弛型”质粒(relaxed plasmid),拷贝数为10-60。
2M的醋酸是为了中和NaOH,调pH值至中性时,共价闭合环状质粒DNA的两 条互补链仍保持在一起,因而复性迅速而准确;而线性染色体DNA的两条 互补链因彼此已完全分开,复性缓慢且错误率高,缠绕形成网状结构 平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀将 绝大部分蛋白质沉淀了;
尽管SDS并不与DNA分子结合,由于染色体DNA太长且缠绕形成网状结构, 大肠杆菌的基因组DNA也同时被共沉淀
相关文档
最新文档