伯努利方程

合集下载

伯努利流体方程

伯努利流体方程

伯努利流体方程
伯努利方程(Bernoulli's equation)是流体力学基本方程之一,常用于描述静止流体或运动流体在流经不同位置时,压力、速度、高度等物理量的变化关系。

伯努利方程最早由瑞士数学家和物理学家伯努利(Daniel Bernoulli)在1738年提出,被称
为伯努利定理,也称作伯努利方程或伯努利流体方程。

伯努利方程的数学形式为:
P + 1/2ρv^2 + ρgh = constant
其中,P表示流体的压力,ρ表示流体的密度,v表示流体的
速度,g表示重力加速度,h表示流体的高度,constant表示一个常数。

伯努利方程可以表达出一个流体在液体静压力、动能和势能三者之间的平衡状态。

在一个理想的流体中,如果流体穿过一段水管,那么在这段水管的任何位置,液体静压力、动能和势能总和相等。

应用伯努利方程,可以计算液体在不同位置的压力、速度和高度等物理量的变化。

伯努利方程可以应用在气体、液体等不同介质的流体力学问题中,如风力发电机、水压机等。

伯努利方程三种形式公式

伯努利方程三种形式公式

伯努利方程三种形式公式
第一种形式的伯努利方程公式是:
P₁ + 1/2ρv₁² + ρgh₁ = P₂ + 1/2ρv₂² + ρgh₂
其中P₁和P₂分别表示两个位置的压力,ρ表示流体的密度,v₁和v₂表示两个位置的流速,g为重力加速度,h₁和h₂表示两个位置的高度。

这个公式描述了流体在两个位置之间能量守恒的关系。

等式左边的第
一项表示压力能,第二项表示动能,第三项表示单位质量的重力势能。


式右边的三项表示相应位置的压力能、动能和重力势能。

这个公式适用于
流体在不完全关闭的管道、管道两端处于同一高度的情况。

第二种形式的伯努利方程公式是:
P + 1/2ρv² + ρgh = const
这是一个简化形式的伯努利方程,它将两个位置的参数合并成一个常数。

这个公式的物理意义是,当流体在流动过程中没有受到外界力的作用时,流体的总能量保持不变。

这个公式适用于理想的水平管道、无摩擦的
流动。

第三种形式的伯努利方程公式是:
P + 1/2ρv² = const
这是伯努利方程的最简形式,它忽略了重力势能的影响。

这个公式适
用于理想的非粘性流体在无重力情况下的流动,如气体等。

这三种形式的伯努利方程公式分别适用于不同的流体力学问题。

选择
适用的公式取决于具体的流动条件和需要分析的问题。

无论选择哪种形式,
伯努利方程都提供了一个重要的工具,可以帮助我们研究流体力学中的能量转换和守恒。

伯努利方程

伯努利方程

伯努利方程伯努利方程是描述理想流动的基本方程之一,它是在瑞士数学家伯努利(James Bernoulli)在1738年发表的一篇论文中提出的。

该方程对于理解流体力学以及飞行、水力、空气动力学等领域具有重要的应用。

伯努利方程是基于质量守恒定律、动量守恒定律和能量守恒定律推导而来的方程。

该方程表达式为:P + ½ρv² + ρgh = 常数其中,P为流体的压力,ρ为流体的密度,v为流体的速度,h为流体的高度,g为重力加速度。

伯努利方程是在假设部分没有粘性损失的情况下成立的,也就是无黏性流动。

在实际的情况下,流体会存在一定的粘性损失,因此伯努利方程只适用于无粘流体,但在低速流动下,伯努利方程可近似地应用于粘性流体。

对于伯努利方程,我们可以从以下角度来解释其中的每个项:① P:压力项,它表示了流体在流动过程中所受到的压力。

当流体速度增加时,压力往往会降低,例如在突缩管中,当管道的截面积变小时,流体的速度会增加,而压力会降低。

②½ρv²:动能项,它表示了流体的动能。

在流体的流动过程中,当速度增加时,动能也会增加,例如在水力发电站中,当水流的速度增加时,水的动能也会增加,从而推动水轮发电。

③ρgh:势能项,它表示了流体的势能。

当流体在重力作用下流动时,流体会从高处向低处移动,势能也随之降低。

例如当我们用pump把水从低处抽到高处时,水的势能就会增加。

由于伯努利方程中的常数在同一条流线上保持不变,因此可以利用伯努利方程来分析流体在不同位置的流速、压力和高度之间的关系。

这在飞行、水利及空气动力学等领域的设计和应用中具有重要的作用。

伯努利方程的应用十分广泛。

例如在空气动力学领域中,伯努利方程被用来解释飞机起飞、飞行、着陆过程中的颤振等现象。

在水利工程领域中,伯努利方程被用来计算水流在不同地方的速度、压力和高度等因素,对于设计水坝、水龙头、流量计等工程设施具有重要的作用。

总之,伯努利方程作为理解流体力学基本方程之一,不仅在理论研究中具有广泛的应用,也在实际的设计和应用中具有十分重要的意义。

伯努利方程计算

伯努利方程计算

伯努利方程计算
伯努利方程是应用于流体力学和气体流动的基本方程之一,用于描述沿流体流动方向上的动能、压力和重力势能之间的关系。

伯努利方程可以用以下的数学形式表示:
P + 1/2 ρv² + ρgh = constant
其中,P表示流体的压力,ρ表示流体的密度,v表示流体的
流速,g表示重力加速度,h表示流体的高度。

伯努利方程适用于理想流体在稳定流动时,沿着流动方向,流速变化不大,流线不弯曲,且没有其他外力作用的情况下。

利用伯努利方程可以计算流体在不同位置处的压力和流速。

通过等式中的常数项,可以比较不同位置处的流体状态。

需要注意的是,伯努利方程忽略了一些现实流动的因素,如黏性、湍流和摩擦等,因此只适用于某些特定情况。

在实际应用中,伯努利方程常用于气候学、飞行器设计、水力学、管道流动等领域的计算和分析。

伯努利方程的公式

伯努利方程的公式

伯努利方程的公式
伯努利方程的公式是p+ρgz+(1/2)*ρv^2=C。

伯诺里方程即伯努利方程,又称恒定流能量方程,是理想流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。

伯努利,男,700年2月8日出生于荷兰格罗宁根,782年去世,瑞士物理学家、数学家、医学家。

伯努利,著名的伯努利家族中最杰出的一位。

他是数学家J.伯努利的次子,和他的父辈一样,违背家长要他经商的愿望,坚持学医,他曾在海得尔贝格、斯脱思堡和巴塞尔等大学学习哲学、论理学、医学。

伯努利72伯努利年取得医学硕士学位。

努利在25岁时(伯努利725)就应聘为圣彼得堡科学院的数学院士。

8年后回到瑞士的巴塞尔,先任解剖学教授,后任动力学教,伯努利750年成为物理学教授。

一共读过三个大学,分别是尼赛尔大学、斯特拉斯堡大学和海德堡大学。

[1]
在伯努利725~伯努利749年间,伯努利曾十次荣获法国科学院的年度奖。

伯努利782年3月伯努利7日,伯努利在瑞士巴塞尔逝世,终年82岁。

1。

3章2伯努利方程

3章2伯努利方程

其中,H为水泵的扬程,[mH2O]

3、涡轮机
V12 p2 V22 ( gz1 ) ( gz2 ) N 2 2 p1
其中,N为涡轮机的输出功,[J/kg]
§3-8 非定常的伯努利方程

非定常一元流动的运动方程:
z 式中f s g s
u u 1 p u fs t s s
p1 V12 p2 V22 ( z1 1 )Q1 ( z2 2 )Q2 g 2g g 2g
Q1 Q2 p1 V12 p2 V22 z1 1 z2 2 g 2g g 2g
z, p 通常在截面中心取值。
它与流线上的伯努利方程在形式上相同,如果计 算点速度就用流线形式,如果计算平均流速就用 此式。
A A
( p pa )ndA ( p pa )ndA ( p pa )ndA
A1

A2

A0

( p1 pa )n1 A1 ( p2 pa )n2 A2 F
F ( p p )n A ( p p )n A QV QV
应用1.水流对弯管的作用力

分析管壁受力
设:为固定弯管所需外力为F
则F ( p p )n dA 0
A0 a 0
即 F ( p p )n dA
A0 a 0


分析控制体内水的受力
(弯管水平,不计重力,f项不计)
pndA ( p pa )ndA
d 2x 2 x0 2 dt
例 习题3-21


水库的出水管设有调压井, 已知 l,d,h,D,求调压井水面的震荡周期 解: s 2 2

伯努利方程

伯努利方程

• • • •
参考链接:/view/94269.htm?fr=ala0_1
还有一个相近回答:这个方程并非是描述液体的运动,而应该是描述理想气体的绝热定常流动的,比如它 可以近似地描述火箭或者喷气式发动机中的气流(你可以参考第26届全国中学生物理竞赛复赛中的热学 题)。其中的伽马(像r一样的那个希腊字母,我打不出来,用r来替代)是气体的比热容比,即气体的定 压摩尔热容与定体摩尔热容之比,对理想气体来说是个常数。这个公式中,左边v是气体流动的速度,p是 气体的压强,p下面的希腊字母代表气体的密度。右边的p0\pho0是指速度为0的地方气体的压强和密度。 这个公式的推导和流体的伯努利方程思想相同,只是要考虑到此时气体是可压缩的,结合理想气体的状态 方程即可推导出。
• •
编辑本段]p+ρgh+(1/2)*ρv^2=C 式中p、ρ、v分别为流体的压强、密度和速度;h为铅垂高度;g为重力加速度。 上式各项分别表示单位体 积流体的压力能 p、重力势能ρg z和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒。 但各流线之间总能量(即上式中的常量值)可能不同。对于气体,可忽略重力,方程简化为p+(1/2)*ρv ^2 =常量(p0),各项分别称为静压 、动压和总压。显然 ,流动中速度增大,压强就减小;速度减小, 压强就 增大;速度降为零,压强就达到最大(理论上应等于总压)。飞机机翼产生举力,就在于下翼面速度低而压强 大,上翼面速度高而压强小 ,因而合力向上。 据此方程,测量流体的总压、静压即可求得速度,成为皮托 管测速的原理。在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式 中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。在粘性流 动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项[1]。 图为验证伯努利方程的空气动力实验。 补充:p1+1/2ρv1^2+ρgh1=p2+1/2ρv2^2+ρgh2(1) p+ρgh+(1/2)*ρv^2=常量 (2) 均为伯努利方程 其中ρv^2/2项与流速有关,称为动压强,而p和ρgh称为静 压强。 伯努利方程揭示流体在重力场中流动时的能量守恒。 由伯努利方程可以看出,流速高处压力低, 流速低处压力高。 图II.4-3为一喷油器,已知进口和出口直径D1=8mm,喉部直径D2=7.4mm,进口空气压 力p1=0.5MPa,进口空气温度T1=300K,通过喷油器的空气流量qa=500L/min(ANR),油杯内油的密度 ρ=800kg/m。问油杯内右面比喉部低多少就不能将油吸入管内进行喷油? 解: 由气体状态方程,知进口 空气密度ρ=p1/(RT1)=(0.5+0.1)/(287*300)kg/m=6.97kg/m

第八节伯努利方程

第八节伯努利方程

m gh1 )=p1S11t
p2 S22t
1 2
V
2 2
Vgh2
(1 2
V12
Vgh1 )=p1V
p2V
p1
1 2
12
gh1=p2
1 2
22
ห้องสมุดไป่ตู้
gh2
二. 对于同一流管的任意截面,伯努利方程:
p 1 2 gh 恒量
2
•含义:对于理想流体作稳定流动,在同一流管中任一处,
每单位体积流体的动能、势能和该处压强之和是一个恒量。
1 2
v 2
静止不动,故称驻点;
E
v 2 pA pB 2gH
P42, 图1-41
§1.4 粘滞流体的流动
粘滞流体:如植物组织中的水分,人体 及动物体内的血液以及甘油、蓖麻油。
一. 牛顿粘滞定律 粘滞系数
: 层流 实际流体在流动时,同一横截面上各点流速并不相同,管中轴
心处流速最大,越接近管壁,流速越小,在管壁处流速为零。这种各层 流体流速有规则逐渐变化的流动形式,称为层流; 每一层为与管同轴的薄圆筒,每一层流速相同,各层之间有相对运动 但不互相混杂,管道中的流体没有横向的流动。 (流速小时呈现的流动形式:河道、圆形管道)
注:S1>>S2
由于液槽中液面下降很慢, 可以看成是稳定流动,把液 体作为理想流体;
P0
1 2
V12
gh
P0
1 2
V22
V1 V2
2gh
托里拆利定律:忽略粘滞性,任何液体质点从小孔 中流出的速度与它从h高度处自由落下的速度相等;
应用实例4. 文特里管:可串接到管道中测定气体
流速的装置;
曲管压强计中盛 水银,当粗管和
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 伯努利方程
• 在火车站或地铁站的站台上都画有安全线,并 且火车或地铁进出站时总会有播音员提醒大家 往安全线里边站,这是为什么?
安全线
教学内容
1. 什么是伯努利方程; 2. 伯努利方程的物理意义;
一、流动系统的能量形式
1. 位能
流体在一定高度,在重力作用下 具有的能量。质量为m 的流体, 在高度z 处具有的位能为:
位能 = mgz
2. 动能 因流体具有一定的速度所具有的能量。 质量为m,流速为u的流体具有的Leabharlann 能为:动能 mu 2 2
3. 静压能 因流体具有一定压力而具有的能量。
截面1处的流体具有一定的静压力,要进入系统的流体必须带着 足以克服截面1处静压的能量,该能量称为静压能。
质量为 m,压力为p,密度为ρ的流体具有的静压能为:
静压能 m p
2

1 2
1
二、流动系统的能量衡算----伯努利方程
根据能量守恒定律:
流体在截面1-1处流入的能量 = 流体在截面2-2处流出的能量
z1g

u12 2

p1


z2 g

u
2 2
2

p2

理想流体的伯努利方程
伯努利方程式的物理意义
理想流体在管路各截面处具有的位能、动能、静压能之和(总 机械能 )守恒。
总机械能虽然相等,但每一种形式的能量不一定相等,它们之 间可相互转变。
z1g

u12 2

p1


z2 g

u22 2

p2

• 当火车经过B点时的流速比A点大,所以pA>pB, 于是物体会被火车吸入。
相关文档
最新文档